programs).itsneedarisesinanysystemwithmultipleusersandsensitiveinformationorsharedresourcessuchasthemilitary[4],bankingandcommerce[7]
|
|
|
- Melvyn Garrett
- 10 years ago
- Views:
Transcription
1 LectureNotesinArticialIntelligence,cSpringerVerlag,1997 TableauxMethodsforAccessControlin DistributedSystems Abstract.Theaimofaccesscontrolistolimitwhatusersofdistributed systemscandodirectlyorthroughtheirprograms.asthesizeofthe UniversityofCambridge,England(UK) ComputerLaboratory FabioMassacci? systemsandthesensitivityofdataincreaseformalmethodsofanalysis introducesrelationsbetweenmodalitieswhichcannotbecompiledinto terestingtechnicalchallenges,sinceithasnotthetree-modelproperty, Lampsonet.al.Besidetheapplicativeinterest,thecalculusposesincesscontrolindistributedsystemdevelopedatDEC-SRCbyAbadi, axiomschemas,andhassomefeaturesoftheuniversalmodality. areoftenrequired. Thispaperpresentsaprexedtableauxmethodforthecalculusofac- 1Introduction Accesscontrolisakeyissueforthesecurityofcomputersystems(see[25]for anintroduction).itsmainpurposeistorestraintheactionswhichlegitimate (ormalicious)usersmayperform,eitherdirectlyorindirectly(throughtheir whichdistinguishesitfroms5(viasatisabilityonnontree-models). Asaside-eectweshowatableauxcalculusfortheuniversalmodality programs).itsneedarisesinanysystemwithmultipleusersandsensitiveinformationorsharedresourcessuchasthemilitary[4],bankingandcommerce[7] reasoningtechniques.forinstance,accesscontrolmustbecombinedwithauthentication[31],andpoliciesmustberenedatthevariouslevelsofdelegation [22].Thedenitionofthejurisdictioncapabilitiesofcommunicatingagentsplays munications,delegationofmanagementetc.)whichrequirenewmodellingand alsoakeyroleintheanalysisofsecurityprotocols[5,28].indeedaccesscontrol isjustaproblemofjurisdictionincomplexanddistributedsystems. Distributedsystemsfaceadditionalchallenges(e.g.largescale,insecurecom- orhealthcareservices[2]. (tableauxbased)automatedreasoningtechniquesforaccesscontrol. comesinfeasible.henceformalmethods,logicsandautomatedreasoningtech- niquescanbeusefultoolsforthevericationofsecuritypoliciesandaccess controlprocedures(seee.g.[5,20,19,22,31]).ourtargetisthedevelopmentof?currentaddress:dip.informaticaesistemistica,universitadiroma\lasapienza", Assystemsbecomemorecomplex,human(andinformal)vericationbe- 1
2 Sw-admin fm205 Remote-User Deputy Postm Postmaster pb User Sys-admin gt maj maj:titanroommanager,knows aboutunix,decstations,alphas, Ethernet,ATM,printersystems, backupsystemsandtex. gt:knowsaboutunix,suns,hp bobcatsandsnakes,gnuemacs,x, Ethernet,Lispandsimilar languages.deputypostmaster. pb:postmaster,knowsaboutunix, Suns,X,mail,news,andwide areacommunications. [...]Ifyouanticipateaneedto loginfromoutsidecambridge,you shouldconsultmajorpb. Fig.1.From\ComputingFacilitiesattheComputerLaboratory" Theprinciplesofaccesscontrolcanbedescribedwithfewabstractions:subjects(humans,programsetc.),objects(data,otherprogramsetc.)andprivileges whichsubjectsdetainonobjects(e.g.read,writeandexecuteinunix).theuse oftheseabstractionsisthebasisofmostformalmodelsproposedintheliterature,startingfromtheclassicalaccessmatrix[18,24]tomoreadvancedsystems [10,19,22,23].Akeyfeatureofthenewapproachesistheattempttomodel morecloselythe(hierarchical)relationshipsbetweenthevarioussubjects,where someprivilegescanbeinheritedalongthechains(e.g.fig.1). Theuseoftheseabstractionsleadsnaturallytowardsaformalisationofthe problemwithmultimodallogics:onesubject,onemodality.therehasabeena numberofworksonmodellingsecurityandobligationsinamultiagentssetting, e.g.[8,17,30],andinparticularwefocusontheexpressivecalculusdeveloped atdec-src[1].thiscalculusisinterestingforanumberofreasons: {itprovidesauniformframeworkforreasoningaboutaccesscontrolinpresenceofdelegationandhasasimplesemantics[1]; {itconstitutesthebasisofarealsystem[19,31]; {itsfeaturesposeinterestingtechnicalchallengesfordeduction. Oneofthecharacteristics,whichchallenge\standard"tableauxcalculi,isthe presenceofformulaeusedformodellingdelegationcerticatesandhierarchical relationshipsbetweensubjects(i.e.modalities).thoserelationshavethesame forceofaxiomschemasandareclosetorole-value-mapconstructsofailanguages [26].Thekeydicultyisthatwecannot\compile"themintotableauxrules (noraxiomschemas)sincetheirpresencedependsontheparticularnonlogical axiomsandtheparticulartheoremwewanttoprove.twodierenttheorems (i.e.accessrequestswithdierentdelegationcerticates)mayimposetotally dierentrelationsbetweensubjects.2
3 alsohindersastraightforwardextensionoftableauxcalculi.finallyitshares somepropertiesoftheuniversalmodality[12,13]whichcannotbeaxiomatised2. Anotherfeatureofthelogicistheabsenceofthetreemodelpropertywhich tableauxisnotnewforsecurityanddatesbacktotheverussystem[20]. asatargetcalculusfortranslationsfromthematrixmethods[27].theuseof implementationalongthelineofleantheoremproving[3]anditspotentialuse 21]giventheirexibilitytoadapttovariouslogics,thepossibilityofasimple onlybediscoveredon-lineduringthedeductionprocess. Inanutshell,someglobalpropertiesoftheunderlyingKripkemodelscan constituteaforestratherthanatreeandthesetofglobalaxiomsismodiedat runtime.thisrequirestochangethedenitionoftableaubranchesandmakes possibleasimpleiterativeconstructionfortheuniversalmodality. Theproposedsolutionusesanextensionofprexedtableauxwhereprexes ThetableauxmethodproposedhereisbasedonSimpleStepTableaux[9,14, calculusandacorrectoneforthewholelanguage(thecalculusisundecidablein general).thismethodextendsthedeductioncapabilitiesof[1]aswecanprove importantpropertieswhichmustbeaddedasnon-logicalaxiomsin[1,19]. Wederiveasoundandcompletedecisionmethodforalargefragmentofthe followedbyanappendixontheuniversalmodality. 2TheDEC-SRCCalculusforAccessControl (x5)andsketchitssoundnessandcompletenessproofs(x6).conclusions(x7)are manticalfeatures(x3).wediscussthetableauxcalculus(x4)withsomeexamples EXPTIMEtableauformulti-modallogicswiththeuniversalmodality[12,13]. Animportantside-eectofthesetechniques,shownintheappendix,isan Tomakethepaperself-containedwesketchtheintuitionsbehindthecalculus Inwhatfollows,wepresenttheDEC-SRCcalculus(x2)andanalyseitsse- andreferto[1]foraformaltreatmentandto[19,31]foritsapplications. jects,orprincipals,anddenotedbya,b,kaetc.complexprincipals(porq) theprincipalpclaimingtoquotearequestfromq.noticethatpmayclaimto arebuiltbyconjunction\&"andquoting\j".theintuitionisthatp&qis aprincipalwiththeprivilegesofbothpandq,whereaspjqcorrespondsto quoteqevenwhenqneversaidanything. Users,roles,groupsandcryptographickeysarerepresentedbyatomicsub- instanceaforb:=(a&d)jbwheredisadelegationserver[1]. whenaisclaimingtoactasadelegateforb;thelatterwhenaspeaksusing statements(r)areuninterpretedoperationsorrequests[1,23]i.e.propositional letterswhichcanbetrueinaparticularstateofthesystem(requestgranted) arole3r.sincetheycanbeencodedusingjand&,wedonotusethem.for 2Thismayalsoexplainwhyonlyasoundaxiomatisationhasbeendevisedin[1]. Otheroperatorsarepossiblei.e.AforBandAasR[1]:theformerisused 3Foradistinctionbetweenthesecurityconceptsofroleandgroupsee[10,23]. Operationsoverobjectsarerepresentedbystatementsdenotedbys.Atomic 3
4 ^(fm205jusr)controlsread(mail)majsays(fm205)usr)^ Usrcontrolslogin(telnet)^ RemUsrcontrolslogin(ftp)^ SysAdmcontrols(fm205)Usr)^ SwAdm)Usr^ PostMaster)Usr^ Usr)RemUsr SysAdm)SwAdm^ SysAdm)PostMaster^ ^gt)deppostm^ maj)sysadm^ gt)swadm^ pb)postmaster^ Fig.2.ALogicalFormalisationofFig.1 fm205sayslogin(telnet)^ fm205saysread(mail) fm205)remusr interpretationis\iftelnethasbeengrantedsohasftp". orfalse(notgranted).complexstatementsarebuiltwithbooleanconnectives ^;:;etc.:forinstancelogintelnetloginftpwhoseintuitive(andformal) ment\pcontrolss"capturestheintuitionthatprincipalphasaccesscontrol groupmembership:p)gmeansthatphasatleastallprivilegesofgroupg. PcanspeakforQ.IfPsayssthiswouldbeasQitselfsaids.Itisalsousedfor itas\somebodyingrouppsayss". Prequestsstobegranted.IfPisagroupthenwefollow[1,19]andinterpret statementp)q.theintuitionisthatphasatleastalltheprivilegesofqi.e. Principalsandstatementsarelinkedbyprivilegesattributions[23]:thestate- Torepresentuserrequestsweusethemodalstatement\Psayss":principal overs.intheliteratureonauthenticationthisiscalledjurisdictionofaprincipal [5,28]andaxiomatisedasAsayss^Acontrolsss. Theaimistotoreplaceitbyamorecomplexbutmorerealisticaxiom,where Hierarchicalrelationsbetweenprincipalsareconstructedwiththespeaks-for 3FormalSyntaxandSemantics therelationbetweentwoprincipalsaandbisexpressedwiththe)operator: Thelanguage(describedinformallyinx2)isthefollowing,whereAisanatomic stancefm205)usrinfig.2dependsonmaj'sstatements. AparticularP)Qmaydependsonthestatementsofotherprincipals.Forin- Asayss^Bcontrolss^\somerelationbetweenAandB"s: principalandranatomicpropositionalrequest: Otherconnectivesareabbreviations,e.g.ss0:(s^:s0).AlsoPcontrolss isashortcutfor(psayss)s. P;Q::=AjP&Qj(PjQ)s;s0::=rj:sjs^s0jPsayssj(P)Q) 4
5 w.l.o.g.sincep)qisequivalenttop)a^a)qforanewatomica. eachstatementoftheformpsayss,thestatementsiseitheranatomicrequest forma)q(respectivelyp)a)i.e.theleft(right)principalisatomic.itis weaklyleft(right)restrictedwhenstatementsp)qareadmittediftheyoccur oragroupmembership(bothpossiblynegated).forinstancetheformalisation underthescopeofanoddnumberofnegations4.itisrequestrestrictedwhenin infig.2isleft,rightandrequestrestricted. Astatementisleft(right)restrictedwhenspeaks-forsubformulaehavethe InthesequelweassumethatinP)QeitherPorQisanatomicprincipal, uninterpreted[19,23].ifweadd,amongthepossibleprivileges,thepossibility westillhavearightrestrictedlanguage. tohandoverdelegationtootherprincipalssuchaspicontrols(qj)ak),then requestrissimplytheconjunctionsofstatementsvipicontrolsr,whereris erarchiesandgroupandrolemembership,asinfig.1,therightmostprincipal sentedbyacl(accesscontrollists).inthedec-srclanguage,anaclfora isatomic.moreover,inalmostallsystems[25],privilegesattributionsarerepre- Inpracticestatementsarerightandrequestrestricted.If)isusedforhi- compatibilityofastatewiththerequestsmadebyaprincipalintherealworld. interpretationsuchthatforeveryatomicprincipalaitisaiwwandfor everypropositionalletterritisriw.theniisextendedasfollows: ThesemanticsisbasedonKripkemodels[1,11,16]:arelationmodelsthe AmodelisapairhW;Ii,whereWisanonemptysetofstatesandIan (:s)i=w?si isnotempty.astatementsisvalidiforeverymodelhw;iiitis(s)i=w. (s^s0)i=si\s0i Forsimplicity,wewritewk?sforw2sIandinterchangeasetofstatements Denition1.AstatementsissatisableithereisamodelhW;Iiwhere(s)I (PjQ)I=hw;wij9whw;wi2PIandhw;wi2QI (P&Q)I=PI[QI (P)Q)I=ifQIPIthenWelse; (Psayss)I=wj8w2Wifhw;wi2PIthenw2sI withtheirconjunction.nextweintroducethesetofglobalaxiomsgwhich Denition2.AstatementsisalogicalconsequenceofG,i.e.Gj=s,ifor Globalaxiomscanbeincorporatedintheaxiomatizationof[1]withthemodal theaccesscontrolsystem:groupsmembership,privilegesattributionsetc. becausethemodaldeductiontheoremleadstoanexponentialblowup[15]. deductiontheorem[16,11],buttheirexplicitrepresentationismoreeective holdsineverypossibleworld[11,21].theyarenon-logicalaxiomsdescribing everyhw;iiif8w2w;wk?g,then8w2w;wk?s. 4Forinstancetheformula:Asays((B&C))D)isweaklyleftrestrictedsincethe groupmembership(b&c))disunderthescopeofonenegation. 5
6 wherewehavethefollowingtwoconditions: Wecanrepresentexplicitytherelationwiththeuniversalmodality[u]as: Remark.ThesemanticsofP)Qreectsglobalpropertiesofthemodel,isclose totheuniversalmodality[12,13],andcanintroduceaxiomschemasonthey. Akeypropertyisthepossibilityofintroducingaxiomschemas\onthey". ForinstanceP)PjPforcesthetransitivityofrelationPI,wherePmaybea (P)locQ)I=wj8w2Wifhw;wi2QIthenhw;wi2PI ([u]s)i=if8v2wvk?sthenwelse; P)Q[u](P)locQ) A)AjA^:(A)B)^Bsays?^:(Asays?)^Asays(Bsays?^:Asays?) complexprincipal.yet,theseglobalpropertiesmayormaynotbepresent.as W=f1;11;2gandAI=fh1;11i;h11;11igandBI=fh2;2ig.Thekeypointis hasnotreemodelatall,althoughitissatisableintheworld1ofthemodelwith anexample,supposewehaveasays(b)bjb).transitivityofbwillfollow thatthismodelhastwoclusters(connectedcomponents)sothat1satisesthe onlyif:asays?isthecase.sob'spropertiesdependontheparticularglobal axiomsandtheoremswearetryingtoprove. (local)saysstatementsand2satisestheglobal:(a)b). Anotherfeatureistheabsenceofthetree-modelproperty[29,16]: ofthelogicwithanhilbertsystem[12,13,29]. unionasin\traditional"modallogics[29].thisisduetothe\hidden"presence oftheuniversalmodalitywhichmakesimpossiblethecompletecharacterisation details)ispointedoutin[1]. Inmodeltheoreticterms,(un)satisabilityisnotpreservedunderdisjoint shortp=q)forthecorrespondingpandq.forgroupsintroduceaprincipali quoting\j"andequationsbetweenwordsp=qtostatementsp)q^q)p(for problemof(semi)groups:mapelementstoatomicprincipals,composition\"to foridentity,oneacfortheconverseofeachatomica,andtherelativeequations. NextuseanewprincipalGrwithglobalaxiomsGrjA=Grforeveryatomic Thelogicisalsoundecidableandareductiontopushdownautomata(without ThenonecanprovethatGrsays(P0=Q0)isvalidwiththoseassumptionsi theequationp0=q0holdsforthegroup[26]. AandthestatementGrsays(P=Q)foreveryp=qcharacterisingthegroup. Asimplerproofusesthetechniquesof[26]andreducesvaliditytotheworld 4ATableauxCalculus prexanddenedas::=nj:a:n.akeydierencefrom\standard"prexed Prexedtableauxuseprexedstatements,i.e.pairsh:siwheresisastatement andisanalternatingsequenceofintegersnandatomicprincipalsacalled 6
7 hquotei:::(pjqsayss) handi:::(p&qsayss) ::Psayssj::Qsayss[and]::P&Qsayss ::Psays(Qsayss)[quote]::PjQsayss :Psays(Qsayss) hai:::(asayss) :A:m::s:A:mnew[A]::Asayss Glob:. :sifispresentinbands2gb :A:n:s:A:npresent :Qsayss :Psayss arcsarelabelledwithatomicprincipalsandnodewithintegers.withkdierent tableaux[11,14]isthatasetofprexesnowdescribesaforestoftrees,where D(A)::Asayss ::Asays:swithsome:A:nalreadypresentinthebranch initialprexeswehave,ingraph-theoreticterminology,kconnectedcomponents orclusters[16].withglobalaxiomsandtheoperator)wecanimposean euclideanortransitiveclosuresonaclusterbutwecannotcollapsetwoclusters. Stillthedenitionoftableauissimilartoprexedtableauxformodallogics Fig.3.PDL-likeRulesforModalConnectives ofglobalaxiomsduringthedeductionprocessandthereforedierentbranches [11,14,21]:atableauTisarooted(binary)treewherenodesarelabelledwith mayendupwithdierentglobalaxioms. ofglobalaxioms.thisdenitionisessentialbecauseweneedtomodifytheset Thus,eachtimewebranchthetreeweshouldalsoduplicate(intheory)theset theroottoaleafoftandgbisasetofglobalaxioms. prexedstatementsintheusualfashion. Denition3.AbranchofatableauTisapairhB;GBiwhereBisapathfrom fromr)tomarkunsaidstatementsasinfig.4.sincep)qimpliesthatif PsayssthenQsayssforalls,itsnegationmeansthatthereis\something" Therulesforconjunction,quoting,theuseofglobalaxiomsandthetransitional rulesforatomicprincipalsareinfig.3. thatprexalreadyinb,anditisnewifitisnotalreadypresent. Tocopewith)weintroduceanewsetofpropositionalatomsxi(distinct Therulesforpropositionalconnectivesarestandard[11,14,21]andomitted. AprexispresentinabranchhB;GBi,ifthereisaprexedstatementwith (anunknownxi)whichpsaidbutqdidn't.thersttworulescorrespondto 7
8 hugri:::(p)q) hrgri::p)a::(asayss) n::(qsaysxi)xiandnnew[ugr]: n:psaysxi ::(Psayss) [Lgr]::Asayss:A)Q :Qsayss thelocalfeaturesofthe)operator,whereasthelastisduetoits\universal" Fig.4.Rulesforthespeaks-foroperator GB:=GB[fP)Qg :P)Q whilerightrestrictedlanguagesdonotneedrule[lgr]. avour.thehugri-rulecombinesbothaspects. Furthersimplicationsarepossible:P)(A&B)jQislogicallyequivalentto Remark.WeaklyleftrestrictedstatementsdonotneedrulehRgriandD(A) P)AjQ^P)BjQ.ThisrulecanbeaddedwhenQisemptysinceitmay skippedifaprexedformula:a:n::sisalreadypresentetc. forsomesand.itisopenifallpossibleruleshavebeenappliedanditisnot Denition4.AbranchhB;GBiisclosedifBcontainsboth:sand::s, subformula:(p)q),nomatteritsprex.inasimilarwayrulehaicanbe closed.atableauisclosedifallbranchesareclosed;itisopenifatleastone leadtoright-restrictedformulae.rulehugrimustbeappliedonlyonceforeach branchisopen. Denition5.AvaliditytableauproofforstatementswithglobalaxiomsGis aclosedtableaustartingwiththebranchhf1::sg;gi. Theorem7(StrongWL-Completeness).IfsisalogicalconsequenceofG GthensisalogicalconsequenceofG. secondisthemostimportantfromanapplicativepointofview). Wegiveacompletenessresultonlyfortwomainfragments(asnotedinx3the Theorem6(StrongSoundness).Ifshasatableauproofwithglobalaxioms Inadualwayasatisabilitywitnessisanyopenbranchofthetableaustarting andg[f:sgareweaklyleftrestrictedthenshasaproof. withhf1:sg;gi,whenthecalculusiscompleteforthefragmentathand. bebasedonrstordertranslations)isimportantforsecurityanalysisbecause satisabilitygivesinformationonsecurityweaknesses. Remark.Adecisionmethod(ratherthanasemidecidableprocedurewhichcould Theorem8(StrongWRR-Completeness).Ifsisalogicalconsequenceof GandG[f:sgareweaklyrightandrequestrestrictedthenshasaproof. 8
9 (h)1:a:3::? (g)2::(asaysx1) (d)1:asays(p)a) (a)1::(:(asays?)(acontrolsp)a)) (c)1::acontrols(p)a) (b)1::(asays?) (f)2:psaysx1 (e)1::(p)a) (i)1:a:3:p)a byreducingcontrolsfrom(c) byhaifrom(b) byrulesfrom(a) (m)2:p)a (l)g1:=fp)ag by[a]from(d) byglobfromg1 by[ugr]from(i) byhugrifrom(e) Foradecisionmethodasimplecondition,checkableinpolynomialtime,can beimposedontheglobalaxiomsandtheconsequences.associateagraphto theglobalaxiomsandthenegationoftheformulatobeproved:eachatomic Fig.5.TableauxProofofanHand-oAxiom contradictionbetween(e;m) loopcheckingwithanextendednotionofthefisher-ladnerclosure.noticethat, intheembeddingofthewordproblem(x3),theprincipalgrcreatescycles. evennumberofnegation,drawanarcfromtheatomicprincipalsinptothose inq.ifthisgraphisacyclicthenthetableauconstructionterminatesbyusing principalisrepresentedbyanodeandforeveryp)q,underthescopeofan derivationofanhand-oaxiom[1,19]. [10,23]:if)isusedforhierarchiesofgroups/rolesthencyclesarenotallowed. 5Examples Forsakeofsimplicity,weassumethatwehaveadirect(obvious)rulefor controlsratherthantranslatingitbackto^and:.arstexampleisthe Inaccesscontrol,acyclicityisnotarestrictionbutratherarequirement keystepisrule[ugr]whichcannotbeaxiomatised. by[1]andareaddedasaxioms.thetableauderivationisshowninfig.5.the able)formulabelow(orinx3)withonlyonesetofglobalaxiomsasin[11,21]. Suchaxiomsareusedbyprincipalstohand-overtheirprivilegesin[1,19].Notice that,althoughvalid,theycannotbeprovedwithinthehilbertsystemdeveloped Tocheckthatglobalaxiomsmustbeassociatedtoabranch,trythe(satis- :(Asays?)(Acontrols(P)A)): from[1,page719]whereacareful(andnontrivial)hilbertproofisgiven. Fora\real-life"deduction(Fig.6)wetakedelegationwithoutcerticates :(A&Bsays?)^Asays(B)A)^Asaysr^Bsays:r 9
10 (a)1::(kbsays(scsaysr)^kssays(kb)b)^(bja)controlsrr) (b)1:kbsays(scsaysr)rulesfrom(a) (h)1:scontrols(kb)b)byglob (c)1:kssays(kb)b) (g)1:ssays(kb)b) (d)1:bjacontrolsr (e)1::r (f)1:ks)s (h)1::ssays(kb)b) (m)1:r (n)1::(bjasaysr)redcontrolsfrom(d).& (l)1:bsays(scsaysr)by[lgr]from(b);(i) (i)1:kb)b by[lgr]from(c);(f) (s)1:b:2:asaysr (o)1::bsays(asaysr)byhquoteifrom(n) (r)1:b:2:sc)a (q)1:b:2:scsaysr (p)1:b:2::asaysrbyhbifrom(o) redcontrolsfrom(h) by[b]from(l) byglob userwithasucientlypowerfulsmartcard,baworkstationandcaleserver. Example.\AdelegatestoBwhomakesrequeststoC.ForinstanceAmaybea Fig.6.TableauProofofDelegationwithoutCerticates by[lgr]from(q);(r) [...]WhenBwishestomakearequestronA'sbehalf,Bsendsthesigned receivestherequestrhehasevidencethatbhassaidahasrequestedrbut requestsalongwitha'sname...intheformatkbsays(asaysr)...whenc notthatahasdelegatedtob;thencconsultstheacl[accesscontrollist] forrequestranddetermineswhethertherequestshouldbegranted.[...]a certicationauthorityprovidesthecerticatesfortheprincipals'publickeysas whereksiss'spublickey." Weaddalevelofindirectiontotheoriginalproblem(bymodellingexplicitly needed.thenecessarycerticatesarekssays(ka)a)andkssays(kb)b), thesmartcardsc)andusethelogicforthereasoningoftheserverc.theset ofglobalaxiomsandthestatementtobeprovenare: itisnotalwaysvalid!itdependsontheserver'sstatementsi.e.ssays(kb)b). rules).indeedkb)bcorrespondstobikib,i.e.kbsayssbsayssbut InFig.6only[Lgr]-ruleisused.AderivationwithonlyhRgri-ruleispossible. G:=fKS)S;Scontrols(KB)B);Sc)Ag Thisisanexampleofthe\incompilability"ofP)Qintoaxiomschemas(or s:=(kbsays(scsaysr)^kssays(kb)b)^(bja)controlsr)r 10
11 6Soundnessand(Partial)Completeness preservedbytableauxrules.afterthiskeylemma,therestisstandard[11]. Toprovesoundnesswemapprexestostatesandshowthatsatisabilityis groupsmembershipdependonthesecuritypolicyandthecurrentcerticates. possibilityofadding\on-line"propertiesiscriticalheresincedelegationsand Withouttheserver'scerticatei.e.withadierenttheorem,itdoesn'thold.The Denition9.LetBbeasetofprexedformulaeandhW;Iiamodel,amapping h{();{(:a:n)i2ai. isafunction{()fromprexestostatess.t.foralland:a:npresentinbitis obtainedbyanapplicationofatableauruleisalsosat. Theorem11(SafeExtension).IfTisaSATtableau,thenthetableauT0 Denition10.AtableaubranchhB;GBiissatisable(SATforshort)inthe )operatoristheonlynewcase. mapping{()suchthatforeveryh:sbipresentinbitis{()k?sb.atableauis Proof.Byinductionontherulesappliedasin[11,Chapter8]or[9,14,21].The modelhw;iiifforeverysg2gbandeveryw2witiswk?sgandthereisa modelhw;iiandamapping{()suchthat{()k?p)q.hence(p)q)i=w SATifonebranchissuch. fortheglobalpropertyof)(itisnotemptyasitcontains{()).thereforeadding thegbcondition(andfutureapplicationsoftheglob-rule). ittogbasdonebythe[ugr]doesnotchangethesatisabilityofthebranchwrt hw;wi2qiwithhw;wi62pi.set{(n)=wforthenewprexnand(xi)i= W?fwgforthenewxi.Clearly{(n)k?Psaysxibut{(n)k6?(Qsaysxi).ut Supposethath:P)QioccursinsomeSATbranch.Thentheremustbea adenition)anduseanopenbranchtoconstructamodel.akeypropertythe anditsextensionisdiscussed. proceduremustguaranteeisdownwardsaturation[11,21]:allapplicablerules musthavebeenapplied.theproofisgivenforweaklyleftrestrictedstatements Ifh::(P)Q)iispresentthenbyhp{()k?:(P)Q).Hencethereisa Theorem12(ModelExistence).IfhB;GBiisanopenbranchwithweakly leftrestrictedstatementsonly,thenthereisamodelhw;iionwhichitissat. Forcompletenessweapplyasystematicandfairprocedure(see[11,14]for Incorporatetheconstraintsdueto)andbuildIfromI0asfollows: Proof.Constructapre-modelhW;I0iasfollows: AI0:=fh;:A:nijand:A:narepresentinBg ri0:=fj:r2bg W:=fjispresentinBg 11
12 Afterthisclosurephasewemustprovethatifh:si2Bthen{()k?sby inductionontheconstructionofs,where{()=.theproofissimilartothose {foreveryformula:a)poccurringinb h;i2aiitish:siinbsothatwecanapplyinductiontoh:si,get usedforpdl[9]ormodallogics[11,14,21]. {repeatuntilax-pointisreached. Thedicultcaseish:Asayssisincewemustprovethatforallprexes ifh;i2pithenaddh;itoai; computepi; k?sandthentheclaim. saturationofthebranchandadoubleinduction:ontheformulasizeandonthe Proposition13.Beforeeachiterationstep,ifh:PsayssiispresentinBand iterationsoftheclosurephaseneededtoenterh;iintoai.forthebasecase somenor(ii)h;i2pibeforetheclosurephaseandpiaiafterwards. weusethefollowingresult,provenbyinductiononpandsasin[9]: introducedinaiduringtheclosurephase.hencewecanhave(i)=:a:nfor Therstcaseisstandard[11,21]whereasforthesecondcaseweusethe Thedierencewith\traditional"proofs[11,21]isthatsomeprexesare present.nowapplytheinductionhypothesis. weusemutualsaturationbetweengloband[ugr]rules.if:a)poccursinb andthereforewhenwasaddedinaiintheclosurephasealsoh:siwas Fortheinductionstepobservethatwheneverh:A)Piispresentthenby saturationh:asayssiimpliesh:psayssi.soapplyprop.13togeth:si h;i2pithenh:siispresentinb satisestheglobalconditionandpiai. then[ugr]impliesthata)p2gb.byglobwehavethatforalls2gband allprexesinbitish:si.henceeverysatisesthelocalconditioni.e.w Thelocalconditionfor)issatisedbyconstruction.Fortheglobalcondition onlydicultpartisduetoliteralsl(ror:r). isthatweonlyhaveliteralsorstatementsoftheformp)aunderthescopeof oftheinductionstep:ifh::(asaysl)iandp)aisalsopresentthenthereisis nonatomicpcannotpropagateoverh:p)ai.howeverwecanprovethedual says.theoperator)doesnotcreateproblemsgivenitsglobalnatureandthe Thepreviousproofforh:Asayssidoesnotworksinceh:Psayssifor Fortherightandrequestrestrictedfragmentofthelanguagethekeypoint ut witheachh::(asaysl)i.atthisstageweneedtousethed(a)-rule,toprove ah;i2pisuchthat::l.thismeansthatallh:psaysl0iareconsistent thatthosepstatementsareconsistentalsowitheachh:asaysl00i.byd(a) onlyworksforrequestrestrictedstatements. weobtainh::(asays:l00)iandthenapplythedualproperty. themselves,andeachofthemwithallpsaysl0.thismeansthatwhenweadda oftheunspeciedl0orl00insothattheresultisstillamodel.again,this h;ifromaitopiintheclosurephasewecanalwaysextendthevaluation Sincealll;l0;l00areliteralsthisisenough:allAsayslareconsistentamong 12
13 7Conclusion Themajorcontributionofthispaperisthedevelopmentofatableauxmethod alsoclariedsomemodeltheoreticfeaturesofthecalculusthatmakesdicult itsaxiomaticcharacterisation.thecompletenessresultspresentedhereextend forthecalculusofaccesscontrolofabadi,lampsonetal.[1,19,31].wehave S5andtheuniversalmodality(onnontreemodels). intheappendix.thereforewecandistinguish,inprooftheoreticterms,between withtheuniversalmodality[13]andasoundandcompletecalculusispresented directionofprovidingafullyautomatedverier,possiblyusingtheresultsof[3]. liketableautoaforestofprexes,aruntimeupdateofglobalaxiomsandthe correspondingmodicationofthenotionofbranch.futureresearchisinthe thosein[1]andprovidethebasisforafulledgedautomatisation. Aclaimthatwedonotmakeisthatlogicandsemantictableauxshouldbe Asanaside,thesetableauxtechniquescanbeusedformultimodallogics Thistableauxmethodrequiresnoveltechniquessuchaspassingfromatree- respectsecuritypolicies.thisworkisastepinthisdirection. unacceptableslow-downs.logicandtableaux(orsimilarlogic-basedmethods) shouldbeusedforvericationandprototyping,forcheckingthataccessprotocols usedforrun-timedecisionsonaccesscontrol.althoughpossible,thismayleadto byasi,cnrandmurst40%and60%grantsandbyepsrcgrantgr/k77051 whichhelpedtoimprovethispaper.thisresearchhasbeenpartlysupported AppliedLogicgroup(IRIT)andtheanonymousrefereesformanysuggestions Acknowledgements IwouldliketothankL.PaulsonandtheComputerLaboratoryfortheirhospitalityinCambridge,M.Abadi,theComputerSecuritygroup(Cambridge),the \AuthenticationLogics". References 2.R.Anderson.Asecuritypolicymodelforclinicalinformationsystems.InProc.of 1.M.Abadi,M.Burrows,B.Lampson,andG.Plotkin.Acalculusforaccesscontrol 4.D.BellandL.LaPadula.Securecomputersystems:uniedexpositionandMUL- 3.B.BeckertandR.Gore.Freevariabletableauxforpropositionalmodallogics.In 5.M.Burrows,M.Abadi,andR.Needham.Alogicforauthentication.ACMTrans. the15thieeesymp.onsecurityandprivacy.ieeecomp.societypress,1996. indistributedsystems.acmtrans.onprog.lang.andsys.,15(4):706{734, M.CastilhoandA.Herzig.Analternativetotheiterationoperatorofpropositionaldynamiclogic.Tech.Rep R,IRIT(Toulouse),Univ.PaulSabatier, jan1996. TICS.ReportESD-TR ,TheMITRECorporation,March1976. theseproceedings,1997. SystemResearchCenter,1989. oncomp.sys.,8(1):18{36,1990.alsoavailableasres.rep.src-39,dec- 13
14 7.D.ClarkandD.Wilson.Acomparisonofcommercialandmilitarycomputersecuritypolicies.InProc.ofthe6thIEEESymp.onSecurityandPrivacy,pp.184{ F.CuppensandR.Demolombe.Adeonticlogicforreasoningaboutcondentiality.In3rdInt.WorkshoponDeonticLogicinComputerScience,Sesimbra, Portugal, G.DeGiacomoandF.Massacci.Tableauxandalgorithmsforpropositionaldynamiclogicwithconverse.InProc.ofthe13thInt.Conf.onAutomatedDeduction (CADE-96),LNAI1104,pp.613{628, D.Ferraiolo,J.Cugini,andK.Richard.Role-basedaccesscontrol(rbac):Features andmotivations.inproc.oftheannual(computersecurityapplicationsconf., M.Fitting.ProofMethodsforModalandIntuitionisticLogics.Reidel, V.Goranko.Modaldenabilityinenrichedlanguages.NotreDameJ.ofFormal Logic,31(1), V.GorankoandS.Passy.Usingtheuniversalmodality:Gainsandquestions.J. oflogicandcomputation,2(1):5{30, R.Gore.Tableauxmethodformodalandtemporallogics.Tech.Rep.TR-ARP- 15-5,AustralianNationalUniv., J.HalpernandY.Moses.Aguidetocompletenessandcomplexityformodallogics ofknowledgeandbelief.articialintelligence,54:319{379, G.HughesandM.Cresswell.aCompaniontoModalLogic.Methuen, C.Krogh.Obligationsinmultiagentsystems.In5thScandinavianConferenceon ArticialIntelligence(SCAI-95),pp.29{31.ISOPress, B.Lampson.Protection.ACMOperatingSys.Reviews,8(1):18{24, B.Lampson,M.Abadi,M.Burrows,andE.P.Wobber.Authenticationindistributedsystems:Theoryandpractice.ACMTrans.onComp.Sys.,10(4):265{ 310, B.Marick.Theverusdesignvericationsystem.InProc.ofthe2ndIEEESymp. onsecurityandprivacy,pp.150{157, F.Massacci.Stronglyanalytictableauxfornormalmodallogics.InProc.ofthe 12thInt.Conf.onAutomatedDeduction(CADE-94),LNAI814,pp.723{737, J.MoetandM.Sloman.Policyhierarchiesfordistributedsystemsmanagement. IEEEJ.onSelectedAreasinCommunications,11(9), R.Sandhu,E.Coyne,H.Feinstein,andC.Youman.Role-basedaccesscontrols models.ieeecomputer,29(2),february R.Sandhu.Thetypedaccessmatrixmodel.InProc.ofthe11thIEEESymp.on SecurityandPrivacy,pp.122{136, R.SandhuandP.Samarati.Accesscontrol:Principlesandpractice.IEEECommunicationsMagazine,pp.40{48,September M.Schmidt-Schauss.SubsumptioninKL-ONEisundecidable.InProc.ofthe1st Int.Conf.onthePrinciplesofKnowledgeRepresentationandReasoning(KR-89), pp.421{431, S.SchmittandC.Kreitz.Convertingnon-classicalmatrixproofsintosequentstylesystems.InProc.ofthe13thInt.Conf.onAutomatedDeduction(CADE-96), LNAI1104,pp.418{432, P.F.SyversonandP.C.vanOorschot.Onunifyingsomecryptographicprotocols logics.inproc.ofthe13thieeesymp.onsecurityandprivacy.ieeecomp. SocietyPress,
15 31.E.Wobber,M.Abadi,andM.Burrows.AuthenticationintheTaosoperating 29.J.vanBenthem.Correspondencetheory.InHandbookofPhilosophicalLogic, 30.R.vanderMeyden.Thedynamiclogicofpermission.J.ofLogicandComputation,6(3):465{479,1996. volumeii.reidel,1986. almostpdlvariant(closeto[6]althoughtheyhaveaweakercommonknowledge ATableauxfortheUniversalModality Wecaneasilydeneatableauxcalculusformultimodallogicswiththeuniversalmodality:useAsayssas[A]stogetthelogicKnormorepreciselyan system.acmtrans.oncomp.sys.,12(1):3{32,1994. modality);addthesinglesteptableaux(sst)rulesfortheothersmodallogics Theorem14(UniversalModality).IfR1;:::;Rnaresoundandcomplete SSTrulesforthe(multi)modallogicsL1;:::;Ln[14,21]thenthetableaux ofknowledgeandbeliefbetweenknands5n[14,21];nallyuseamodied versionofrulehugriand[ugr]describedbelow. Forthesoundnesspartwereplace:P)Qwith:[u]sandP)Qwithsin logicl1:::lnwiththeuniversalmodality. calculusenhancedwithrules[u]andhuiissoundandcompleteformultimodal hui:::[u]s n::snnew[u]::[u]s thecorrespondingargumentofthm.11.forcompleteness,themutualinduction GB:=GB[fsg betweentheapplicationoftheglob-ruleandthe[u]-ruleisidenticaltothm.12. fromtheuniversalmodalityinprooftheoreticterms(closedvsopenbranches validity[12,13,29]andthusbytraditionaltableaux(and1-clustermodels). forsomeformulae).ofcoursethisdistinctioncanonlybedoneassatisability onk-clustersmodelsfork2,sinces5and[u]cannotbedistinguishedby Itispossibleto\distinguishthe(axiomatically)indistinguishable"i.e.S5 Forinstance,withtheS5-rulesfor[A]and[B]givenin[14,21]: 2jG[fsgj). niquesfrom[9,14]andndamodel(ifany)ofsizeatmosto(jg[fsgj combine[a]onlywith[u]andobtaindierenttableaux. havedierenttableaux:oneopen,andthesecondclosed.soreplacinganoccurrenceof[a]with[u]changesthesatisabilityofaformula.equallyonecan Wecanalsoderiveasmallmodeltheorembyadaptingloopcheckingtech- SAT:=hBi[A]r^hBi[A]:rUNSAT:=hBi[A]r^hBi[u]:r ThisarticlewasprocessedusingtheLATEXmacropackagewithLLNCSstyle 15
Page 1/.. USA / Canada - South Africa Schedule No. 4 / 2011-Jan-24
USA / Canada South Africa Schedule No. 4 / 2011Jan24 Page 1/.. USA / Canada South Africa Schedule No. 4 / 2011Jan24 Page 2/.. USA / Canada South Africa Schedule No. 4 / 2011Jan24 Page 3/.. USA / Canada
Select cell to view, left next event, right hardcopy
Run 480841:029822 @ 170718 on 061003 e/p currents: 34.9 / 86.7 ma FTi: 4 hits, mean 1.0 +/- 2.3 min/max -1.8 2.9 Number of hits (P/Q) 733 625 clusters (P/Q) 137 53 tracks (123 P) 0 0 0 1 Run 480841:029822
PART A: For each worker, determine that worker's marginal product of labor.
ECON 3310 Homework #4 - Solutions 1: Suppose the following indicates how many units of output y you can produce per hour with different levels of labor input (given your current factory capacity): PART
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
SOLUTIONS TO HOMEWORK SET #4
Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology SOLUTIONS TO HOMEWORK SET #4 1. a. If the markets are open to free trade, the monopolist cannot keep the markets separated.
BMJ. West Africa Edition BRITISH MEDICAL JOURNAL WEST AFRICA EDITION VOLUME 17, NO. 7, JAN. 2013 ISSN 1119-2984
FM 55-30 14 APRIL 2000 By Order of the Secretary of the Army: Official: ERIC K. SHINSEKI General, United States Army Chief of Staff Administrative Assistant to the Secretary of the Army 0005503 DISTRIBUTION:
Lecture 11. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 11 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating
Privilege and Access Management. Jan Tax Identity Management Specialist UNC Chapel Hill
Privilege and Access Management Jan Tax Identity Management Specialist UNC Chapel Hill The Big Picture Overview of Presentation Start with the basics of access management definitions stages and evolution
Managerial Economics & Business Strategy Chapter 8. Managing in Competitive, Monopolistic, and Monopolistically Competitive Markets
Managerial Economics & Business Strategy Chapter 8 Managing in Competitive, Monopolistic, and Monopolistically Competitive Markets I. Perfect Competition Overview Characteristics and profit outlook. Effect
CS 173, Spring 2015 Examlet 2, Part A
1 congruence mod k: a b (mod k) if and only if a b = nk for some integer n. Claim: For all integers a, b, c, d, j and k (j and k positive), if a b (mod k) and c d (mod k) and j k, then a + c b + d (mod
Harmonizing Objectives and Constraints or Art of Strategic Planning
Harmonizing Objectives and Constraints or Art of Strategic Planning Ouneheuane CHITTAPHONG Deputy Director General Department of Investment Monitoring & Evaluation (DIME) Committee for Planning & Investment
AP Microeconomics Review
AP Microeconomics Review 1. Firm in Perfect Competition (Long-Run Equilibrium) 2. Monopoly Industry with comparison of price & output of a Perfectly Competitive Industry 3. Natural Monopoly with Fair-Return
Overview. Physical Database Design. Modern Database Management McFadden/Hoffer Chapter 7. Database Management Systems Ramakrishnan Chapter 16
HNC Computing - s HNC Computing - s Physical Overview Process What techniques are available for physical design? Physical Explain one physical design technique. Modern Management McFadden/Hoffer Chapter
A Risk Management Approach to Data Preservation
A Risk Management Approach to Data Preservation Ricardo Vieira* ([email protected]) Digital Preservation Digital Preservation (DP) aims at maintaining valuable digital objects accessible over long periods
UFED 4PC/Touch 4.1 & UFED Physical/Logical Analyzer 4.1.1. Release Notes
UFED 4PC/Touch 4.1 & UFED Physical/Logical Analyzer 4.1.1 Release Notes January 2015 Contents Release highlights... 3 Additional information... 4 Forensic methods... 7 Supported devices... 7 End of life
Army National Guard Materiel Programs Division
Army National Guard Materiel Programs Division Mr Rick F. Yates ARNG-RMQ-SS 703-607-7857 [email protected] Materiel Programs Division Organization and Mission G8 RMQ and G4 ILS Relationship Equipping
Introduction to Risk, Return and the Historical Record
Introduction to Risk, Return and the Historical Record Rates of return Investors pay attention to the rate at which their fund have grown during the period The holding period returns (HDR) measure the
The European Industrial Doctoral School E.I.D.S.
E.I.D.S. Mutual Collaboration for the Future Innovation Europe The European Industrial Doctoral School E.I.D.S. A spin-off from DOC-CAREERS II Prof. Petter Gustafsson Director, Umeå University Industrial
Part II: Evaluating business & engineering assets
Part II: Evaluating business & engineering assets Ch 5: Present worth analysis Ch 6: Annual equivalence analysis Ch 7: Rate-of-return analysis Rate of return Methods for finding rate of return Internal
Logic gates. Chapter. 9.1 Logic gates. MIL symbols. Learning Summary. In this chapter you will learn about: Logic gates
Chapter 9 Logic gates Learning Summary In this chapter you will learn about: Logic gates Truth tables Logic circuits/networks In this chapter we will look at how logic gates are used and how truth tables
A Detailed Price Discrimination Example
A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include
PFSE Premier Functional Safety Engineering Safety Instrumented Systems Training Course-TÜV FSEng Certification
TÜV Eligibility Form ER04 (This form is computer writable) Training Eligibility Requirements For TÜV Functional Safety Engineer TÜV FSEng Please type or write clearly in block letters. Send completed form
Internal Audit Follow-Up Report. Equipment Maintenance and Repair. TxDOT Office of Internal Audit. Jan J
Internal Audit Follow-Up Report Equipment Maintenance and Repair TxDOT Office of Internal Audit Jan J Objective Assess the status of corrective actions for high risk Management Action Plans (MAPs) previously
Capio S:t Gorans Hospital. Sofia Palmquist
Capio S:t Gorans Hospital Sofia Palmquist Capio S:t Göran s Hospital # 4 of 6 emergency hospitals in Stockholm - 15 % market-share Service-area 330,000 patients 310 beds ~1,800 employees Private but publicly
4GL CONNECTOR OPEN SOURCE TECHNOLOGY AND SERVICES TO BRING INFORMIX 4GL CODE TO THE JAVA ENTERPRISE APPLICATION ENVIRONMENT
4GL CONNECTOR OPEN SOURCE TECHNOLOGY AND SERVICES TO BRING INFORMIX 4GL CODE TO THE JAVA ENTERPRISE APPLICATION ENVIRONMENT EXECUTIVE SUMMARY In today's Services Oriented Architecture SOA environment,
Officials Authorized to Provide Documentation of VHA Program Office Non-Research Operations Activities Per VHA Handbook 1058.05
The Officials listed below are authorized under VHA Handbook 1058.05 to document the status of non-research operations activities that are funded, mandated, managed, sponsored, or otherwise supported by
Implementing a Complaint Management and Reporting System using TrackWise
Implementing a Complaint Management and Reporting System using TrackWise Gambro Use Case Kai Kiefer Manager, IT Center of Excellence ECM & Quality Solutions Gambro Dialysatoren GmbH Yohay Yafe Director,
PowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
HCBE GRADUATE FINANCIAL AID GUIDE
HCBE GRADUATE FINANCIAL AID GUIDE HALF-TIME ENROLLMENT UNSUBSIZIDIZED STUDENT LOAN ENROLLMENT REQUIREMENTS (2015-2016) Eligible students can receive up to $10,250 in unsubsidized student loans per semester
Propagation of Errors Basic Rules
Propagation of Errors Basic Rules See Chapter 3 in Taylor, An Introduction to Error Analysis. 1. If x and y have independent random errors δx and δy, then the error in z = x + y is δz = δx 2 + δy 2. 2.
Handout 2: The Foreign Exchange Market 1
University of Bern Prof. H. Dellas International Finance Winter semester 01/02 Handout 2: The Foreign Exchange Market 1 1 Financial Instruments in the FOREX markets Forward contracts Large, non standardized
The Relational Model. Why Study the Relational Model? Relational Database: Definitions
The Relational Model Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Microsoft, Oracle, Sybase, etc. Legacy systems in
Grand Prix Portugal - Mundial Ranking FCI
Grand Prix Portugal - Mundial Ranking FCI FCI European Championship 09th of July 6 PORTUGAL Prize Money - 78.400,00 Euros Www.fpcolumbofilia.pt https://www.facebook.com/campeonatos.internacionais.columbofilia.mira.olr
How to fill Online Banking Corporate Registration form
How to fill Online Banking Corporate Registration form 1 COMANY DETAILS Customer Number : 25478598 Name of the Company (Customer Name) : ABCD Trading LLC Chairman : Hussain Qassim Vice Chairman : Khalid
Pat Quinn, Governor Julie Hamos, Director Telephone: TTY:
Pat Quinn, Governor Julie Hamos, Director 201 South Grand Avenue East Telephone: (217) 785-0710 Springfield, Illinois 62763-0002 TTY: (800) 526-5812 September 17, 2010 Children's Hospital of Illinois ATTN:
Examples on Monopoly and Third Degree Price Discrimination
1 Examples on Monopoly and Third Degree Price Discrimination This hand out contains two different parts. In the first, there are examples concerning the profit maximizing strategy for a firm with market
Non-Autoclave (Prepreg) Manufacturing Technology
Non-Autoclave (Prepreg) Manufacturing Technology Gary G. Bond, John M. Griffith, Gail L. Hahn The Boeing Company Chris Bongiovanni, Jack Boyd Cytec Engineered Materials 9 September 2008 Report Documentation
ADAM HALL AND THE VPs
Western Australian K-10 Syllabus The Arts ADAM HALL AND THE VPs The following curriculum links to the Western Australian K-10 Syllabus The Arts have been created from: K-10 Overview: The Arts/ http://www.curriculum.wa.edu.au/internet/years_k10/curriculum_resources
EE 209 Lab 1 Sound the Alarm
EE 209 Lab 1 Sound the Alarm 1 Introduction In this lab you will design, implement and then test a simple logic circuit emulating a home alarm system. You will use the Digital Trainer board for this lab
Attachment 1 provides the analytical results provided by Eberline.
March 8, 2016 Brian Reams ECOTECH USA, LLC 1313 S Main Street London, KY 40741 Subject: Estill County Schools and Blue Ridge Landfill Water Sampling Summary Dear Mr. Reams, On February 28, 2016, a total
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS
INTERFACES FOR RENEWABLE ENERGY SOURCES WITH ELECTRIC POWER SYSTEMS Paulo Ferreira, Manuel Trindade, Júlio S. Martins and João L. Afonso University of Minho, Braga, Portugal [email protected],
CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden
CHROMIUM STEEL POWDERS FOR COMPONENTS JEANETTE LEWENHAGEN Höganäs AB, Sweden KEYWORDS Pre-alloyed steel powder, chromium, PM ABSTRACT Chromium as an alloying element is of great interest due to its low
From the light to the full application form focus on work plan
Lead Applicant Training, Prague, 20 October 2015 From the light to the full application form focus on work plan Monika Schönerklee-Grasser, Head of JS Evaluation and Monitoring Unit Full application form
Higher Order Equations
Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory.
Metrol. Meas. Syst., Vol. XVII (2010), No. 1, pp. 119-126 METROLOGY AND MEASUREMENT SYSTEMS. Index 330930, ISSN 0860-8229 www.metrology.pg.gda.
Metrol. Meas. Syst., Vol. XVII (21), No. 1, pp. 119-126 METROLOGY AND MEASUREMENT SYSTEMS Index 3393, ISSN 86-8229 www.metrology.pg.gda.pl MODELING PROFILES AFTER VAPOUR BLASTING Paweł Pawlus 1), Rafał
Instantaneous Rate of Change:
Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over
Mechanics 1: Vectors
Mechanics 1: Vectors roadly speaking, mechanical systems will be described by a combination of scalar and vector quantities. scalar is just a (real) number. For example, mass or weight is characterized
Panorama Necto. Load Balancing Installation Guide. (12.5 and above)
Panorama Necto Load Balancing Installation Guide (12.5 and above) Table of Contents Panorama Necto Load Balancing Guide (12.5 and above)... 1 Table of Contents... 2 Background and Load Balancing Using
Regular Meeting Tuesday, 2014 6:30 p.m., January 14, 2014 Town Office
Regular Meeting Tuesday, 2014 6:30 p.m., Town Office Attendance: Mayor Roy Drake Councillors: Georgina Ollerhead Gerald Pittman Fabian Manning Donald Stewart Lloyd Jensen Dan Jackman Absent: Also Attending:
Time Management II. http://lbgeeks.com/gitc/pmtime.php. June 5, 2008. Copyright 2008, Jason Paul Kazarian. All rights reserved.
Time Management II http://lbgeeks.com/gitc/pmtime.php June 5, 2008 Copyright 2008, Jason Paul Kazarian. All rights reserved. Page 1 Outline Scheduling Methods Finding the Critical Path Scheduling Documentation
EXERCISE 27 WHEN THIRD-DEGREE PRICE DISCRIMINATION HELPS (ALMOST) EVERYONE
When hird-degree Price Discrimination Helps (almost) Everyone 1 EXERCISE 27 WHEN HIRD-DEGREE PRICE DISCRIMINAION HELPS (ALMOS) EVERYONE Can be answered and the figure drawn either manually or on a spreadsheet
DUNLOP PROTECTIVE FOOTWEAR INTERNATIONAL MARKET SEGMENT LEADER
DUNLOP PROTECTIVE FOOTWEAR INTERNATIONAL MARKET SEGMENT LEADER THE COMPANY Hevea Hevea was spun off from Vredestein in 2004 by means of a management buy-out backed by Gilde Equity Management. At the time,
Practice Book. Practice. Practice Book
Grade 10 Grade 10 Grade 10 Grade 10 Grade 10 Grade 10 Grade 10 Exam CAPS Grade 10 MATHEMATICS PRACTICE TEST ONE Marks: 50 1. Fred reads at 300 words per minute. The book he is reading has an average of
APIFARMA PORTUGUESE PHARMACEUTICAL INDUSTRY ASSOCIATION
APIFARMA PORTUGUESE PHARMACEUTICAL INDUSTRY ASSOCIATION 2015 ABOUT US Portuguese Pharmaceutical Industry Association Founded in 1975, succeeds the National Guild of the Manufacturers of Medicinal Products
ENrich SEC 70 ENrich SEC 650 High-Resolution Size Exclusion Columns Instruction Manual
ENrich SEC 70 ENrich SEC 650 High-Resolution Size Exclusion Columns Instruction Manual Catalog numbers 780-1070 780-1650 Please read these instructions before you use ENrich SEC high-resolution size exclusion
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
RECOMMENDATIONS FOR THE HANDLING OF FLUORESCENT LAMPS IN PUBLIC SCHOOLS IN JOHANNESBURG, SOUTH AFRICA ENVIRONMENT AND HEALTH RESEARCH UNIT
RECOMMENDATIONS FOR THE HANDLING OF FLUORESCENT LAMPS IN PUBLIC SCHOOLS IN JOHANNESBURG, SOUTH AFRICA ENVIRONMENT AND HEALTH RESEARCH UNIT This presentation is based on the following publication: Siziba,
Improving Software Requirements through Formal Methods: A Review
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 729-736 International Research Publications House http://www. irphouse.com /ijict.htm Improving
Merging of Data Flow Diagram with Unified Modeling Language
International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 1 Merging of Data Flow with Unified Modeling Language Kirti Tiwari, Alpika Tripathi, Shipra Sharma, Vandana
The Situation of Photovoltaics in Hungary
The Situation of Photovoltaics in Hungary Miklos Palfy Solart-System PV global production PV installations 1460 MWp PV in 2005 Yearly growing rate >40% Largest market = EU Topics Radiation energy History
(2007-08) VOLUME 22 INLAND REVENUE BOARD OF REVIEW DECISIONS. Case No. D37/07
Case No. D37/07 Penalty tax understating income in tax return whether additional tax is excessive sections 12(1)(a), 64(3), 68, 70, 80(2), 82(1), 82A and 82B of the Inland Revenue Ordinance ( IRO ). Costs
Operating Systems. RAID Redundant Array of Independent Disks. Submitted by Ankur Niyogi 2003EE20367
Operating Systems RAID Redundant Array of Independent Disks Submitted by Ankur Niyogi 2003EE20367 YOUR DATA IS LOST@#!! Do we have backups of all our data???? - The stuff we cannot afford to lose?? How
Click to edit Master title style. Inventories
1 7 Inventories 1 2 After studying this chapter, you should be able to: 1. Describe the importance of control over inventory. 2. Describe three inventory cost flow assumptions and how they impact the income
HOW TO... Use Lump Sum Billing Items
Date: 17 October 2011 Document Version: 1.0 Prepared by: Earliest available version of COINS: Richard Werner COINS Ti These notes are published as guidelines only. This How to Guide may contain recommendations
FUZZY Based PID Controller for Speed Control of D.C. Motor Using LabVIEW
FUZZY Based PID Controller for Speed Control of D.C. Motor Using LabVIEW SALIM, JYOTI OHRI Department of Electrical Engineering National Institute of Technology Kurukshetra INDIA [email protected] [email protected]
Code of Conduct on Energy Efficiency of External Power Supplies
EUROPEAN COMMISSION DIRECTORATE-GENERAL JRC JOINT RESEARCH CENTRE Institute for Energy and Transport Renewable Energy Unit Ispra, 29 October 2013 Code of Conduct on Energy Efficiency of External Power
Overview: Transfer Pricing
Overview: Transfer Pricing Framework and Economic Principles Cases Considered No outside market for upstream good Competitive outside market for upstream good Market power in outside market for upstream
DATABASE DESIGN. - Developing database and information systems is performed using a development lifecycle, which consists of a series of steps.
DATABASE DESIGN - The ability to design databases and associated applications is critical to the success of the modern enterprise. - Database design requires understanding both the operational and business
Relational Calculus. Module 3, Lecture 2. Database Management Systems, R. Ramakrishnan 1
Relational Calculus Module 3, Lecture 2 Database Management Systems, R. Ramakrishnan 1 Relational Calculus Comes in two flavours: Tuple relational calculus (TRC) and Domain relational calculus (DRC). Calculus
xlathlete.com Ladder Drills One Foot Every Other Square Forward-2xs - MR- 1, FR-1
One Foot Every Other Square Forward-2xs - MR- 1, FR-1 One Foot Every Other Square Backward 2xs MR-1, FR-2 One Leg Hops - Forward 2xs - MR-1, FR-2 One Leg Hops - Backward 2 xs - MR-2, FR-3 180 Degree Turns
