Size: px
Start display at page:

Transcription

3 Annuities, Loans, and Bonds A typical defined-contribution pension fund works as follows: Every month while you work, you and your employer deposit a certain amount of money in an account. This money earns (compound) interest from the time it is deposited. When you retire, the account continues to earn interest, but you may then start withdrawing money at a rate calculated to reduce the account to zero after some number of years. This account is an example of an annuity, an account earning interest into which you make periodic deposits or from which you make periodic withdrawals. 3

4 Annuities, Loans, and Bonds In common usage, the term annuity is used for an account from which you make withdrawals. There are various terms used for accounts into which you make payments, based on their purpose. Examples include savings account, pension fund, and sinking fund. A sinking fund is generally used by businesses or governments to accumulate money to pay off an anticipated debt, but we ll use the term to refer to any account into which you make periodic payments. 4

5 Sinking Funds 5

6 Sinking Funds Suppose you make a payment of \$100 at the end of every month into an account earning 3.6% interest per year, compounded monthly. This means that your investment is earning 3.6%/12 = 0.3% per month. We write i = 0.036/12 = What will be the value of the investment at the end of 2 years (24 months)? Think of the deposits separately. Each earns interest from the time it is deposited, and the total accumulated after 2 years is the sum of these deposits and the interest they earn. 6

7 Sinking Funds In other words, the accumulated value is the sum of the future values of the deposits, taking into account how long each deposit sits in the account. Figure 1 shows a timeline with the deposits and the contribution of each to the final value. Figure 1 7

8 Sinking Funds For example, the very last deposit (at the end of month 24) has no time to earn interest, so it contributes only \$100. The very first deposit, which earns interest for 23 months, by the future value formula for compound interest contributes \$100( ) 23 to the total. Adding together all of the future values gives us the total future value: FV = ( ) + 100( ) ( ) 23 = 100[1 + ( ) + ( ) 2 + +( ) 23 ] 8

9 Sinking Funds Fortunately, this sort of sum is well-known and there is a convenient formula for its value: In our case, with x = , this formula allows us to calculate the future value: It is now easy to generalize this calculation. 9

10 Sinking Funds Future Value of a Sinking Fund A sinking fund is an account earning compound interest into which you make periodic deposits. Suppose that the account has an annual rate of r compounded m times per year, so that i = r/m is the interest rate per compounding period. If you make a payment of PMT at the end of each period, then the future value after t years, or n = mt periods, will be 10

11 Sinking Funds Quick Example At the end of each month you deposit \$50 into an account earning 2% annual interest compounded monthly. To find the future value after 5 years, we use i = 0.02/12 and n = 12 5 = 60 compounding periods, so 11

12 Example 1 Retirement Account Your retirement account has \$5,000 in it and earns 5% interest per year compounded monthly. Every month for the next 10 years you will deposit \$100 into the account. How much money will there be in the account at the end of those 10 years? Solution: This is a sinking fund with PMT = \$100, r = 0.05, m = 12, so i = 0.05/12, and n = =

13 Example 1 Solution cont d Ignoring for the moment the \$5,000 already in the account, your payments have the following future value: 13

14 Example 1 Solution cont d What about the \$5,000 that was already in the account? That sits there and earns interest, so we need to find its future value as well, using the compound interest formula: FV = PV(1 + i ) n = 5,000( /12) 120 = \$8, Hence, the total amount in the account at the end of 10 years will be \$15, , = \$23,

15 Sinking Funds Payment Formula for a Sinking Fund Suppose that an account has an annual rate of r compounded m times per year, so that i = r/m is the interest rate per compounding period. If you want to accumulate a total of FV in the account after t years, or n = mt periods, by making payments of PMT at the end of each period, then each payment must be 15

16 Annuities 16

17 Annuities Suppose we deposit an amount PV now in an account earning 3.6% interest per year, compounded monthly. Starting 1 month from now, the bank will send us monthly payments of \$100. What must PV be so that the account will be drawn down to \$0 in exactly 2 years? As before, we write i = r/m = 0.036/12 = 0.003, and we have PMT = 100. The first payment of \$100 will be made 1 month from now, so its present value is 17

18 Annuities In other words, that much of the original PV goes toward funding the first payment. The second payment, 2 months from now, has a present value of That much of the original PV funds the second payment. 18

19 Annuities This continues for 2 years, at which point we receive the last payment, which has a present value of and that exhausts the account. 19

20 Annuities Figure 2 shows a timeline with the payments and the present value of each. Figure 2 20

21 Annuities Because PV must be the sum of these present values, we get PV = 100( ) ( ) ( ) 24 = 100[( ) 1 + ( ) ( ) 24 ]. We can again find a simpler formula for this sum: x 1 + x x n = (x n 1 + x n ) 21

22 Annuities So, in our case, or If we deposit \$2, initially and the bank sends us \$100 per month for 2 years, our account will be exhausted at the end of that time. 22

23 Annuities Generalizing, we get the following formula: Present Value of an Annuity An annuity is an account earning compound interest from which periodic withdrawals are made. Suppose that the account has an annual rate of r compounded m times per year, so that i = r/m is the interest rate per compounding period. Suppose also that the account starts with a balance of PV. 23

24 Annuities If you receive a payment of PMT at the end of each compounding period, and the account is down to \$0 after t years, or n = mt periods, then Quick Example At the end of each month you want to withdraw \$50 from an account earning 2% annual interest compounded monthly. 24

25 Annuities If you want the account to last for 5 years (60 compounding periods), it must have the following amount to begin with: Note If you make your withdrawals at the end of each compounding period, you have an ordinary annuity. If, instead, you make withdrawals at the beginning of each compounding period, you have an annuity due. 25

26 Annuities Because each payment occurs one period earlier, there is one less period in which to earn interest, hence the present value must be larger by a factor of (1 + i ) to fund each payment. So, the present value formula for an annuity due is 26

27 Annuities Payment Formula for an Ordinary Annuity Suppose that an account has an annual rate of r compounded m times per year, so that i = r/m is the interest rate per compounding period. Suppose also that the account starts with a balance of PV. If you want to receive a payment of PMT at the end of each compounding period, and the account is down to \$0 after t years, or n = mt periods, then 27

28 Installment Loans 28

29 Installment Loans In a typical installment loan, such as a car loan or a home mortgage, we borrow an amount of money and then pay it back with interest by making fixed payments (usually every month) over some number of years. From the point of view of the lender, this is an annuity. Thus, loan calculations are identical to annuity calculations. 29

30 Example 6 Home Mortgages Marc and Mira are buying a house, and have taken out a 30-year, \$90,000 mortgage at 8% interest per year. What will their monthly payments be? Solution: From the bank s point of view, a mortgage is an annuity. In this case, the present value is PV = \$90,000, r = 0.08, m = 12, and n = = 360. To find the payments, we use the payment formula: 30

31 Example 6 Solution cont d The word mortgage comes from the French for dead pledge. The process of paying off a loan is called amortizing the loan, meaning to kill the debt owed. 31

32 Bonds 32

33 Bonds Suppose that a corporation offers a 10-year bond paying 6.5% with payments every 6 months. If we pay \$10,000 for bonds with a maturity value of \$10,000, we will receive 6.5/2 = 3.25% of \$10,000, or \$325, every 6 months for 10 years, at the end of which time the corporation will give us the original \$10,000 back. But bonds are rarely sold at their maturity value. Rather, they are auctioned off and sold at a price the bond market determines they are worth. 33

34 Bonds For example, suppose that bond traders are looking for an investment that has a rate of return or yield of 7% rather than the stated 6.5% (sometimes called the coupon interest rate to distinguish it from the rate of return). How much would they be willing to pay for the bonds above with a maturity value of \$10,000? Think of the bonds as an investment that will pay the owner \$325 every 6 months for 10 years, and will pay an additional \$10,000 on maturity at the end of the 10 years.. We can treat the \$325 payments as if they come from an annuity and determine how much an investor would pay for such an annuity if it earned 7% compounded semiannually. 34

35 Bonds Separately, we determine the present value of an investment worth \$10,000 ten years from now, if it earned 7% compounded semiannually. For the first calculation, we use the annuity present value formula, with i = 0.07/2 and n = 2 10 =

36 Bonds For the second calculation, we use the present value formula for compound interest: PV = 10,000( /2) 20 = \$5, Thus, an investor looking for a 7% return will be willing to pay \$4, for the semiannual payments of \$325 and \$5, for the \$10,000 payment at the end of 10 years, for a total of \$4, , = \$9, for the \$10,000 bond. 36

37 Example 8 Bonds Suppose that bond traders are looking for only a 6% yield on their investment. How much would they pay per \$10,000 for the 10-year bonds above, which have a coupon interest rate of 6.5% and pay interest every six months? Solution: We redo the calculation with r = For the annuity calculation we now get 37

38 Example 8 Solution cont d For the compound interest calculation we get PV = 10,000( /2) 20 = \$5, Thus, traders would be willing to pay a total of \$4, \$5, = \$10, for bonds with a maturity value of \$10,

### Mathematics. Rosella Castellano. Rome, University of Tor Vergata

and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings

### Chapter F: Finance. Section F.1-F.4

Chapter F: Finance Section F.1-F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given

### Chapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams

Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present

### Appendix C- 1. Time Value of Money. Appendix C- 2. Financial Accounting, Fifth Edition

C- 1 Time Value of Money C- 2 Financial Accounting, Fifth Edition Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount. 3. Solve for future

### F V P V = F V = P (1 + r) n. n 1. FV n = C (1 + r) i. i=0. = C 1 r. (1 + r) n 1 ]

1 Week 2 1.1 Recap Week 1 P V = F V (1 + r) n F V = P (1 + r) n 1.2 FV of Annuity: oncept 1.2.1 Multiple Payments: Annuities Multiple payments over time. A special case of multiple payments: annuities

### Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Section 3 Future Value of an Annuity; Sinking Funds Learning Objectives for Section 3.3 Future Value of an Annuity; Sinking Funds The student will be able to compute the

### Appendix. Time Value of Money. Financial Accounting, IFRS Edition Weygandt Kimmel Kieso. Appendix C- 1

C Time Value of Money C- 1 Financial Accounting, IFRS Edition Weygandt Kimmel Kieso C- 2 Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount.

### Chapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1

Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation

### Chapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.

Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values

### Chapter 5 Time Value of Money 2: Analyzing Annuity Cash Flows

1. Future Value of Multiple Cash Flows 2. Future Value of an Annuity 3. Present Value of an Annuity 4. Perpetuities 5. Other Compounding Periods 6. Effective Annual Rates (EAR) 7. Amortized Loans Chapter

### DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS

Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need \$500 one

### Discounted Cash Flow Valuation

6 Formulas Discounted Cash Flow Valuation McGraw-Hill/Irwin Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing

### TIME VALUE OF MONEY (TVM)

TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate

### FIN 3000. Chapter 6. Annuities. Liuren Wu

FIN 3000 Chapter 6 Annuities Liuren Wu Overview 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Learning objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate

### Annuities and Sinking Funds

Annuities and Sinking Funds Sinking Fund A sinking fund is an account earning compound interest into which you make periodic deposits. Suppose that the account has an annual interest rate of compounded

### Compound Interest Formula

Mathematics of Finance Interest is the rental fee charged by a lender to a business or individual for the use of money. charged is determined by Principle, rate and time Interest Formula I = Prt \$100 At

### MAT116 Project 2 Chapters 8 & 9

MAT116 Project 2 Chapters 8 & 9 1 8-1: The Project In Project 1 we made a loan workout decision based only on data from three banks that had merged into one. We did not consider issues like: What was the

### Chapter 22: Borrowings Models

October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor

### 1. Annuity a sequence of payments, each made at equally spaced time intervals.

Ordinary Annuities (Young: 6.2) In this Lecture: 1. More Terminology 2. Future Value of an Ordinary Annuity 3. The Ordinary Annuity Formula (Optional) 4. Present Value of an Ordinary Annuity More Terminology

### You just paid \$350,000 for a policy that will pay you and your heirs \$12,000 a year forever. What rate of return are you earning on this policy?

1 You estimate that you will have \$24,500 in student loans by the time you graduate. The interest rate is 6.5%. If you want to have this debt paid in full within five years, how much must you pay each

### The values in the TVM Solver are quantities involved in compound interest and annuities.

Texas Instruments Graphing Calculators have a built in app that may be used to compute quantities involved in compound interest, annuities, and amortization. For the examples below, we ll utilize the screens

### In Section 5.3, we ll modify the worksheet shown above. This will allow us to use Excel to calculate the different amounts in the annuity formula,

Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout

### Dick Schwanke Finite Math 111 Harford Community College Fall 2013

Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of

### A = P (1 + r / n) n t

Finance Formulas for College Algebra (LCU - Fall 2013) ---------------------------------------------------------------------------------------------------------------------------------- Formula 1: Amount

### TVM Applications Chapter

Chapter 6 Time of Money UPS, Walgreens, Costco, American Air, Dreamworks Intel (note 10 page 28) TVM Applications Accounting issue Chapter Notes receivable (long-term receivables) 7 Long-term assets 10

### How to calculate present values

How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance

FIN 534 Week 4 Quiz 3 (Str) Click Here to Buy the Tutorial http://www.tutorialoutlet.com/fin-534/fin-534-week-4-quiz-3- str/ For more course tutorials visit www.tutorialoutlet.com Which of the following

### Exercise 1 for Time Value of Money

Exercise 1 for Time Value of Money MULTIPLE CHOICE 1. Which of the following statements is CORRECT? a. A time line is not meaningful unless all cash flows occur annually. b. Time lines are useful for visualizing

### Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)

MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the

### FIN 5413: Chapter 03 - Mortgage Loan Foundations: The Time Value of Money Page 1

FIN 5413: Chapter 03 - Mortgage Loan Foundations: The Time Value of Money Page 1 Solutions to Problems - Chapter 3 Mortgage Loan Foundations: The Time Value of Money Problem 3-1 a) Future Value = FV(n,i,PV,PMT)

### Present Value and Annuities. Chapter 3 Cont d

Present Value and Annuities Chapter 3 Cont d Present Value Helps us answer the question: What s the value in today s dollars of a sum of money to be received in the future? It lets us strip away the effects

### Time Value of Money. Background

Time Value of Money (Text reference: Chapter 4) Topics Background One period case - single cash flow Multi-period case - single cash flow Multi-period case - compounding periods Multi-period case - multiple

### Dick Schwanke Finite Math 111 Harford Community College Fall 2013

Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of

### PowerPoint. to accompany. Chapter 5. Interest Rates

PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When

### CHAPTER 4. The Time Value of Money. Chapter Synopsis

CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money

### Problem Set: Annuities and Perpetuities (Solutions Below)

Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save \$300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years

### TIME VALUE OF MONEY #6: TREASURY BOND. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction

TIME VALUE OF MONEY #6: TREASURY BOND Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction This problem assumes that you have mastered problems 1-5, which are prerequisites. In this

### A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2%

1 Exam FM Questions Practice Exam 1 1. Consider the following yield curve: Year Spot Rate 1 5.5% 2 5.0% 3 5.0% 4 4.5% 5 4.0% Find the four year forward rate. A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2% 2.

### Finance CHAPTER OUTLINE. 5.1 Interest 5.2 Compound Interest 5.3 Annuities; Sinking Funds 5.4 Present Value of an Annuity; Amortization

CHAPTER 5 Finance OUTLINE Even though you re in college now, at some time, probably not too far in the future, you will be thinking of buying a house. And, unless you ve won the lottery, you will need

### Finding the Payment \$20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = \$488.26

Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive \$5,000 per month in retirement.

### Chapter 21: Savings Models

October 16, 2013 Last time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Problems Question: I put \$1,000 dollars in a savings account with 2% nominal interest

### Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued

6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute

### 1. If you wish to accumulate \$140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?

Chapter 2 - Sample Problems 1. If you wish to accumulate \$140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will \$247,000 grow to be in

### CHAPTER 5. Interest Rates. Chapter Synopsis

CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR)

### Introduction to Real Estate Investment Appraisal

Introduction to Real Estate Investment Appraisal Maths of Finance Present and Future Values Pat McAllister INVESTMENT APPRAISAL: INTEREST Interest is a reward or rent paid to a lender or investor who has

### Present Value Concepts

Present Value Concepts Present value concepts are widely used by accountants in the preparation of financial statements. In fact, under International Financial Reporting Standards (IFRS), these concepts

### Module 5: Interest concepts of future and present value

Page 1 of 23 Module 5: Interest concepts of future and present value Overview In this module, you learn about the fundamental concepts of interest and present and future values, as well as ordinary annuities

### 300 Chapter 5 Finance

300 Chapter 5 Finance 17. House Mortgage A couple wish to purchase a house for \$200,000 with a down payment of \$40,000. They can amortize the balance either at 8% for 20 years or at 9% for 25 years. Which

### Statistical Models for Forecasting and Planning

Part 5 Statistical Models for Forecasting and Planning Chapter 16 Financial Calculations: Interest, Annuities and NPV chapter 16 Financial Calculations: Interest, Annuities and NPV Outcomes Financial information

### Time Value Conepts & Applications. Prof. Raad Jassim

Time Value Conepts & Applications Prof. Raad Jassim Chapter Outline Introduction to Valuation: The Time Value of Money 1 2 3 4 5 6 7 8 Future Value and Compounding Present Value and Discounting More on

### Finite Mathematics. CHAPTER 6 Finance. Helene Payne. 6.1. Interest. savings account. bond. mortgage loan. auto loan

Finite Mathematics Helene Payne CHAPTER 6 Finance 6.1. Interest savings account bond mortgage loan auto loan Lender Borrower Interest: Fee charged by the lender to the borrower. Principal or Present Value:

### Goals. The Time Value of Money. First example. Compounding. Economics 71a Spring 2007 Mayo, Chapter 7 Lecture notes 3.1

Goals The Time Value of Money Economics 7a Spring 2007 Mayo, Chapter 7 Lecture notes 3. More applications Compounding PV = present or starting value FV = future value R = interest rate n = number of periods

### Bond valuation. Present value of a bond = present value of interest payments + present value of maturity value

Bond valuation A reading prepared by Pamela Peterson Drake O U T L I N E 1. Valuation of long-term debt securities 2. Issues 3. Summary 1. Valuation of long-term debt securities Debt securities are obligations

### Time Value of Money. Nature of Interest. appendix. study objectives

2918T_appC_C01-C20.qxd 8/28/08 9:57 PM Page C-1 appendix C Time Value of Money study objectives After studying this appendix, you should be able to: 1 Distinguish between simple and compound interest.

### Discounted Cash Flow Valuation

Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute

### CALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time

CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses

### SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE QUESTIONS Interest Theory

SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS Interest Theory This page indicates changes made to Study Note FM-09-05. January 14, 2014: Questions and solutions 58 60 were

### REVIEW MATERIALS FOR REAL ESTATE ANALYSIS

REVIEW MATERIALS FOR REAL ESTATE ANALYSIS 1997, Roy T. Black REAE 5311, Fall 2005 University of Texas at Arlington J. Andrew Hansz, Ph.D., CFA CONTENTS ITEM ANNUAL COMPOUND INTEREST TABLES AT 10% MATERIALS

### Lesson 4 Annuities: The Mathematics of Regular Payments

Lesson 4 Annuities: The Mathematics of Regular Payments Introduction An annuity is a sequence of equal, periodic payments where each payment receives compound interest. One example of an annuity is a Christmas

### Example. L.N. Stout () Problems on annuities 1 / 14

Example A credit card charges an annual rate of 14% compounded monthly. This month s bill is \$6000. The minimum payment is \$5. Suppose I keep paying \$5 each month. How long will it take to pay off the

### Finance 331 Corporate Financial Management Week 1 Week 3 Note: For formulas, a Texas Instruments BAII Plus calculator was used.

Chapter 1 Finance 331 What is finance? - Finance has to do with decisions about money and/or cash flows. These decisions have to do with money being raised or used. General parts of finance include: -

### FINA 351 Managerial Finance, Ch.4-5, Time-Value-of-Money (TVM), Notes

FINA 351 Managerial Finance, Ch.4-5, Time-Value-of-Money (TVM), Notes The concept of time-value-of-money is important to know, not only for this class, but for your own financial planning. It is a critical

### Topics Covered. Ch. 4 - The Time Value of Money. The Time Value of Money Compounding and Discounting Single Sums

Ch. 4 - The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate For now, we will omit the section 4.5 on inflation

### Activity 3.1 Annuities & Installment Payments

Activity 3.1 Annuities & Installment Payments A Tale of Twins Amy and Amanda are identical twins at least in their external appearance. They have very different investment plans to provide for their retirement.

### Time Value of Money. Work book Section I True, False type questions. State whether the following statements are true (T) or False (F)

Time Value of Money Work book Section I True, False type questions State whether the following statements are true (T) or False (F) 1.1 Money has time value because you forgo something certain today for

### Topics. Chapter 5. Future Value. Future Value - Compounding. Time Value of Money. 0 r = 5% 1

Chapter 5 Time Value of Money Topics 1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series

### How To Calculate An Annuity

Math 141-copyright Joe Kahlig, 15C Page 1 Section 5.2: Annuities Section 5.3: Amortization and Sinking Funds Definition: An annuity is an instrument that involves fixed payments be made/received at equal

### 3. If an individual investor buys or sells a currently owned stock through a broker, this is a primary market transaction.

Spring 2012 Finance 3130 Sample Exam 1A Questions for Review 1. The form of organization for a business is an important issue, as this decision has very significant effect on the income and wealth of the

### FinQuiz Notes 2 0 1 4

Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.

### Bonds. Describe Bonds. Define Key Words. Created 2007 By Michael Worthington Elizabeth City State University

Bonds OBJECTIVES Describe bonds Define key words Explain why bond prices fluctuate Compute interest payments Calculate the price of bonds Created 2007 By Michael Worthington Elizabeth City State University

### CHAPTER 6. Accounting and the Time Value of Money. 2. Use of tables. 13, 14 8 1. a. Unknown future amount. 7, 19 1, 5, 13 2, 3, 4, 6

CHAPTER 6 Accounting and the Time Value of Money ASSIGNMENT CLASSIFICATION TABLE (BY TOPIC) Topics Questions Brief Exercises Exercises Problems 1. Present value concepts. 1, 2, 3, 4, 5, 9, 17, 19 2. Use

### CHAPTER 6 Accounting and the Time Value of Money

CHAPTER 6 Accounting and the Time Value of Money 6-1 LECTURE OUTLINE This chapter can be covered in two to three class sessions. Most students have had previous exposure to single sum problems and ordinary

### Lesson 1. Key Financial Concepts INTRODUCTION

Key Financial Concepts INTRODUCTION Welcome to Financial Management! One of the most important components of every business operation is financial decision making. Business decisions at all levels have

### Compounding Quarterly, Monthly, and Daily

126 Compounding Quarterly, Monthly, and Daily So far, you have been compounding interest annually, which means the interest is added once per year. However, you will want to add the interest quarterly,

### Sample problems from Chapter 10.1

Sample problems from Chapter 10.1 This is the annuities sinking funds formula. This formula is used in most cases for annuities. The payments for this formula are made at the end of a period. Your book

### first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest.

ORDINARY SIMPLE ANNUITIES first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest. LESSON OBJECTIVES: students will learn how to determine the Accumulated Value of Regular

### LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs.

LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs. 1. The minimum rate of return that an investor must receive in order to invest in a project is most likely

### SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS This page indicates changes made to Study Note FM-09-05. April 28, 2014: Question and solutions 61 were added. January 14, 2014:

### How To Use Excel To Compute Compound Interest

Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout

### Excel Financial Functions

Excel Financial Functions PV() Effect() Nominal() FV() PMT() Payment Amortization Table Payment Array Table NPer() Rate() NPV() IRR() MIRR() Yield() Price() Accrint() Future Value How much will your money

### TIME VALUE OF MONEY PROBLEM #7: MORTGAGE AMORTIZATION

TIME VALUE OF MONEY PROBLEM #7: MORTGAGE AMORTIZATION Professor Peter Harris Mathematics by Sharon Petrushka Introduction This problem will focus on calculating mortgage payments. Knowledge of Time Value

### Matt 109 Business Mathematics Notes. Spring 2013

1 To be used with: Title: Business Math (Without MyMathLab) Edition: 8 th Author: Cleaves and Hobbs Publisher: Pearson/Prentice Hall Copyright: 2009 ISBN #: 978-0-13-513687-4 Matt 109 Business Mathematics

### Solutions to Time value of money practice problems

Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if \$2,500 is deposited today and the account earns 4% interest,

### E INV 1 AM 11 Name: INTEREST. There are two types of Interest : and. The formula is. I is. P is. r is. t is

E INV 1 AM 11 Name: INTEREST There are two types of Interest : and. SIMPLE INTEREST The formula is I is P is r is t is NOTE: For 8% use r =, for 12% use r =, for 2.5% use r = NOTE: For 6 months use t =

### Chapter 3. Understanding The Time Value of Money. Prentice-Hall, Inc. 1

Chapter 3 Understanding The Time Value of Money Prentice-Hall, Inc. 1 Time Value of Money A dollar received today is worth more than a dollar received in the future. The sooner your money can earn interest,

### The Time Value of Money C H A P T E R N I N E

The Time Value of Money C H A P T E R N I N E Figure 9-1 Relationship of present value and future value PPT 9-1 \$1,000 present value \$ 10% interest \$1,464.10 future value 0 1 2 3 4 Number of periods Figure

### Time-Value-of-Money and Amortization Worksheets

2 Time-Value-of-Money and Amortization Worksheets The Time-Value-of-Money and Amortization worksheets are useful in applications where the cash flows are equal, evenly spaced, and either all inflows or

### TIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!

TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest \$1,000 it becomes \$1,050 \$1,000 return of \$50 return on Factors to consider when assessing Return on

### Real estate investment & Appraisal Dr. Ahmed Y. Dashti. Sample Exam Questions

Real estate investment & Appraisal Dr. Ahmed Y. Dashti Sample Exam Questions Problem 3-1 a) Future Value = \$12,000 (FVIF, 9%, 7 years) = \$12,000 (1.82804) = \$21,936 (annual compounding) b) Future Value

### Section 8.1. I. Percent per hundred

1 Section 8.1 I. Percent per hundred a. Fractions to Percents: 1. Write the fraction as an improper fraction 2. Divide the numerator by the denominator 3. Multiply by 100 (Move the decimal two times Right)

Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value

### Chapter 4. Time Value of Money. Learning Goals. Learning Goals (cont.)

Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value

### TIME VALUE OF MONEY. In following we will introduce one of the most important and powerful concepts you will learn in your study of finance;

In following we will introduce one of the most important and powerful concepts you will learn in your study of finance; the time value of money. It is generally acknowledged that money has a time value.

### TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY

TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction In this assignment we will discuss how to calculate the Present Value

### The Time Value of Money (contd.)

The Time Value of Money (contd.) February 11, 2004 Time Value Equivalence Factors (Discrete compounding, discrete payments) Factor Name Factor Notation Formula Cash Flow Diagram Future worth factor (compound

### FINANCIAL MATHEMATICS FIXED INCOME

FINANCIAL MATHEMATICS FIXED INCOME 1. Converting from Money Market Basis to Bond Basis and vice versa 2 2. Calculating the Effective Interest Rate (Non-annual Payments)... 4 3. Conversion of Annual into

### FI 302, Business Finance Exam 2, Fall 2000 versions 1 & 8 KEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEY

FI 302, Business Finance Exam 2, Fall 2000 versions 1 & 8 KEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEY 1. (3 points) BS16 What is a 401k plan Most U.S. households single largest lifetime source of savings is

### Topics Covered. Compounding and Discounting Single Sums. Ch. 4 - The Time Value of Money. The Time Value of Money

Ch. 4 - The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate For now, we will omit the section 4.5 on inflation