Oracle Big Data SQL Technical Update
|
|
|
- Piers Nicholson
- 10 years ago
- Views:
Transcription
1 Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical session focuses on Oracle Big Data SQL. It is however one component in a large product stack that Oracle provides for Big Data. The paper therefore introduces a number of new components and go through some updates and then will focus on the SQL innovations Big Data SQL brings to Hadoop and NoSQL data stores. Introducing the updates to Oracle Big Data Management System Here at Oracle we take a holistic approach with respect to managing big data, so we include Hadoop, NoSQL and Relational Databases in our Big Data Management System, as well as deliver a complete Big Data Management in the Oracle Public Cloud. Big Data Cloud Service Big Data Cloud Service is one of the big-ticket items. With the general availability of Oracle Big Data Cloud Service now a fact, customers can leverage the full power of our Big Data Management System both on-premises and in the cloud. One of the key differentiators is the architecture where Oracle delivers the same platform you use in your data center in Oracle Public Cloud. Figure 1. Oracle Big Data Cloud Service - Private and Public Cloud With Oracle Big Data Cloud Service now generally available, a next set of highly anticipated services will soon be ready for GA, notably Oracle Big Data Discovery Cloud Service and Oracle Big Data Preparation Cloud Service.
2 Big Data Appliance There was no update to the major version of the hardware: it is still X5-2. However, we did expand the storage capacity by moving from 4TB SAS drives to 8TB SAS drives, giving the BDA Full Rack roughly 1.7PB of raw disk. A short updated comparison with the previous generation now shows a massive spike on all components. Figure 2. Comparing X4-2 with the latest X5-2 system Although the disk capacity stands out, the most interesting change is the CPU. configuration. Big Data workloads are becoming much more mixed. These mixed workloads, MapReduce for ETL, SQL for ad-hoc analytics and Spark for some data processing, require more CPU power to adequately run on a system. By moving to the latest Intel Xeon processor BDA is better able to run these mixed workloads, while delivering a massive amount of storage. On the software side of Big Data Appliance, it is now possible to leverage an Oracle feature to access Oracle resident data from BDA based queries. As an example, a Hive query can now do a join, or a lookup into an Oracle table without moving the data first into Hadoop. This dramatically simplifies building a Big Data Management System. Oracle Table Access for Hadoop is available on BDA with BDA 4.3. Within the same update of the software, an improved version of Copy to BDA is available, where a lot more automation is provided when moving data in batch from Oracle Database to Hadoop on BDA. A SQL Developer interface will also be provided to further simply the workflows for Copy to BDA. Big Data Spatial and Graph While Big Data Spatial and Graph is a very new product, it has grown a little in functionality and is now sporting a brand new component multimedia analytics. This brand new component enables you to scan for example video or images and detect shapes. Faces are an example that comes to mind as well as out of the box with this functionality. Of course there are many other applications for shape detection in manufacturing or in working with other types of images. Multimedia analytics leverages the power of the distributed Hadoop compute cluster to scale to large data volumes and still analyze this complex data in reasonable time. For those who have not heard about Big Data Spatial and Graph, it is well worth a look. Big Data Spatial enables the enrichment of data with spatial elements using the full power of distributed computing on data in HDFS. By enriching the data it is far simpler to now visualize large quantities of data in maps and derive insights much faster. Big Data Spatial can also be used for proximity and containment analysis and vector and raster preparation of the data for further analysis.
3 Big Data Graph brings a new graph database to the ecosystem, which enables in-memory analytics on large graphs with the underlying data stored in HDFS. This graph database leverages Oracle NoSQL Database or HBase to serve up the large graph for analytics. While the obvious use case is social networks, it s also applicable in the Internet of Things world, where interactions between things are becoming as critical as interactions between humans. Various other use cases in cyber security and industrial engineering are also interesting. Big Data SQL Update The key goals of Big Data SQL are to expose data in its original format, and stored within Hadoop and NoSQL Databases through high performance Oracle SQL being offloaded to Storage resident cells or agents. The architecture of Big Data SQL closely follows the architecture of Oracle Exadata Storage Server Software and is built on the same proven technology. Retrieving Data With data in HDFS stored in an undetermined format (schema on read), SQL queries require some constructs to parse and interpret data for it to be processed in rows and columns. For this Big Data SQL leverages all the Hadoop constructs, notably InputFormat and SerDe Java classes optionally through Hive metadata definitions. Big Data SQL then layers the Oracle Big Data SQL Agent on top of this generic Hadoop infrastructure, as can be seen in Figure 3. Figure 3. Architecture leveraging core Hadoop and Oracle together Because Big Data SQL is based on Exadata Storage Server Software, a number of benefits are instantly available. Big Data SQL not only can retrieve data, but can also score Data Mining models at the individual agent, mapping model scoring to an individual HDFS node. Likewise querying JSON documents stored in HDFS can be done with SQL directly and is executed on the agent itself. Smart Scan Within the Big Data SQL Agent, similar functionality exists as is available in Exadata Storage Server Software. Smart Scans apply the filter and row projections from a given SQL query on the data streaming from the HDFS Data Nodes, reducing the data that is flowing to the Database to fulfill the data request of that given query. The benefits of Smart Scan for Hadoop data are even more pronounced than for Oracle Database as tables are often very wide and very large. Because of the elimination of data at the individual HDFS node, queries
4 across large tables are now possible within reasonable time limits enabling data warehouse style queries to be spread across data stored in both HDFS and Oracle Database. Storage Indexes Storage Indexes (SI) provide the same benefits of IO elimination to Big Data SQL as they provide to SQL on Exadata. The big difference is that in Big Data SQL the SI work on an HDFS block (on BDA 256MB of data) and span 32 columns instead of the usual 8. SI is fully transparent to both Oracle Database and to the underlying HDFS environment. As with Exadata, the SI is a memory construct managed by the Big Data SQL software and invalidated automatically when the underlying files change. Figure 4. Storage Indexes work on HDFS Blocks and speed up IO by skipping blocks SI works on data exposed via Oracle External tables using both the ORACLE_HIVE and ORACLE_HDFS types. Fields are mapped to these External Tables and the SI is attached to the Oracle columns, so that when a query references the column(s), the SI - when appropriate - kicks in. In the current version, SI does not support tables defined with Storage Handlers (ex: HBase or Oracle NoSQL Database). Compound Benefits Both Smart Scan and Storage Index features deliver compound benefits. Where Storage Indexes reduces the IO done, Smart Scan then enacts the same row filtering and column projection. This latter step remains important as it reduces the data transferred between systems. Virtual Machine to try out Big Data SQL and all other components Of course, having all these new features in the platform is a lot of fun. But how do I get to try all of this? It s simple. Oracle packages all of these features into a virtual machine called
5 Oracle Big Data Lite VM. This is updated for each new version of BDA software and picks up the components in the stack. This VM not only includes all of Oracle Data Integration including the Big Data add-on but it now also includes Oracle Big Data Discovery. It is the perfect client for a BDA, and the perfect test bed for any of your investigations. You can find the VM here: Contact address: Jean-Pierre Dijcks Oracle 500 Oracle Parkway MS 4op7 Redwood City, CA Phone: [email protected] Internet:
How to Choose Between Hadoop, NoSQL and RDBMS
How to Choose Between Hadoop, NoSQL and RDBMS Keywords: Jean-Pierre Dijcks Oracle Redwood City, CA, USA Big Data, Hadoop, NoSQL Database, Relational Database, SQL, Security, Performance Introduction A
Safe Harbor Statement
Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment
Oracle Database - Engineered for Innovation. Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya
Oracle Database - Engineered for Innovation Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya Oracle Database 11g Release 2 Shipping since September 2009 11.2.0.3 Patch Set now
Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...
Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data
Copyright 2012, Oracle and/or its affiliates. All rights reserved.
1 Oracle Big Data Appliance Releases 2.5 and 3.0 Ralf Lange Global ISV & OEM Sales Agenda Quick Overview on BDA and its Positioning Product Details and Updates Security and Encryption New Hadoop Versions
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
Big Data SQL and Query Franchising
Big Data SQL and Query Franchising An Architecture for Query Beyond Hadoop Dan McClary, Ph.D. Big Data Product Management Oracle Copyright 2014, Oracle and/or its affiliates. All rights reserved. Safe Harbor
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Using RDBMS, NoSQL or Hadoop?
Using RDBMS, NoSQL or Hadoop? DOAG Conference 2015 Jean- Pierre Dijcks Big Data Product Management Server Technologies Copyright 2014 Oracle and/or its affiliates. All rights reserved. Data Ingest 2 Ingest
An Oracle White Paper October 2011. Oracle: Big Data for the Enterprise
An Oracle White Paper October 2011 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5
An Oracle White Paper June 2013. Oracle: Big Data for the Enterprise
An Oracle White Paper June 2013 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure
Oracle Big Data SQL. Architectural Deep Dive. Dan McClary, Ph.D. Big Data Product Management Oracle
Oracle Big Data SQL Architectural Deep Dive Dan McClary, Ph.D. Big Data Product Management Oracle Copyright 2014, Oracle and/or its affiliates. All rights reserved. Safe Harbor Statement The following is
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
2009 Oracle Corporation 1
The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,
Cost-Effective Business Intelligence with Red Hat and Open Source
Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,
Oracle Big Data Management System
Oracle Big Data Management System A Statement of Direction for Big Data and Data Warehousing Platforms O R A C L E S T A T E M E N T O F D I R E C T I O N A P R I L 2 0 1 5 Disclaimer The following is
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
How To Manage Big Data In A Microsoft Cloud (Hadoop)
Oracle Database 12c and the Future of Data Warehousing in the Era of Big Data George Lumpkin Data Warehousing Neil Mendelson Big Data & Advanced AnalyEcs Vice Presidents Server Technologies September 29,
An Oracle White Paper September 2014. Oracle: Big Data for the Enterprise
An Oracle White Paper September 2014 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform...
Oracle Database 12c Plug In. Switch On. Get SMART.
Oracle Database 12c Plug In. Switch On. Get SMART. Duncan Harvey Head of Core Technology, Oracle EMEA March 2015 Safe Harbor Statement The following is intended to outline our general product direction.
Oracle Big Data, In-memory, and Exadata - One Database Engine to Rule Them All Dr.-Ing. Holger Friedrich
Oracle Big Data, In-memory, and Exadata - One Database Engine to Rule Them All Dr.-Ing. Holger Friedrich Agenda Introduction Old Times Exadata Big Data Oracle In-Memory Headquarters Conclusions 2 sumit
End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ
End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Oracle Big Data Building A Big Data Management System
Oracle Big Building A Big Management System Copyright 2015, Oracle and/or its affiliates. All rights reserved. Effi Psychogiou ECEMEA Big Product Director May, 2015 Safe Harbor Statement The following
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
Oracle Big Data Strategy Simplified Infrastrcuture
Big Data Oracle Big Data Strategy Simplified Infrastrcuture Selim Burduroğlu Global Innovation Evangelist & Architect Education & Research Industry Business Unit Oracle Confidential Internal/Restricted/Highly
Oracle Big Data Essentials
Oracle University Contact Us: Local: 1800 103 4775 Intl: +91 80 40291196 Oracle Big Data Essentials Duration: 3 Days What you will learn This Oracle Big Data Essentials training deep dives into using the
Inge Os Sales Consulting Manager Oracle Norway
Inge Os Sales Consulting Manager Oracle Norway Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database Machine Oracle & Sun Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database
Dell In-Memory Appliance for Cloudera Enterprise
Dell In-Memory Appliance for Cloudera Enterprise Hadoop Overview, Customer Evolution and Dell In-Memory Product Details Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert [email protected]/
How To Use A Data Center With A Data Farm On A Microsoft Server On A Linux Server On An Ipad Or Ipad (Ortero) On A Cheap Computer (Orropera) On An Uniden (Orran)
Day with Development Master Class Big Data Management System DW & Big Data Global Leaders Program Jean-Pierre Dijcks Big Data Product Management Server Technologies Part 1 Part 2 Foundation and Architecture
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Where is... How do I get to...
Big Data, Fast Data, Spatial Data Making Sense of Location Data in a Smart City Hans Viehmann Product Manager EMEA ORACLE Corporation August 19, 2015 Copyright 2014, Oracle and/or its affiliates. All rights
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Oracle Big Data Handbook
ORACLG Oracle Press Oracle Big Data Handbook Tom Plunkett Brian Macdonald Bruce Nelson Helen Sun Khader Mohiuddin Debra L. Harding David Segleau Gokula Mishra Mark F. Hornick Robert Stackowiak Keith Laker
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
Dell Cloudera Syncsort Data Warehouse Optimization ETL Offload
Dell Cloudera Syncsort Data Warehouse Optimization ETL Offload Drive operational efficiency and lower data transformation costs with a Reference Architecture for an end-to-end optimization and offload
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
Overview: X5 Generation Database Machines
Overview: X5 Generation Database Machines Spend Less by Doing More Spend Less by Paying Less Rob Kolb Exadata X5-2 Exadata X4-8 SuperCluster T5-8 SuperCluster M6-32 Big Memory Machine Oracle Exadata Database
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
Interactive data analytics drive insights
Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
Dell* In-Memory Appliance for Cloudera* Enterprise
Built with Intel Dell* In-Memory Appliance for Cloudera* Enterprise Find out what faster big data analytics can do for your business The need for speed in all things related to big data is an enormous
TUT NoSQL Seminar (Oracle) Big Data
Timo Raitalaakso +358 40 848 0148 [email protected] TUT NoSQL Seminar (Oracle) Big Data 11.12.2012 Timo Raitalaakso MSc 2000 Work: Solita since 2001 Senior Database Specialist Oracle ACE 2012 Blog: http://rafudb.blogspot.com
Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved
Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Highly competitive enterprises are increasingly finding ways to maximize and accelerate
Navigating the Big Data infrastructure layer Helena Schwenk
mwd a d v i s o r s Navigating the Big Data infrastructure layer Helena Schwenk A special report prepared for Actuate May 2013 This report is the second in a series of four and focuses principally on explaining
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
SAS and Oracle: Big Data and Cloud Partnering Innovation Targets the Third Platform
SAS and Oracle: Big Data and Cloud Partnering Innovation Targets the Third Platform David Lawler, Oracle Senior Vice President, Product Management and Strategy Paul Kent, SAS Vice President, Big Data What
BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata
BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING
TE's Analytics on Hadoop and SAP HANA Using SAP Vora
TE's Analytics on Hadoop and SAP HANA Using SAP Vora Naveen Narra Senior Manager TE Connectivity Santha Kumar Rajendran Enterprise Data Architect TE Balaji Krishna - Director, SAP HANA Product Mgmt. -
Oracle Big Data Fundamentals Ed 1 NEW
Oracle University Contact Us: +90 212 329 6779 Oracle Big Data Fundamentals Ed 1 NEW Duration: 5 Days What you will learn In the Oracle Big Data Fundamentals course, learn to use Oracle's Integrated Big
HDP Hadoop From concept to deployment.
HDP Hadoop From concept to deployment. Ankur Gupta Senior Solutions Engineer Rackspace: Page 41 27 th Jan 2015 Where are you in your Hadoop Journey? A. Researching our options B. Currently evaluating some
An Oracle White Paper May 2012. Oracle Database Cloud Service
An Oracle White Paper May 2012 Oracle Database Cloud Service Executive Overview The Oracle Database Cloud Service provides a unique combination of the simplicity and ease of use promised by Cloud computing
Big Data and Natural Language: Extracting Insight From Text
An Oracle White Paper October 2012 Big Data and Natural Language: Extracting Insight From Text Table of Contents Executive Overview... 3 Introduction... 3 Oracle Big Data Appliance... 4 Synthesys... 5
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
Integrate Master Data with Big Data using Oracle Table Access for Hadoop
Integrate Master Data with Big Data using Oracle Table Access for Hadoop Kuassi Mensah Oracle Corporation Redwood Shores, CA, USA Keywords: Hadoop, BigData, Hive SQL, Spark SQL, HCatalog, StorageHandler
Oracle BI Roadmap & Visual Analyzer Ljiljana Perica, Oracle Business Solution Leader [email protected]
Oracle BI Roadmap & Visual Analyzer Ljiljana Perica, Oracle Business Solution Leader [email protected] Copyright 2015, Oracle and/or its affiliates. All rights reserved. 1 Safe Harbor Statement
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 Ralph Kimball Associates 2014 The Data Warehouse Mission Identify all possible enterprise data assets Select those assets
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and
<Insert Picture Here> Big Data
Big Data Kevin Kalmbach Principal Sales Consultant, Public Sector Engineered Systems Program Agenda What is Big Data and why it is important? What is your Big
Offload Enterprise Data Warehouse (EDW) to Big Data Lake. Ample White Paper
Offload Enterprise Data Warehouse (EDW) to Big Data Lake Oracle Exadata, Teradata, Netezza and SQL Server Ample White Paper EDW (Enterprise Data Warehouse) Offloads The EDW (Enterprise Data Warehouse)
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
In-Database Analytics
Embedding Analytics in Decision Management Systems In-database analytics offer a powerful tool for embedding advanced analytics in a critical component of IT infrastructure. James Taylor CEO CONTENTS Introducing
Quick Deployment Step-by-step instructions to deploy Oracle Big Data Lite Virtual Machine
Quick Deployment Step-by-step instructions to deploy Oracle Big Data Lite Virtual Machine Version 3.0 Please note: This appliance is for testing and educational purposes only; it is unsupported and not
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
Best Practices for Hadoop Data Analysis with Tableau
Best Practices for Hadoop Data Analysis with Tableau September 2013 2013 Hortonworks Inc. http:// Tableau 6.1.4 introduced the ability to visualize large, complex data stored in Apache Hadoop with Hortonworks
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics platform. PENTAHO PERFORMANCE ENGINEERING
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Hadoop Big Data for Processing Data and Performing Workload
Hadoop Big Data for Processing Data and Performing Workload Girish T B 1, Shadik Mohammed Ghouse 2, Dr. B. R. Prasad Babu 3 1 M Tech Student, 2 Assosiate professor, 3 Professor & Head (PG), of Computer
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION EXECUTIVE SUMMARY Oracle business intelligence solutions are complete, open, and integrated. Key components of Oracle business intelligence
Big Data for Big Value @ Intel
Big Data for Big Value @ Intel Moty Fania, PE Big data Analytics Assaf Araki, Sr. Arch. Big data Analytics Advanced Analytics team @ Intel IT Corporate ownership of advanced analytics Team charter Solve
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
Big Data. Value, use cases and architectures. Petar Torre Lead Architect Service Provider Group. Dubrovnik, Croatia, South East Europe 20-22 May, 2013
Dubrovnik, Croatia, South East Europe 20-22 May, 2013 Big Data Value, use cases and architectures Petar Torre Lead Architect Service Provider Group 2011 2013 Cisco and/or its affiliates. All rights reserved.
The Future of Data Management with Hadoop and the Enterprise Data Hub
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah Cofounder & CTO, Cloudera, Inc. Twitter: @awadallah 1 2 Cloudera Snapshot Founded 2008, by former employees of Employees
Fast, Low-Overhead Encryption for Apache Hadoop*
Fast, Low-Overhead Encryption for Apache Hadoop* Solution Brief Intel Xeon Processors Intel Advanced Encryption Standard New Instructions (Intel AES-NI) The Intel Distribution for Apache Hadoop* software
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Ganzheitliches Datenmanagement
Ganzheitliches Datenmanagement für Hadoop Michael Kohs, Senior Sales Consultant @mikchaos The Problem with Big Data Projects in 2016 Relational, Mainframe Documents and Emails Data Modeler Data Scientist
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Teradata s Big Data Technology Strategy & Roadmap
Teradata s Big Data Technology Strategy & Roadmap Artur Borycki, Director International Solutions Marketing 18 March 2014 Agenda > Introduction and level-set > Enabling the Logical Data Warehouse > Any
2015 Ironside Group, Inc. 2
2015 Ironside Group, Inc. 2 Introduction to Ironside What is Cloud, Really? Why Cloud for Data Warehousing? Intro to IBM PureData for Analytics (IPDA) IBM PureData for Analytics on Cloud Intro to IBM dashdb
Oracle Database In-Memory The Next Big Thing
Oracle Database In-Memory The Next Big Thing Maria Colgan Master Product Manager #DBIM12c Why is Oracle do this Oracle Database In-Memory Goals Real Time Analytics Accelerate Mixed Workload OLTP No Changes
vrops Microsoft SQL Server MANAGEMENT PACK OVERVIEW
vrops Microsoft SQL Server MANAGEMENT PACK OVERVIEW What does Blue Medora do? We connect business critical applications, databases, storage, and converged systems to leading virtualization and cloud management
HadoopTM Analytics DDN
DDN Solution Brief Accelerate> HadoopTM Analytics with the SFA Big Data Platform Organizations that need to extract value from all data can leverage the award winning SFA platform to really accelerate
Oracle Exadata: The World s Fastest Database Machine Exadata Database Machine Architecture
Oracle Exadata: The World s Fastest Database Machine Exadata Database Machine Architecture Ron Weiss, Exadata Product Management Exadata Database Machine Best Platform to Run the
Ubuntu and Hadoop: the perfect match
WHITE PAPER Ubuntu and Hadoop: the perfect match February 2012 Copyright Canonical 2012 www.canonical.com Executive introduction In many fields of IT, there are always stand-out technologies. This is definitely
ORACLE BIG DATA APPLIANCE X3-2
ORACLE BIG DATA APPLIANCE X3-2 BIG DATA FOR THE ENTERPRISE KEY FEATURES Massively scalable infrastructure to store and manage big data Big Data Connectors delivers load rates of up to 12TB per hour between
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP. Eva Andreasson Cloudera
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP Eva Andreasson Cloudera Most FAQ: Super-Quick Overview! The Apache Hadoop Ecosystem a Zoo! Oozie ZooKeeper Hue Impala Solr Hive Pig Mahout HBase MapReduce
Big Data and Market Surveillance. April 28, 2014
Big Data and Market Surveillance April 28, 2014 Copyright 2014 Scila AB. All rights reserved. Scila AB reserves the right to make changes to the information contained herein without prior notice. No part
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
