THE VALUE OF MONEY PROBLEM #3: ANNUITY. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction


 Bethany Quinn
 6 years ago
 Views:
Transcription
1 THE VALUE OF MONEY PROBLEM #3: ANNUITY Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction Earlier, we explained how to calculate the future value of a single sum placed on deposit with interest compounding over a period of time. This assignment will take future value applications a step further, to deal with a series of deposits. An annuity is a series of payments which are equal and made for a given number of periods. As an example, if you were going to deposit $2,000 into the bank every year for ten years, this would create a 10 year annuity. These payments can be made at the end of the period,( known as ordinary annuity), or at the beginning of every period, (known as an annuity due). If we invest $100 a year for 8 years at the end of each year, what will the value of our investment be at the end of 8 years? To sove this problem, we need the Future Value of an Annuity which is the focus of this section.
2 Mathematics: Mathematically, the Future Value of an ordinary annuity is calculated as follows: N Annual Payment!"#$%' ($) FVA = [3] where FVA = Future Value of the annuity = Interest rate N = Number of time Periods Example 1: If you invest $1,000 at the end of every year and receive a return of 5%, how much money will you have at the end of four years? FVA = N Annual Payment!"#$%' ($) $***! "#$%+*,' ($) +*, FVA = = At the end of four years we will have $4, What do you think will happen if we increase the value of? We have seen in the previous two lessons, that if increasing causes an increase in the numerator of the expression, then the value being computed will increase in value, while if increasing causes an increase in the denominator of the expression, then the value being computed will decrease. Here, however appears in both the numerator and the denominator of formula [3] so we can not be sure if the value being computed will increase or decrease. Let us investigate by increasing from 5% to 6%. Example 2 : Let Annual Payment = 1,000, and N = 4 as in Example 1, but let us increase 6%. Then $***! "#$%+* 6' 4($) FVA = = The FVA here is $4, which is larger than the value in Example 1. +* 6 to We see then, that increasing the value of results in an increase in the value of FVA.
3 If the payments are made at the beginning of the year (Annuity Due) then the formula for the Future Value of the Annuity Due is found by multiplying the right side of formula [3] by $%. Thus N Annual Payment! ( $%'!"#$%' ($) FV Annuity Due = Example 3: If you invest $1,000 at the beginning of every year at 5%, how much money will you have at the end of four years? FV Annuity Due = 1000! #$%+*,'! "#$%+*,' ($ ] +*, . ,/,+01
4 Using the TI83: Returning to our previous example, how much money will we have at the end of 4 years, if we invest $1,000 at 5% at the end of each year? How about if we invested at the beginning of each period? Press [2nd] [ FINANCE ] [ENTER] to display the TMV Solver. Enter the following: N = 4 I = 5 PV = 0.00 PMT = 1000 FV = 0.00 This is the value we are calculating for. P/Y = 1 C/Y = 1 PMT = END BEGIN As payments are made at the end of each period. Next, place the cursor on the variable you are looking to solve. In this case it is the FV (Future Value). Press [Alpha] [Solve]. The answer is computed and stored for the appropriate TVM variable. In this case, will be displayed on the FV amount with an indicated square on the left column, designating the solution variable as follows: FV = This represents the value after year four from the five annual payments of $1,000 made at the end of each year. If the payments are made at the beginning of each period, then the calculation required to find the amount of money we will have at the end of four years at 5% interest will be the same as above except that we set PMT: END BEGIN As payments are made at the beginning of each period. Since the money is invested for a longer period, we obtain a greater future value after the fifth year. FV = $
5 Business Application: A 20 year old college student would like to have $100,000 in ten years. How much will she have to deposit at the end of each year to meet her financial goal? Assume a 10% annual rate of return. What if she invested at the beginning of each year? Solution: This is a Future Value Annuity problem and we will solve for FV. We enter the following on the TI  83: N = 10 I = 10 PV = 0.00 PMT = 0.00 This is the value we are looking for. FV = P/Y = 1 C/Y = 1 PMT: END BEGIN Next Press [Alpha] [Solve] and we get œ PMT = She needs to invest $6, per year at the end of each year for ten years and earn 10% interest per year in order to meet her goal of $100,000 accumulation in ten years. If the deposits were made the beginning of each year, the variables entered above would also apply here, with the exception that we highlight BEGIN after PMT. PMT: END BEGIN As payments are made at the beginning of each period. After inputting the data, we get the solution: PMT = 5704
6 Additional Problems: 1. If you invest $1,000 a year for twenty years and earn 11% per year, how much will you have at the end of twenty years? (Assume payments are made at the beginning of the year). 2. Same as number 1 except payments are made at then end of each year. 3. Call your insurance company and find out their Research Problem: guaranteed fixed rate of return on their annuities. Given this, how much money will you need to invest at the beginning of each year in order to have $1,000,000 forty years from now?
TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY
TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction In this assignment we will discuss how to calculate the Present Value
More informationTIME VALUE OF MONEY PROBLEM #5: ZERO COUPON BOND
TIME VALUE OF MONEY PROBLEM #5: ZERO COUPON BOND Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction This assignment will focus on using the TI  83 to calculate the price of a Zero
More informationTIME VALUE OF MONEY PROBLEM #7: MORTGAGE AMORTIZATION
TIME VALUE OF MONEY PROBLEM #7: MORTGAGE AMORTIZATION Professor Peter Harris Mathematics by Sharon Petrushka Introduction This problem will focus on calculating mortgage payments. Knowledge of Time Value
More informationfirst complete "prior knowlegde"  to refresh knowledge of Simple and Compound Interest.
ORDINARY SIMPLE ANNUITIES first complete "prior knowlegde"  to refresh knowledge of Simple and Compound Interest. LESSON OBJECTIVES: students will learn how to determine the Accumulated Value of Regular
More informationTIME VALUE OF MONEY #6: TREASURY BOND. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction
TIME VALUE OF MONEY #6: TREASURY BOND Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction This problem assumes that you have mastered problems 15, which are prerequisites. In this
More informationCALCULATOR HINTS ANNUITIES
CALCULATOR HINTS ANNUITIES CALCULATING ANNUITIES WITH THE FINANCE APP: Select APPS and then press ENTER to open the Finance application. SELECT 1: TVM Solver The TVM Solver displays the timevalueofmoney
More informationThe values in the TVM Solver are quantities involved in compound interest and annuities.
Texas Instruments Graphing Calculators have a built in app that may be used to compute quantities involved in compound interest, annuities, and amortization. For the examples below, we ll utilize the screens
More informationReview Page 468 #1,3,5,7,9,10
MAP4C Financial Student Checklist Topic/Goal Task Prerequisite Skills Simple & Compound Interest Video Lesson Part Video Lesson Part Worksheet (pages) Present Value Goal: I will use the present value formula
More informationMain TVM functions of a BAII Plus Financial Calculator
Main TVM functions of a BAII Plus Financial Calculator The BAII Plus calculator can be used to perform calculations for problems involving compound interest and different types of annuities. (Note: there
More informationSection 5.1  Compound Interest
Section 5.1  Compound Interest Simple Interest Formulas If I denotes the interest on a principal P (in dollars) at an interest rate of r (as a decimal) per year for t years, then we have: Interest: Accumulated
More informationIn Section 5.3, we ll modify the worksheet shown above. This will allow us to use Excel to calculate the different amounts in the annuity formula,
Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout
More informationActivity 3.1 Annuities & Installment Payments
Activity 3.1 Annuities & Installment Payments A Tale of Twins Amy and Amanda are identical twins at least in their external appearance. They have very different investment plans to provide for their retirement.
More informationTime Value of Money, Part 5 Present Value aueof An Annuity. Learning Outcomes. Present Value
Time Value of Money, Part 5 Present Value aueof An Annuity Intermediate Accounting II Dr. Chula King 1 Learning Outcomes The concept of present value Present value of an annuity Ordinary annuity versus
More informationTIME VALUE OF MONEY (TVM)
TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate
More informationDick Schwanke Finite Math 111 Harford Community College Fall 2015
Using Technology to Assist in Financial Calculations Calculators: TI83 and HP12C Software: Microsoft Excel 2007/2010 Session #4 of Finite Mathematics 1 TI83 / 84 Graphing Calculator Section 5.5 of textbook
More informationChapter 3 Mathematics of Finance
Chapter 3 Mathematics of Finance Section 3 Future Value of an Annuity; Sinking Funds Learning Objectives for Section 3.3 Future Value of an Annuity; Sinking Funds The student will be able to compute the
More informationChapter 2 Applying Time Value Concepts
Chapter 2 Applying Time Value Concepts Chapter Overview Albert Einstein, the renowned physicist whose theories of relativity formed the theoretical base for the utilization of atomic energy, called the
More informationRegular Annuities: Determining Present Value
8.6 Regular Annuities: Determining Present Value GOAL Find the present value when payments or deposits are made at regular intervals. LEARN ABOUT the Math Harry has money in an account that pays 9%/a compounded
More informationUsing the Finance Menu of the TI83/84/Plus calculators KEY
Using the Finance Menu of the TI83/84/Plus calculators KEY To get to the FINANCE menu On the TI83 press 2 nd x 1 On the TI83, TI83 Plus, TI84, or TI84 Plus press APPS and then select 1:FINANCE The
More informationHow To Use Excel To Compute Compound Interest
Excel has several built in functions for working with compound interest and annuities. To use these functions, we ll start with a standard Excel worksheet. This worksheet contains the variables used throughout
More informationTIME VALUE OF MONEY. HewlettPackard HP12C Calculator
SECTION 1, CHAPTER 6 TIME VALUE OF MONEY CHAPTER OUTLINE Clues, Hints, and Tips Present Value Future Value Texas Instruments BA II+ Calculator HewlettPackard HP12C Calculator CLUES, HINTS, AND TIPS Present
More informationKey Concepts and Skills
McGrawHill/Irwin Copyright 2014 by the McGrawHill Companies, Inc. All rights reserved. Key Concepts and Skills Be able to compute: The future value of an investment made today The present value of cash
More informationSome Mathematics of Investing in Rental Property. Floyd Vest
Some Mathematics of Investing in Rental Property Floyd Vest Example 1. In our example, we will use some of the assumptions from Luttman, Frederick W. (1983) Selected Applications of Mathematics of Finance
More informationTime Value of Money. If you deposit $100 in an account that pays 6% annual interest, what amount will you expect to have in
Time Value of Money Future value Present value Rates of return 1 If you deposit $100 in an account that pays 6% annual interest, what amount will you expect to have in the account at the end of the year.
More informationValue of Money Concept$
Value of Money Concept$ Time, not timing is the key to investing 2 Introduction Time Value of Money Application of TVM in financial planning :  determine capital needs for retirement plan  determine
More informationFuture Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)
MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the
More informationReal estate investment & Appraisal Dr. Ahmed Y. Dashti. Sample Exam Questions
Real estate investment & Appraisal Dr. Ahmed Y. Dashti Sample Exam Questions Problem 31 a) Future Value = $12,000 (FVIF, 9%, 7 years) = $12,000 (1.82804) = $21,936 (annual compounding) b) Future Value
More informationDick Schwanke Finite Math 111 Harford Community College Fall 2013
Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of
More informationTVM Appendix B: Using the TI83/84. Time Value of Money Problems on a Texas Instruments TI83 1
Before you start: Time Value of Money Problems on a Texas Instruments TI83 1 To calculate problems on a TI83, you have to go into the applications menu, the blue APPS key on the calculator. Several applications
More informationBEST INTEREST RATE. To convert a nominal rate to an effective rate, press
FINANCIAL COMPUTATIONS George A. Jahn Chairman, Dept. of Mathematics Palm Beach Community College Palm Beach Gardens Location http://www.pbcc.edu/faculty/jahng/ The TI83 Plus and TI84 Plus have a wonderful
More informationChapter 6. Time Value of Money Concepts. Simple Interest 61. Interest amount = P i n. Assume you invest $1,000 at 6% simple interest for 3 years.
61 Chapter 6 Time Value of Money Concepts 62 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in
More informationChapter 4: Time Value of Money
Chapter 4: Time Value of Money BASIC KEYS USED IN FINANCE PROBLEMS The following two key sequences should be done before starting any "new" problem: ~ is used to separate key strokes (3~N: enter 3 then
More information2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?
CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equalsized
More informationTime Value of Money. 15.511 Corporate Accounting Summer 2004. Professor S. P. Kothari Sloan School of Management Massachusetts Institute of Technology
Time Value of Money 15.511 Corporate Accounting Summer 2004 Professor S. P. Kothari Sloan School of Management Massachusetts Institute of Technology July 2, 2004 1 LIABILITIES: Current Liabilities Obligations
More informationSection 4.2 (Future Value of Annuities)
Math 34: Fall 2015 Section 4.2 (Future Value of Annuities) At the end of each year Bethany deposits $2, 000 into an investment account that earns 5% interest compounded annually. How much is in her account
More information1. Annuity a sequence of payments, each made at equally spaced time intervals.
Ordinary Annuities (Young: 6.2) In this Lecture: 1. More Terminology 2. Future Value of an Ordinary Annuity 3. The Ordinary Annuity Formula (Optional) 4. Present Value of an Ordinary Annuity More Terminology
More informationReducing balance loans
Reducing balance loans 5 VCEcoverage Area of study Units 3 & 4 Business related mathematics In this chapter 5A Loan schedules 5B The annuities formula 5C Number of repayments 5D Effects of changing the
More informationSaving Money for Finance Students by Utilizing the TVM Capabilities of Graphing Calculators
Saving Money for Finance Students by Utilizing the TVM Capabilities of Graphing Calculators Glenna Sumner, Ph.D. Assistant Professor of Economics Abstract Michael Lloyd, Ph.D. Professor of Mathematics
More informationDISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS
Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need $500 one
More information14 Financial. Functions. Financial Functions 141. Contents
14 Financial Functions Contents Getting Started: Financing a Car... 142 Getting Started: Computing Compound Interest... 143 Using the TVM Solver... 144 Using the Financial Functions... 145 Calculating
More informationTime Value of Money, Part 4 Future Value aueof An Annuity. Learning Outcomes. Future Value
Time Value of Money, Part 4 Future Value aueof An Annuity Intermediate Accounting I Dr. Chula King 1 Learning Outcomes The concept of future value Future value of an annuity Ordinary annuity versus annuity
More informationSolutions to Time value of money practice problems
Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if $2,500 is deposited today and the account earns 4% interest,
More informationLesson 1. Key Financial Concepts INTRODUCTION
Key Financial Concepts INTRODUCTION Welcome to Financial Management! One of the most important components of every business operation is financial decision making. Business decisions at all levels have
More informationChapter 8. 48 Financial Planning Handbook PDP
Chapter 8 48 Financial Planning Handbook PDP The Financial Planner's Toolkit As a financial planner, you will be doing a lot of mathematical calculations for your clients. Doing these calculations for
More informationANNUITIES. Ordinary Simple Annuities
An annuity is a series of payments or withdrawals. ANNUITIES An Annuity can be either Simple or General Simple Annuities  Compounding periods and payment periods coincide. General Annuities  Compounding
More informationSample problems from Chapter 10.1
Sample problems from Chapter 10.1 This is the annuities sinking funds formula. This formula is used in most cases for annuities. The payments for this formula are made at the end of a period. Your book
More informationTHE TIME VALUE OF MONEY
QUANTITATIVE METHODS THE TIME VALUE OF MONEY Reading 5 http://proschool.imsindia.com/ 1 Learning Objective Statements (LOS) a. Interest Rates as Required rate of return, Discount Rate and Opportunity Cost
More informationChapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.
Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values
More informationP42, page 204: Future value calculation. FVIFi,n = (1+i) n. P43, page 204: Number of periods estimation
P42, page 204: Future value calculation Use the basic formula for future value along with the given interest rate, i, nad the number of periods, n, to calculate the future value interest factor, FVIF,
More informationTexas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e
Texas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e This tutorial was developed for use with Brigham and Houston s Fundamentals of Financial Management, 11/e and Concise,
More informationLesson TVM10040xx Present Value Ordinary Annuity Clip 01
      Cover Page       Lesson TVM10040xx Present Value Ordinary Annuity Clip 01 This workbook contains notes and worksheets to accompany the corresponding video lesson available online at:
More informationCHAPTER 2. Time Value of Money 21
CHAPTER 2 Time Value of Money 21 Time Value of Money (TVM) Time Lines Future value & Present value Rates of return Annuities & Perpetuities Uneven cash Flow Streams Amortization 22 Time lines 0 1 2 3
More informationMath Workshop Algebra (Time Value of Money; TVM)
Math Workshop Algebra (Time Value of Money; TVM) FV 1 = PV+INT 1 = PV+PV*I = PV(1+I) = $100(1+10%) = $110.00 FV 2 = FV 1 (1+I) = PV(1+I)(1+I) = PV(1+I) 2 =$100(1.10) 2 = $121.00 FV 3 = FV 2 (1+I) = PV(1
More informationCalculations for Time Value of Money
KEATMX01_p001008.qxd 11/4/05 4:47 PM Page 1 Calculations for Time Value of Money In this appendix, a brief explanation of the computation of the time value of money is given for readers not familiar with
More informationThe Time Value of Money
The following is a review of the Quantitative Methods: Basic Concepts principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: The Time
More information2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.
2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical definedcontribution
More information1. % of workers age 55 and up have saved less than $50,000 for retirement (not including the value of a primary residence).
Toward Quantitative Literacy: Interesting Problems in Finance 2008 AMATYC Conference, Washington, D.C., Saturday, November 22, 2008 http://www.delta.edu/jaham Fill in the blanks. 1. % of workers age 55
More information1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?
Chapter 2  Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in
More informationA Typical Financial Problem
Cell Phone Apps in a Business Math Class Steven J. Wilson Johnson County Community College Kansas City Math Tech EXPO, 2014 Slides available at: http://www.milefoot.com/about/presentations/cellphoneapps.pdf
More informationEXCEL PREREQUISITES SOLVING TIME VALUE OF MONEY PROBLEMS IN EXCEL
CHAPTER 3 Smart Excel Appendix Use the Smart Excel spreadsheets and animated tutorials at the Smart Finance section of http://www.cengage.co.uk/megginson. Appendix Contents Excel prerequisites Creating
More informationChapter F: Finance. Section F.1F.4
Chapter F: Finance Section F.1F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given
More informationExercise 6 8. Exercise 6 12 PVA = $5,000 x 4.35526* = $21,776
CHAPTER 6: EXERCISES Exercise 6 2 1. FV = $10,000 (2.65330 * ) = $26,533 * Future value of $1: n = 20, i = 5% (from Table 1) 2. FV = $10,000 (1.80611 * ) = $18,061 * Future value of $1: n = 20, i = 3%
More informationThe time value of money: Part II
The time value of money: Part II A reading prepared by Pamela Peterson Drake O U T L I E 1. Introduction 2. Annuities 3. Determining the unknown interest rate 4. Determining the number of compounding periods
More informationAppendix C 1. Time Value of Money. Appendix C 2. Financial Accounting, Fifth Edition
C 1 Time Value of Money C 2 Financial Accounting, Fifth Edition Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount. 3. Solve for future
More informationMAT116 Project 2 Chapters 8 & 9
MAT116 Project 2 Chapters 8 & 9 1 81: The Project In Project 1 we made a loan workout decision based only on data from three banks that had merged into one. We did not consider issues like: What was the
More informationChapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
More informationThe Time Value of Money Part 2B Present Value of Annuities
Management 3 Quantitative Methods The Time Value of Money Part 2B Present Value of Annuities Revised 2/18/15 New Scenario We can trade a single sum of money today, a (PV) in return for a series of periodic
More informationFIN 5413: Chapter 03  Mortgage Loan Foundations: The Time Value of Money Page 1
FIN 5413: Chapter 03  Mortgage Loan Foundations: The Time Value of Money Page 1 Solutions to Problems  Chapter 3 Mortgage Loan Foundations: The Time Value of Money Problem 31 a) Future Value = FV(n,i,PV,PMT)
More informationCasio 9860 SelfGuided Instructions TVM Mode
Using TVM: Casio 9860 SelfGuided Instructions TVM Mode Instructions Screenshots TVM stands for 'Time, Value, Money'. TVM is the Financial Mode on the calculator. However, Financial Mathematics questions
More informationThe Time Value of Money
C H A P T E R6 The Time Value of Money When plumbers or carpenters tackle a job, they begin by opening their toolboxes, which hold a variety of specialized tools to help them perform their jobs. The financial
More informationOrdinary Annuities Chapter 10
Ordinary Annuities Chapter 10 Learning Objectives After completing this chapter, you will be able to: > Define and distinguish between ordinary simple annuities and ordinary general annuities. > Calculate
More informationCompounding Quarterly, Monthly, and Daily
126 Compounding Quarterly, Monthly, and Daily So far, you have been compounding interest annually, which means the interest is added once per year. However, you will want to add the interest quarterly,
More informationPV Tutorial Using Excel
EYK 153 PV Tutorial Using Excel TABLE OF CONTENTS Introduction Exercise 1: Exercise 2: Exercise 3: Exercise 4: Exercise 5: Exercise 6: Exercise 7: Exercise 8: Exercise 9: Exercise 10: Exercise 11: Exercise
More informationChapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
More informationPV Tutorial Using Calculator (Sharp EL738)
EYK 152 PV Tutorial Using Calculator (Sharp EL738) TABLE OF CONTENTS Calculator Configuration and Abbreviations Exercise 1: Exercise 2: Exercise 3: Exercise 4: Exercise 5: Exercise 6: Exercise 7: Exercise
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 42 Topics Covered Future Values and Compound Interest Present Values Multiple Cash Flows Perpetuities and Annuities Inflation and Time Value Effective Annual Interest
More informationManual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,
More informationThe Time Value of Money C H A P T E R N I N E
The Time Value of Money C H A P T E R N I N E Figure 91 Relationship of present value and future value PPT 91 $1,000 present value $ 10% interest $1,464.10 future value 0 1 2 3 4 Number of periods Figure
More informationThe explanations below will make it easier for you to use the calculator. The ON/OFF key is used to turn the calculator on and off.
USER GUIDE Texas Instrument BA II Plus Calculator April 2007 GENERAL INFORMATION The Texas Instrument BA II Plus financial calculator was designed to support the many possible applications in the areas
More informationAccounting Building Business Skills. Interest. Interest. Paul D. Kimmel. Appendix B: Time Value of Money
Accounting Building Business Skills Paul D. Kimmel Appendix B: Time Value of Money PowerPoint presentation by Kate WynnWilliams University of Otago, Dunedin 2003 John Wiley & Sons Australia, Ltd 1 Interest
More informationFuture Value. Basic TVM Concepts. Chapter 2 Time Value of Money. $500 cash flow. On a time line for 3 years: $100. FV 15%, 10 yr.
Chapter Time Value of Money Future Value Present Value Annuities Effective Annual Rate Uneven Cash Flows Growing Annuities Loan Amortization Summary and Conclusions Basic TVM Concepts Interest rate: abbreviated
More informationWeek 4. Chonga Zangpo, DFB
Week 4 Time Value of Money Chonga Zangpo, DFB What is time value of money? It is based on the belief that people have a positive time preference for consumption. It reflects the notion that people prefer
More informationHANDBOOK: HOW TO USE YOUR TI BA II PLUS CALCULATOR
HANDBOOK: HOW TO USE YOUR TI BA II PLUS CALCULATOR This document is designed to provide you with (1) the basics of how your TI BA II Plus financial calculator operates, and (2) the typical keystrokes that
More informationWhat You ll Learn. And Why. Key Words. interest simple interest principal amount compound interest compounding period present value future value
What You ll Learn To solve problems involving compound interest and to research and compare various savings and investment options And Why Knowing how to save and invest the money you earn will help you
More informationWeek in Review #10. Section 5.2 and 5.3: Annuities, Sinking Funds, and Amortization
WIR Math 141copyright Joe Kahlig, 10B Page 1 Week in Review #10 Section 5.2 and 5.3: Annuities, Sinking Funds, and Amortization an annuity is a sequence of payments made at a regular time intervals. For
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationBA35 Solar Quick Reference Guide
BA35 Solar Quick Reference Guide Table of Contents General Information... 2 The Display... 4 Arithmetic Operations... 6 Correcting Errors... 7 Display Formats... 8 Memory Operations... 9 Math Operations...
More informationCalculating the Value of Social Security Benefits for Different Retirement Ages. Floyd Vest
Calculating the Value of Social Security Benefits for Different Retirement Ages Floyd Vest Many people calculate the value of Social Security Benefits for different ages of retirement. There are dozens
More informationHow To Calculate The Value Of A Project
Chapter 02 How to Calculate Present Values Multiple Choice Questions 1. The present value of $100 expected in two years from today at a discount rate of 6% is: A. $116.64 B. $108.00 C. $100.00 D. $89.00
More informationTime Value of Money Problems
Time Value of Money Problems 1. What will a deposit of $4,500 at 10% compounded semiannually be worth if left in the bank for six years? a. $8,020.22 b. $7,959.55 c. $8,081.55 d. $8,181.55 2. What will
More informationNote: In the authors opinion the Ativa AT 10 is not recommended as a college financial calculator at any level of study
Appendix 1: Ativa AT 10 Instructions Note: DNS = Does Not Calculate Note: Loan and Savings Calculations Automatically round to two decimals. Clear Store Data in Memory Recall Stored Data in Memory [CE]
More informationTimeValueofMoney and Amortization Worksheets
2 TimeValueofMoney and Amortization Worksheets The TimeValueofMoney and Amortization worksheets are useful in applications where the cash flows are equal, evenly spaced, and either all inflows or
More informationUnit VI. Complete the table based on the following information:
Aqr Review Unit VI Name 1. You have just finished medical school and you have been offered two jobs at a local hospital. The first one is a physical therapist for the hospital with a salary of $45,500.
More informationChapter 5 & 6 Financial Calculator and Examples
Chapter 5 & 6 Financial Calculator and Examples Konan Chan Financial Management, Spring 2016 Five Factors in TVM Present value: PV Future value: FV Discount rate: r Payment: PMT Number of periods: N Get
More information10.3 Future Value and Present Value of an Ordinary General Annuity
360 Chapter 10 Annuities 10.3 Future Value and Present Value of an Ordinary General Annuity 29. In an ordinary general annuity, payments are made at the end of each payment period and the compounding period
More informationProblem Set: Annuities and Perpetuities (Solutions Below)
Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save $300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years
More informationHow to calculate present values
How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance
More informationFIN 3000. Chapter 6. Annuities. Liuren Wu
FIN 3000 Chapter 6 Annuities Liuren Wu Overview 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Learning objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate
More informationCourse FM / Exam 2. Calculator advice
Course FM / Exam 2 Introduction It wasn t very long ago that the square root key was the most advanced function of the only calculator approved by the SOA/CAS for use during an actuarial exam. Now students
More information