# Section 4.2 (Future Value of Annuities)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Math 34: Fall 2014 Section 4.2 (Future Value of Annuities) At the end of each year Bethany deposits \$2, 000 into an investment account that earns 5% interest compounded annually. How much is in her account at the end of 5 years? 1 \$0 \$0 \$2, 000 \$2, \$2, 000 \$100 \$2, 000 \$4, \$4, 100 \$205 \$2, 000 \$6, \$6, 305 \$ \$2, 000 \$8, \$8, \$ \$2, 000 \$11, What if Bethany was depositing \$1000 instead of \$2000? 1 \$0 \$0 \$1, 000 \$1, \$1, 000 \$500 \$1, 000 \$2, \$2, 050 \$102.5 \$1, 000 \$3, \$ \$ \$1, 000 \$4, \$4, \$ \$1, 000 \$5, Notice that all the numbers are half what they were in the first chart (except for maybe 1 or 2 pennies from rounding to the nearest penny) What if we thought about investing \$1? (and did no rounding) 1 \$0 \$0 \$1 \$1 2 \$1, \$0.05 \$1 \$ \$2.05 \$ \$1 \$ \$ \$ \$1 \$ \$ \$ \$1 \$

2 And if we look at the value \$ (the future value we would have after 5 years if we kept making \$1 payments a year for 5 years at 5% annual interest) Notice \$ = , which rounds to \$ , the future value of investing \$2000 each year for 5 years at 5% Notice \$ = , which rounds to \$ , the future value of investing \$1000 each year for 5 years at 5%, off by only a penny. Future Value Annuity Factor For a given interest rate, payment frequency, and number of payment periods, the future value annuity factor is the future value that would accumulate if each payment were \$1. We will use the symbol s n i, where n is the number of payments and i is the interest rate per payment period. We will pronounce s n i as snigh (rhymes with sigh) In our example So we found s = Were there any other s n i values we know? The Future Value of an Ordinary Annuity F V = P MT s n i where F V is the represents the future value of the annuity P MT represents the amount of each payment s n i is the future value annuity factor. Example: Find the future value of an ordinary annuity with annual payments of \$8, 115 for 5 years at \$5% annually compounded interest. 2

3 Two Ways to find Future Value Annuity Factors (s n i ) Using a Table to Find Annuity Factors (see for example Example: How much will Isaiah have as a future value if he deposit \$1, 500 at the end of each year into an account that pays 3% interest compounded annually for 20 years. Using a Formula to Find Annuity Factors The Future Value Annuity Factor s n i = (1 + i)n 1 i Where i represents the interest rate per payment period and n represents the number of payment periods Example: Suppose you get married, and at the end of each year of your marriage, you and your spouse decide to deposit \$500 into an account for a special 25 th anniversary trip. If the account pays 4.2% interest compounded annually, how much will you have for your trip after 25 years? How to Find s n i : s = ( ) Entering the snigh formula into the calculator can be cumbersome, it takes several parenthesis: ((1+.042)^25-1)/0.042= Three Step Method (Works on T I 30X Calculators) To find s n i enter the following into the calculator: Step 1: (1+i)^n= Step 2: -1= Step 3: /i= 3

4 1. Find the future value of a monthly annuity, assuming the term is 10 years and the interest rate is 7.2%, compounded monthly, if the payments are \$25 a month. 2. At the end of each quarter David deposits \$300 into a savings account that earns 3.92% interest compounded quarterly. Assume that the interest rate doesn t change and that he keeps this up for 8 years. What is the future value of this account? How much total interest did he earn? 3. Suppose you get married, and at the start of each year of your marriage, you and your spouse decide to deposit \$500 into an account for a special 25 th anniversary trip. If the account pays 4.2% interest compounded annually, how much will you have for your trip after 25 years? 4. (Optional) Lilith gave up smoking, and decided to put the \$15 a week she would have spent on cigarets into a special savings account. Currently she earns 3.27% interest, assuming the interest rate doesn t change, how much will she have in the account after 6 years? 5. (Optional) Find the future value and total interest earned on an Annuity Due with monthly payments of \$120, for 5 years, and an interest rate of 6.02% compounded monthly. 6. (Optional) Find the future value and total interest earned on an annuity with monthly payments of \$200, for 4 years, and an interest rate of % compounded monthly. 4

5 Future Value for an Annuity Due Suppose Bethany is depositing \$1000 at the start of each year (instead of at the end) into an account paying 5% interest compounded annually for 5 years. How much money would she have at the end of 5 years? After Deposit Interest Ending Year Deposit Balance Earned Balance 1 \$1000 \$1000 \$50 \$ \$1000 \$2050 \$102.5 \$ \$1000 \$ \$ \$ \$1000 \$ \$ \$ \$1000 \$ \$ \$ Formula for Future Value for an Annuity Due F V = P MT s n i (1 + i) where F V represents the future value of the annuity P MT represents the amount of each payment i is the interest rate per period s n i is the future value annuity factor Double check the example above using the formula. 5

### Section 4.2 (Future Value of Annuities)

Math 34: Fall 2015 Section 4.2 (Future Value of Annuities) At the end of each year Bethany deposits \$2, 000 into an investment account that earns 5% interest compounded annually. How much is in her account

### Loans Practice. Math 107 Worksheet #23

Math 107 Worksheet #23 Loans Practice M P r ( 1 + r) n ( 1 + r) n =, M = the monthly payment; P = the original loan amount; r = the monthly interest rate; n = number of payments 1 For each of the following,

### Homework 4 Solutions

Homework 4 Solutions Chapter 4B Does it make sense? Decide whether each of the following statements makes sense or is clearly true) or does not make sense or is clearly false). Explain your reasoning.

### The Compound Amount : If P dollars are deposited for n compounding periods at a rate of interest i per period, the compound amount A is

The Compound Amount : If P dollars are deposited for n compounding periods at a rate of interest i per period, the compound amount A is A P 1 i n Example 1: Suppose \$1000 is deposited for 6 years in an

### Main TVM functions of a BAII Plus Financial Calculator

Main TVM functions of a BAII Plus Financial Calculator The BAII Plus calculator can be used to perform calculations for problems involving compound interest and different types of annuities. (Note: there

### 1. Annuity a sequence of payments, each made at equally spaced time intervals.

Ordinary Annuities (Young: 6.2) In this Lecture: 1. More Terminology 2. Future Value of an Ordinary Annuity 3. The Ordinary Annuity Formula (Optional) 4. Present Value of an Ordinary Annuity More Terminology

### first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest.

ORDINARY SIMPLE ANNUITIES first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest. LESSON OBJECTIVES: students will learn how to determine the Accumulated Value of Regular

### Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)

MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the

### Chapter 21: Savings Models

October 16, 2013 Last time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Problems Question: I put \$1,000 dollars in a savings account with 2% nominal interest

### A = P (1 + r / n) n t

Finance Formulas for College Algebra (LCU - Fall 2013) ---------------------------------------------------------------------------------------------------------------------------------- Formula 1: Amount

### Check off these skills when you feel that you have mastered them.

Chapter Objectives Check off these skills when you feel that you have mastered them. Know the basic loan terms principal and interest. Be able to solve the simple interest formula to find the amount of

### Time Value of Money Revisited: Part 1 Terminology. Learning Outcomes. Time Value of Money

Time Value of Money Revisited: Part 1 Terminology Intermediate Accounting II Dr. Chula King 1 Learning Outcomes Definition of Time Value of Money Components of Time Value of Money How to Answer the Question

### Value of Money Concept\$

Value of Money Concept\$ Time, not timing is the key to investing 2 Introduction Time Value of Money Application of TVM in financial planning : - determine capital needs for retirement plan - determine

### Future Value Sinking Fund Present Value Amortization. P V = P MT [1 (1 + i) n ] i

Math 141-copyright Joe Kahlig, 15C Page 1 Section 5.2: Annuities Section 5.3: Amortization and Sinking Funds Definition: An annuity is an instrument that involves fixed payments be made/received at equal

### Chapter 22: Borrowings Models

October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor

### Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Section 3 Future Value of an Annuity; Sinking Funds Learning Objectives for Section 3.3 Future Value of an Annuity; Sinking Funds The student will be able to compute the

### Solving Compound Interest Problems

Solving Compound Interest Problems What is Compound Interest? If you walk into a bank and open up a savings account you will earn interest on the money you deposit in the bank. If the interest is calculated

### Finite Mathematics. CHAPTER 6 Finance. Helene Payne. 6.1. Interest. savings account. bond. mortgage loan. auto loan

Finite Mathematics Helene Payne CHAPTER 6 Finance 6.1. Interest savings account bond mortgage loan auto loan Lender Borrower Interest: Fee charged by the lender to the borrower. Principal or Present Value:

### Chapter F: Finance. Section F.1-F.4

Chapter F: Finance Section F.1-F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given

### CHAPTER 6 Accounting and the Time Value of Money

CHAPTER 6 Accounting and the Time Value of Money 6-1 LECTURE OUTLINE This chapter can be covered in two to three class sessions. Most students have had previous exposure to single sum problems and ordinary

### TIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!

TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest \$1,000 it becomes \$1,050 \$1,000 return of \$50 return on Factors to consider when assessing Return on

### Math 120 Basic finance percent problems from prior courses (amount = % X base)

Math 120 Basic finance percent problems from prior courses (amount = % X base) 1) Given a sales tax rate of 8%, a) find the tax on an item priced at \$250, b) find the total amount due (which includes both

### Chapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1

Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation

### Lesson 1. Key Financial Concepts INTRODUCTION

Key Financial Concepts INTRODUCTION Welcome to Financial Management! One of the most important components of every business operation is financial decision making. Business decisions at all levels have

### DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS

Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need \$500 one

### 10.3 Future Value and Present Value of an Ordinary General Annuity

360 Chapter 10 Annuities 10.3 Future Value and Present Value of an Ordinary General Annuity 29. In an ordinary general annuity, payments are made at the end of each payment period and the compounding period

### Ordinary Annuities Chapter 10

Ordinary Annuities Chapter 10 Learning Objectives After completing this chapter, you will be able to: > Define and distinguish between ordinary simple annuities and ordinary general annuities. > Calculate

### CHAPTER 1. Compound Interest

CHAPTER 1 Compound Interest 1. Compound Interest The simplest example of interest is a loan agreement two children might make: I will lend you a dollar, but every day you keep it, you owe me one more penny.

### Formulas STEM 11. Two mathematical formulas that students at this level of mathematics are familiar with are:

Formulas STEM 11 One definition of the word formula is a conventionalized statement expressing some fundamental principle. Adding the word mathematical to formula we can define a mathematical formula as

### Chapter 2 Applying Time Value Concepts

Chapter 2 Applying Time Value Concepts Chapter Overview Albert Einstein, the renowned physicist whose theories of relativity formed the theoretical base for the utilization of atomic energy, called the

### UNIT AUTHOR: Elizabeth Hume, Colonial Heights High School, Colonial Heights City Schools

Money & Finance I. UNIT OVERVIEW & PURPOSE: The purpose of this unit is for students to learn how savings accounts, annuities, loans, and credit cards work. All students need a basic understanding of how

### Solutions to Time value of money practice problems

Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if \$2,500 is deposited today and the account earns 4% interest,

### ONcore Variable Annuities. Guaranteed Lifetime Withdrawal Benefit Preferred IS Rider

ONcore Variable Annuities Guaranteed Lifetime Withdrawal Benefit Preferred IS Rider Building Your Retirement Income Strategy You ve spent years working hard and sacrificing to save money for your retirement.

### Practice Problems. Use the following information extracted from present and future value tables to answer question 1 to 4.

PROBLEM 1 MULTIPLE CHOICE Practice Problems Use the following information extracted from present and future value tables to answer question 1 to 4. Type of Table Number of Periods Interest Rate Factor

### Pre-Session Review. Part 2: Mathematics of Finance

Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions

### In Section 5.3, we ll modify the worksheet shown above. This will allow us to use Excel to calculate the different amounts in the annuity formula,

Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout

### Sample problems from Chapter 10.1

Sample problems from Chapter 10.1 This is the annuities sinking funds formula. This formula is used in most cases for annuities. The payments for this formula are made at the end of a period. Your book

### Find the effective rate corresponding to the given nominal rate. Round results to the nearest 0.01 percentage points. 2) 15% compounded semiannually

Exam Name Find the compound amount for the deposit. Round to the nearest cent. 1) \$1200 at 4% compounded quarterly for 5 years Find the effective rate corresponding to the given nominal rate. Round results

### Lesson 4 Annuities: The Mathematics of Regular Payments

Lesson 4 Annuities: The Mathematics of Regular Payments Introduction An annuity is a sequence of equal, periodic payments where each payment receives compound interest. One example of an annuity is a Christmas

### 5. Time value of money

1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned

### MGF 1107 Spring 11 Ref: 606977 Review for Exam 2. Write as a percent. 1) 3.1 1) Write as a decimal. 4) 60% 4) 5) 0.085% 5)

MGF 1107 Spring 11 Ref: 606977 Review for Exam 2 Mr. Guillen Exam 2 will be on 03/02/11 and covers the following sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6. Write as a percent. 1) 3.1 1) 2) 1 8 2) 3) 7 4 3)

### Question Details JModd7 5.1.003. [1633641] Question Details JModd7 5.1.005.CMI. [1617591] Question Details JModd7 5.2.011.CMI.

1 of 7 MATH 179: Final Exam Review (3420833) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Instructions Here are 26 questions from all the sections we've covered... I am

### TIME VALUE OF MONEY (TVM)

TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate

### 5.1 Simple and Compound Interest

5.1 Simple and Compound Interest Question 1: What is simple interest? Question 2: What is compound interest? Question 3: What is an effective interest rate? Question 4: What is continuous compound interest?

### Finance 197. Simple One-time Interest

Finance 197 Finance We have to work with money every day. While balancing your checkbook or calculating your monthly expenditures on espresso requires only arithmetic, when we start saving, planning for

### Lesson 3 Save and Invest: The Power of Interest

Lesson 3 Save and Invest: The Power of Interest Lesson Description This lesson defines the concept of interest as the fee for the use of money over time. Students differentiate between simple and compound

### VantagePoint SM. Genworth Life and Annuity Insurance Company Genworth Life Insurance Company. with Return of Premium. Underwritten by: Lynchburg, VA

VantagePoint SM Term Life Insurance with Return of Premium Underwritten by: Genworth Life and Annuity Insurance Company Genworth Life Insurance Company Lynchburg, VA 44453 10/27/08 Why you need life insurance?

### THE VALUE OF MONEY PROBLEM #3: ANNUITY. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction

THE VALUE OF MONEY PROBLEM #3: ANNUITY Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction Earlier, we explained how to calculate the future value of a single sum placed on deposit

### Percent, Sales Tax, & Discounts

Percent, Sales Tax, & Discounts Many applications involving percent are based on the following formula: Note that of implies multiplication. Suppose that the local sales tax rate is 7.5% and you purchase

### FIN 5413: Chapter 03 - Mortgage Loan Foundations: The Time Value of Money Page 1

FIN 5413: Chapter 03 - Mortgage Loan Foundations: The Time Value of Money Page 1 Solutions to Problems - Chapter 3 Mortgage Loan Foundations: The Time Value of Money Problem 3-1 a) Future Value = FV(n,i,PV,PMT)

### Time Value of Money, Part 5 Present Value aueof An Annuity. Learning Outcomes. Present Value

Time Value of Money, Part 5 Present Value aueof An Annuity Intermediate Accounting II Dr. Chula King 1 Learning Outcomes The concept of present value Present value of an annuity Ordinary annuity versus

### Discounted Cash Flow Valuation

BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?

### Present Value (PV) Tutorial

EYK 15-1 Present Value (PV) Tutorial The concepts of present value are described and applied in Chapter 15. This supplement provides added explanations, illustrations, calculations, present value tables,

### Section 8.1. I. Percent per hundred

1 Section 8.1 I. Percent per hundred a. Fractions to Percents: 1. Write the fraction as an improper fraction 2. Divide the numerator by the denominator 3. Multiply by 100 (Move the decimal two times Right)

About Compound Interest TABLE OF CONTENTS About Compound Interest... 1 What is COMPOUND INTEREST?... 1 Interest... 1 Simple Interest... 1 Compound Interest... 1 Calculations... 3 Calculating How Much to

### January 22. Interest Rates

January 22 Interest Rates Compound Interest If you put \$100 in a bank account at 5% interest per year, you will have \$105 after one year. You earn \$5 in interest. How much do you have after two years if

### International Financial Strategies Time Value of Money

International Financial Strategies 1 Future Value and Compounding Future value = cash value of the investment at some point in the future Investing for single period: FV. Future Value PV. Present Value

### FINA 351 Managerial Finance, Ch.4-5, Time-Value-of-Money (TVM), Notes

FINA 351 Managerial Finance, Ch.4-5, Time-Value-of-Money (TVM), Notes The concept of time-value-of-money is important to know, not only for this class, but for your own financial planning. It is a critical

### The values in the TVM Solver are quantities involved in compound interest and annuities.

Texas Instruments Graphing Calculators have a built in app that may be used to compute quantities involved in compound interest, annuities, and amortization. For the examples below, we ll utilize the screens

### Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material. i = 0.75 1 for six months.

Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material 1. a) Let P be the recommended retail price of the toy. Then the retailer may purchase the toy at

### Question 31 38, worth 5 pts each for a complete solution, (TOTAL 40 pts) (Formulas, work

Exam Wk 6 Name Questions 1 30 are worth 2 pts each for a complete solution. (TOTAL 60 pts) (Formulas, work, or detailed explanation required.) Question 31 38, worth 5 pts each for a complete solution,

### ANNUITIES. Ordinary Simple Annuities

An annuity is a series of payments or withdrawals. ANNUITIES An Annuity can be either Simple or General Simple Annuities - Compounding periods and payment periods coincide. General Annuities - Compounding

### MAT116 Project 2 Chapters 8 & 9

MAT116 Project 2 Chapters 8 & 9 1 8-1: The Project In Project 1 we made a loan workout decision based only on data from three banks that had merged into one. We did not consider issues like: What was the

### How To Use Excel To Compute Compound Interest

Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout

### 5 More on Annuities and Loans

5 More on Annuities and Loans 5.1 Introduction This section introduces Annuities. Much of the mathematics of annuities is similar to that of loans. Indeed, we will see that a loan and an annuity are just

### This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12

This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12 To purchase Mathematics and Economics: Connections for Life 9-12, visit:

### The Interest Rate: A loan, expressed as a percentage of the amount loaned per year.

Interest Rates Time Value of Money The Interest Rate Simple Interest Amortizing a Loan The Interest Rate: A loan, expressed as a percentage of the amount loaned per year. Interest rate is the "price" of

### Mathematics. Rosella Castellano. Rome, University of Tor Vergata

and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings

### FIN 3000. Chapter 6. Annuities. Liuren Wu

FIN 3000 Chapter 6 Annuities Liuren Wu Overview 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Learning objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate

### Chapter 18 Combined Values Chart

Chapter 18 Combined Values Chart INTRODUCTION After impairment ratings have been obtained for all accepted conditions they must be combined to a single value known as the combined impairment rating. The

### Compounding Quarterly, Monthly, and Daily

126 Compounding Quarterly, Monthly, and Daily So far, you have been compounding interest annually, which means the interest is added once per year. However, you will want to add the interest quarterly,

### Level Annuities with Payments More Frequent than Each Interest Period

Level Annuities with Payments More Frequent than Each Interest Period 1 Examples 2 Annuity-immediate 3 Annuity-due Level Annuities with Payments More Frequent than Each Interest Period 1 Examples 2 Annuity-immediate

### Time Value of Money. Background

Time Value of Money (Text reference: Chapter 4) Topics Background One period case - single cash flow Multi-period case - single cash flow Multi-period case - compounding periods Multi-period case - multiple

### The Time Value of Money

The Time Value of Money Time Value Terminology 0 1 2 3 4 PV FV Future value (FV) is the amount an investment is worth after one or more periods. Present value (PV) is the current value of one or more future

### 8.1 Simple Interest and 8.2 Compound Interest

8.1 Simple Interest and 8.2 Compound Interest When you open a bank account or invest money in a bank or financial institution the bank/financial institution pays you interest for the use of your money.

### Chapter 6. Time Value of Money Concepts. Simple Interest 6-1. Interest amount = P i n. Assume you invest \$1,000 at 6% simple interest for 3 years.

6-1 Chapter 6 Time Value of Money Concepts 6-2 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in

### This exam consists of 6 pages and 16 problems. Be sure you have all 6 pages before you start.

Math M119 Practice Test 1 PRINT your name This exam consists of 6 pages and 16 problems. Be sure you have all 6 pages before you start. Time: 75 minutes Scrap paper, notes, books, portable electronic devices,

### Topics Covered. Ch. 4 - The Time Value of Money. The Time Value of Money Compounding and Discounting Single Sums

Ch. 4 - The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate For now, we will omit the section 4.5 on inflation

### How to calculate present values

How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance

### Credit Card Activity

Credit Card Activity Introduction: Students will use what they have already learned to create a spreadsheet for the monthly expenses of a credit card. Most students are not very familiar with how a credit

### Annuities and Sinking Funds

Annuities and Sinking Funds Sinking Fund A sinking fund is an account earning compound interest into which you make periodic deposits. Suppose that the account has an annual interest rate of compounded

### Example. L.N. Stout () Problems on annuities 1 / 14

Example A credit card charges an annual rate of 14% compounded monthly. This month s bill is \$6000. The minimum payment is \$5. Suppose I keep paying \$5 each month. How long will it take to pay off the

### Annuities Due, Deferred Annuities, Perpetuities and Calculus: First Principles

Math 134 Tutorial 8 Annuities Due, Deferred Annuities, Perpetuities and Calculus: First Principles An annuity due has payments at the beginning of each payment period, so interest accumulates for one extra

### Compound Interest Practice Problems (99-07)

IB Math Studies 1: Algebra & Numbers: Compound Interest Alei - Desert Academy 2013-14 Compound Interest Practice Problems (99-07) 1. Two brothers Adam and Ben each inherit \$6500. Adam invests his money

### SEEM 2440A/B Engineering Economics First term, 2011 12. Midterm Examination

SEEM 2440A/B Engineering Economics First term, 2011 12 Midterm Examination Instructions Exam Duration: 90 minutes Total Marks: 100 This examination paper comprises of THREE questions. Answer ALL questions.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam # Extra Practice Problems, Math 100, Professor Wilson MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Kate decides to replace all the lights

### Chapter 4: Managing Your Money Lecture notes Math 1030 Section C

Section C.1: The Savings Plan Formula The savings plan formula Suppose you want to save money for some reason. You could deposit a lump sum of money today and let it grow through the power of compounding

### Calculations for Time Value of Money

KEATMX01_p001-008.qxd 11/4/05 4:47 PM Page 1 Calculations for Time Value of Money In this appendix, a brief explanation of the computation of the time value of money is given for readers not familiar with

### 1.3.2015 г. D. Dimov. Year Cash flow 1 \$3,000 2 \$5,000 3 \$4,000 4 \$3,000 5 \$2,000

D. Dimov Most financial decisions involve costs and benefits that are spread out over time Time value of money allows comparison of cash flows from different periods Question: You have to choose one of

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Ch. 5 Mathematics of Finance 5.1 Compound Interest SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) What is the effective

### Finance Notes ANNUITIES

Annuities Page 1 of 8 ANNUITIES Objectives: After completing this section, you should be able to do the following: Calculate the future value of an ordinary annuity. Calculate the amount of interest earned

### Real estate investment & Appraisal Dr. Ahmed Y. Dashti. Sample Exam Questions

Real estate investment & Appraisal Dr. Ahmed Y. Dashti Sample Exam Questions Problem 3-1 a) Future Value = \$12,000 (FVIF, 9%, 7 years) = \$12,000 (1.82804) = \$21,936 (annual compounding) b) Future Value

### The Institute of Chartered Accountants of India

CHAPTER 4 SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY- APPLICATIONS LEARNING OBJECTIVES After studying this chapter students will be able

### Build a financially strong retirement with AG Lifetime Income Builder

Consumer Guide This guide must be presented along with an index annuity consumer guide. AG Lifetime Income Builder SM optional living benefit rider Build a financially strong retirement with AG Lifetime

### 2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?

CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equal-sized

### Solutions to Problems: Chapter 5

Solutions to Problems: Chapter 5 P5-1. Using a time line LG 1; Basic a, b, and c d. Financial managers rely more on present value than future value because they typically make decisions before the start