The CGM around Dwarf Galaxies

Similar documents
Class #14/15 14/16 October 2008

Direct Detections of Young Stars in Nearby Ellipticals

The High-Redshift Universe Bologna, June 5-6

Einstein Rings: Nature s Gravitational Lenses

Observing the Universe

Highlights from the VLA/ANGST Survey

Ageing, quenching and rejuvenation in SDSS galaxies

FIRST LIGHT IN THE UNIVERSE

Modeling Galaxy Formation

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun

Magellanic Cloud planetary nebulae as probes of stellar evolution and populations. Letizia Stanghellini

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

NITROGEN-TO-OXYGEN RATIO As a solid tool to ascertain the chemical evolution of star-forming galaxies

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

Chapter 15.3 Galaxy Evolution

Lecture 6: distribution of stars in. elliptical galaxies

Be Stars. By Carla Morton

8 Radiative Cooling and Heating

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

Qué pasa si n = 1 y n = 4?

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

Using Photometric Data to Derive an HR Diagram for a Star Cluster

White Dwarf Properties and the Degenerate Electron Gas

Dwarf Elliptical andFP capture the Planets

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

The Evolution of GMCs in Global Galaxy Simulations

Elliptical Galaxies. Houjun Mo. April 19, Basic properties of elliptical galaxies. Formation of elliptical galaxies

Specific Intensity. I ν =

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Science Standard 4 Earth in Space Grade Level Expectations

Origins of the Cosmos Summer Pre-course assessment

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

Understanding the size growth of massive (spheroidal) galaxies through stellar populations

Indiana University Science with the WIYN One Degree Imager

8.1 Radio Emission from Solar System objects

Dinamica del Gas nelle Galassie II. Star formation

How Do Galeries Form?

ASTRONOMY AND ASTROPHYSICS. Deep search for CO emission in the Low Surface Brightness galaxy Malin 1. J. Braine 1, F. Herpin 1,2, and S.J.E.

Visualization and Astronomy

Elliptical Galaxies. Old view: ellipticals are boring, simple systems

Resultados Concurso Apex 2014-A

The orbit of Halley s Comet

Heating & Cooling in Molecular Clouds

2 Absorbing Solar Energy

A Preliminary Summary of The VLA Sky Survey


The formation and evolution of massive galaxies: A major theoretical challenge

Lecture 14. Introduction to the Sun

The Milky Way Galaxy is Heading for a Major Cosmic Collision

6 A High Merger Fraction in the Rich Cluster MS at z =0:83: Direct Evidence for Hierarchical Formation of Massive Galaxies y

Miras, Mass-Loss, and the Ultimate Fate of the Earth L. A. Willson & G. H. Bowen, Iowa State University. Fire and Ice:

The radio source - host galaxy connection

What is the Sloan Digital Sky Survey?

Arjen van der Wel -- MPIA, Heidelberg

arxiv:astro-ph/ v1 31 Jan 2001

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

Rest optical spectroscopy of FeLoBALs and LoBALs at intermediate redshift

Present-day galaxies: disks vs. spheroids. Parameters of a starburst galaxy

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

Evolution of Close Binary Systems

Hubble Diagram S George Djorgovski. Encyclopedia of Astronomy & Astrophysics P. Murdin

Brief ideas for a long discussion

How the properties of galaxies are affected by the environment?

The Gaia Archive. Center Forum, Heidelberg, June 10-11, Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data

The Orbital Period Distribution of Wide Binary Millisecond Pulsars

Structure formation in modified gravity models

J-PAS: low-resolution (R 50) spectroscopy over 8000 deg 2

AGN-driven winds and ionized clouds moving along the jet in PKS

Physical Self-Calibration of X-ray and SZ Surveys

S0 galaxy NGC Marcella Carollo, HST.

Modelling clumpy! galactic disks

Galaxy Survey data analysis using SDSS-III as an example

Stellar Evolution: a Journey through the H-R Diagram

Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds

Study Guide: Solar System

AS COMPETITION PAPER 2007 SOLUTIONS

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Name Class Date. true

HR Diagram Student Guide

Data reduction strategy for the Effelsberg-Bonn HI Survey. Benjamin Winkel

Populations and Components of the Milky Way

Resultados del Concurso 2015B para Observaciones en Gemini-Sur

Class 2 Solar System Characteristics Formation Exosolar Planets

Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies

Physics 1010: The Physics of Everyday Life. TODAY Black Body Radiation, Greenhouse Effect

Atoms Absorb & Emit Light

X-ray Emission from Elliptical Galaxies

1 A Solar System Is Born

Big HI Data and Artificial Intelligence Team Up to Decode the Multiphase ISM in Galaxies

Lecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G

Planck Early Results: New light on Anomalous Microwave Emission from Spinning Dust Grains

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT THE HERTZSPRUNG RUSSELL DIAGRAM

lecture 10. The Milky Way s Interstellar Medium Birgitta Nordström, Copenhagen, & Gerhard Hensler, Vienna

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.

Newton s Law of Gravity

SSO Transmission Grating Spectrograph (TGS) User s Guide

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

PROBING THE INTERGALACTIC MEDIUM GALAXY CONNECTION TOWARD PKS III. THE GALAXY SURVEY AND CORRELATIONS WITH O vi ABSORBERS

Transcription:

The CGM around Dwarf Galaxies Rongmon Bordoloi STScI + the COS-Halos Team

What is the CGM? Shen et al. 212 jectedcolumndensityinacubeof5(proper)kpc Diffuse gas, including metals and dust, o2en on extending the side to from a few the hundred Eris2 simulation kpc, largely at z =2 II, SiIV, andovi. bound to Intervalsofcolumndensityintherange the dark ma<er halo of the galaxy. 11 22 cm 2 for H I and 11 1 n the panels with different colors.

The Problems in Galaxy Evolution Exchange of gas between galaxy and its surroundings. The Spatial extent of this gaseous halo. Chemical enrichment of the CGM. Hidden mass of the CGM.

The Problems in Galaxy Evolution Exchange of gas between galaxy and its surroundings. The Spatial extent of this gaseous halo. Chemical enrichment of the CGM. Hidden mass of the CGM.

The Problems in Galaxy Evolution Exchange of gas between galaxy and its surroundings. Inflows? The Spatial extent of this gaseous halo. Chemical enrichment of the CGM. Hidden mass of the CGM.

The Problems in Galaxy Evolution Exchange of gas between galaxy and its surroundings. Inflows? The Spatial extent of this gaseous halo. Outflows? Chemical enrichment of the CGM. Hidden mass of the CGM.

How can we study the CGM? (Image:-M. Murphy, Swinburne University of Technology)

How can we study the CGM? (Image:-M. Murphy, Swinburne University of Technology)

How can we study the CGM? STATISTICALLY

How can we study the CGM? STATISTICALLY 1. Blind survey-------- mix bag of galaxies, misidentifications, expensive to study the innermost CGM. 2. Galaxy selected----------- better control of selected galaxies, we know where to look, can probe the CGM close to the galaxy.

COS-Dwarfs COS-Halos z =.2 -. logm* = 8 - optimal for CIV z =.15 -.35 logm* = - 11.5 optimal for OVI ALL GALAXIES SELECTED PRIOR TO ABSORPTION

COS-Dwarfs COS-Halos z =.2 -. logm* = 8 - optimal for CIV z =.15 -.35 logm* = - 11.5 optimal for OVI ALL GALAXIES SELECTED PRIOR TO ABSORPTION

The COS-Dwarfs Survey 2 9 9.5 log ssfr [yr 1 ].5 11 11.5 5 kpc 12 12.5 15 kpc kpc 8.5 9 9.5.5 11 11.5 log [M /M ] 2 2

What do we use Morphology of the host galaxies from SDSS J949+392 234_5

What do we use Morphology of the host galaxies from SDSS J949+392 234_5 SDSS Spectra of the foreground galaxies 5 4 Relative Flux 3 2 1 4 45 5 55 6 65 7 75 8 85 9 λ [Å] log M * 9.53 ρ = 38 kpc SFR =1.11 M /year Z gal =.18145 z QSO =.365

What do we use HST-COS spectroscopy of quasars Morphology of the host galaxies from SDSS 2 Relative Flux 1.5 1 J949+392.5 234_5 1 12 13 14 15 16 17 18 λ [Å] SDSS Spectra of the foreground galaxies 5 4 Relative Flux 3 2 1 4 45 5 55 6 65 7 75 8 85 9 λ [Å] log M * 9.53 ρ = 38 kpc SFR =1.11 M /year Z gal =.18145 z QSO =.365

What do we use HST-COS spectroscopy of quasars Morphology of the host galaxies from SDSS 2 Relative Flux 1.5 1.5 2. 1.5 1. J949+392 z QSO =.365 234_5 z sys =.18145 SFR = 1.11 halpha u r = 1.67 λ [Å] R = 38.42 logm* = 9.53 HI 1215 13.26±.11 62±22 15.68±.4 45±6 Good Bad Blend Non detection Saturated.5 W r = 1+/ 21. 2. 1.5 CII 36 f =.123 1..5. 2. CII 1334 1.5 1. 13.33±.8 53±14 f =.416 f =.128.5 W r = 26+/ 12. 2. 1.5 CIII 977 f =.762 1..5. 2. 1.5 1..5. 2. 1.5 1..5. CIV 1548 W r = 65+/ 28 CIV 155 CIV 1548 z =.18 W r = 459+/ 3 element_stack: plots/j949+392_234_5_.18145395_carbon_bin3.ps Tue Apr 23 13:22:16 213 1 12 13 14 15 16 17 18 13.96±.13 27±7 13.96±.13 27±7 14.38±.6 38±6 14.38±.6 38±6 f =.191 CIV 155 z =.18 f =.95 Relative Flux 5 4 3 2 1 J949+392 234_5 SDSS Spectra of the foreground galaxies 4 45 5 55 6 65 7 75 8 85 9 λ [Å] log M * 9.53 ρ = 38 kpc SFR =1.11 M /year Z gal =.18145 z QSO =.365

How does the CGM look spatially?

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rhokpc.eps Thu Jan 2 12:38:51 214 Temperature ρ /R vir HI =. 1.5 HI 1215 [må] 5 15 2 1.7 1.9 2.2 2.4 2.6 2.9 3.1 15 HI 5 5 15

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rhokpc.eps Thu Jan 2 12:38:51 214 plot_rb_test: junk_tt.eps Thu Jan 2 12:59:42 214 Temperature ρ /R vir HI =. 1.5 CII ρ /R vir =. 1.5 HI 1215 [må] CII 1334 [må] 5 5 15 2 15 2 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 2.9 2.4 3.1 2.6 2.9 3.1 15 15 HI CII 5 5 5 5 15 15

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rhokpc.eps Thu Jan 2 12:38:51 214 plot_rb_test: junk_tt.eps Thu Jan 2 12:59:42 214 Temperature plot_rb_test: dwarfs_14_3 vs_rhokpc.eps Thu Jan 2 13:9:27 214 ρ /R vir HI =. 1.5 CII ρ /R vir =. 1.5 SiIII ρ /R vir =. 1.5 HI 1215 [må] CII 1334 [må] SiIII 126 [må] 5 5 15 5 2 15 215 2 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.2 2.9 2.4 3.1 2.6 2.9 3.1 15 15 15 HI SiIII 5 5 5 5 5 15 5 15 15

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rhokpc.eps Thu Jan 2 12:38:51 214 plot_rb_test: junk_tt.eps Thu Jan 2 12:59:42 214 Temperature plot_rb_test: dwarfs_14_3 vs_rhokpc.eps plot_rb_test: dwarfs_14_4 vs_rhokpc.eps Thu Jan 2 13:9:27 214 Thu Jan 2 13:15:28 214 ρ /R vir HI =. 1.5 CII ρ /R vir =. 1.5 SiIII ρ /R vir =. 1.5 SiIV /R vir =. 1.5 HI 1215 [må] CII 1334 [må] SiIII 126 [må] SiIV 1393 [må] 5 5 15 5 2 15 5 215 2 15 2 [kpc] 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.21.7 2.9 2.41.9 3.1 2.62.2 2.92.4 3.12.6 2.9 3.1 15 15 15 HI 15 SiIII SiIV 5 5 5 5 5 5 15 5 15 5 15 15

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rhokpc.eps Thu Jan 2 12:38:51 214 plot_rb_test: junk_tt.eps Thu Jan 2 12:59:42 214 Temperature plot_rb_test: dwarfs_14_3 vs_rhokpc.eps plot_rb_test: dwarfs_14_4 vs_rhokpc.eps Thu Jan 2 13:9:27 214 Thu Jan 2 13:15:28 214 plot_rb_test: dwarfs_6_4 vs_rhokpc.eps Thu Jan 2 13:16:26 214 ρ /R vir HI =. 1.5 CII ρ /R vir =. 1.5 SiIII ρ /R vir =. 1.5 SiIV /R vir =. 1.5 CIV ρ /R vir =. 1.5 HI 1215 [må] CII 1334 [må] SiIII 126 [må] SiIV 1393 [må] CIV 1548 [må] 5 5 15 5 2 15 5 215 2 5 15 2 15 2 [kpc] 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.21.7 2.9 2.41.9 3.1 2.62.2 1.7 2.92.4 1.9 3.12.6 2.2 2.9 2.4 3.1 2.6 2.9 3.1 15 15 15 HI 15 15 SiIII SiIV CIV 5 5 5 5 5 5 5 15 5 15 5 15 5 15 15

Lets have a closer look... Global view... how does it behave with R vir?

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rvir.eps Thu Jan 2 13:27:38 214 Temperature ρ /R vir HI =. 1.5 HI 1215 [må]..2.4.6.8 1. 1.2 1.4 1.7 1.9 2.2 2.4 2.6 2.9 3.1 1.2 1..8 HI.6.4.2...2.4.6.8 1. 1.2

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rvir.eps plot_rb_test: dwarfs_6_2 vs_rvir.eps Thu Jan 2 13:27:38 214 Thu Jan 2 13:3:24 214 Temperature ρ /R vir HI =. 1.5 ρ /R vir =. 1.5 CII HI 1215 [må] CII 1334 [må]..2.4.6..8.2 1..4 1.2.6 1.4.8 1. 1.2 1.4 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 2.9 2.4 3.1 2.6 2.9 3.1 1.2 1. 1.2 1. HI CII.8.8.6.6.4.4.2.2....2.4..6.2.8.4 1..6 1.2.8 1. 1.2

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rvir.eps plot_rb_test: dwarfs_6_2 vs_rvir.eps Thu Jan 2 13:27:38 214 Thu Jan 2 13:3:24 214 Temperature plot_rb_test: dwarfs_14_3 vs_rvir.eps Thu Jan 2 13:32:41 214 ρ /R vir HI =. 1.5 ρ /R vir =. 1.5 CII ρ /R vir =. 1.5 SiIII HI 1215 [må] CII 1334 [må] SiIII 126 [må]..2.4.6..8.2 1..4. 1.2.6.2 1.4.8.4 1..6 1.2.8 1.4 1. 1.2 1.4 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.2 2.9 2.4 3.1 2.6 2.9 3.1 1.2 1. 1.2 1. 1.2 1. HI CII SiIII.8.8.8.6.6.6.4.4.4.2.2.2.....2.4..6.2.8.4. 1..6.2 1.2.8.4 1..6 1.2.8 1. 1.2

Density Ionization Potential Temperature plot_rb_test: dwarfs_1_1 vs_rvir.eps Thu Jan 2 13:27:38 214 plot_rb_test: dwarfs_6_2 vs_rvir.eps Thu Jan 2 13:3:24 214 plot_rb_test: dwarfs_14_3 vs_rvir.eps Thu Jan 2 13:32:41 214 plot_rb_test: dwarfs_14_4 vs_rvir.eps Thu Jan 2 13:35:25 214 ρ /R vir HI =. 1.5 ρ /R vir =. 1.5 CII ρ /R vir =. 1.5 SiIII SiIV ρ /R vir =. 1.5 HI 1215 [må] CII 1334 [må] SiIII 126 [må] SiIV 1393 [må]..2.4.6..8.2 1..4. 1.2.6.2 1.4.8.4 1...6 1.2.2.8 1.4.41..61.2.81.4 1. 1.2 1.4 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.2 2.9 2.4 3.1 2.6 2.9 3.1 1.2 1. 1.2 1. 1.2 1. HI 1.2 1. CII SiIII SiIV.8.8.8.8.6.6.6.6.4.4.4.4.2.2.2.2......2.4..6.2.8.4. 1..6.2 1.2.8.4. 1..6.2 1.2.8.4 1..6 1.2.8 1. 1.2

Density Ionization Potential plot_rb_test: dwarfs_1_1 vs_rvir.eps plot_rb_test: dwarfs_6_2 vs_rvir.eps Thu Jan 2 13:27:38 214 Thu Jan 2 13:3:24 214 Temperature plot_rb_test: dwarfs_14_3 vs_rvir.eps plot_rb_test: dwarfs_14_4 vs_rvir.eps Thu Jan 2 13:32:41 214 Thu Jan 2 13:35:25 214 plot_rb_test: dwarfs_6_4 vs_rvir.eps Thu Jan 2 13:43: 214 ρ /R vir HI =. 1.5 ρ /R vir =. 1.5 CII ρ /R vir =. 1.5 SiIII SiIV ρ /R vir =. 1.5 CIV ρ /R vir =. 1.5 HI 1215 [må] CII 1334 [må] SiIII 126 [må] SiIV 1393 [må] CIV 1548 [må]..2.4.6..8.2 1..4. 1.2.6.2 1.4.8.4 1...6 1.2.2.8 1.4.41..6. 1.2.8.2 1.4 1..4 1.2.6 1.4.8 1. 1.2 1.4 1.7 1.9 2.2 1.7 2.4 1.9 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.2 1.7 2.9 2.4 1.9 3.1 2.6 2.2 2.9 2.4 3.1 2.6 2.9 3.1 1.2 1. 1.2 1. 1.2 1. HI 1.2 1. CII 1.2 1. SiIII SiIV CIV.8.8.8.8.8.6.6.6.6.6.4.4.4.4.4.2.2.2.2.2.......2.4..6.2.8.4. 1..6.2 1.2.8.4. 1..6.2 1.2.8.4.1..6.21.2.8.41..61.2.8 1. 1.2

How do the CGM of dwarf galaxies stack up? plot_rb_test: dwarfs_1_1 vs_rvir.eps Thu Jan 2 13:27:38 214 ρ /R vir =. 1.5 HI 1215 [må] HI is ubiquitous..2.4.6.8 1. 1.2 1.4 Metals are patchy & observed out to ~.5 R vir plot_rb_test: dwarfs_14_3 vs_rvir.eps Thu Jan 2 13:32:41 214 plot_rb_test: dwarfs_6_4 vs_rvir.eps Thu Jan 2 13:43: 214 ρ /R vir =. 1.5 ρ /R vir =. 1.5 SiIII 126 [må] CIV 1548 [må]..2.4.6.8 1. 1.2 1.4..2.4.6.8 1. 1.2 1.4

The High Ions

B-band luminosities of the galaxies range from L \.3 to 2.5 L. A complete list of the measured properties B of the galaxies Bp and C IV absorbers is presented in Paper II. CIV absorption!!! 3.3. T he Extent of C IVÈAbsorbing Gas Around Galaxies To determine the extent of C IVÈabsorbing gas around galaxies, we examined the relationship between rest-frame C IV j1548 equivalent width W and galaxy impact parameter o. Figure 2 shows W versus o for the 14 galaxy and absorber pairs and the 36 galaxies that do not produce corresponding C IV absorption to within sensitive upper limits. Circles represent early-type elliptical or S galaxies, triangles represent early-type spiral galaxies, and squares For L* galaxies... Chen et al 21 FIG. 2.ÈLogarithm of C IV rest-frame equivalent width W vs. logarithm of galaxy impact parameter o. Circles represent early-type elliptical or S galaxies, triangles represent early-type spiral galaxies, and squares represent late-type spiral galaxies. Closed points indicate detections. Open points with arrows indicate 3 p upper limits of nondetections. gaseous envelopes of radius R B h~1 kpc, with abrupt boundaries between the C IV absorbing and nonabsorbing regions. 3.4. T he Relationship between Properties of C IV Absorption Systems and Properties of Galaxies To determine how properties of the C IV absorption systems depend on properties of the galaxies, we examined the relationship between rest-frame C IV j1548 equivalent width W and galaxy impact parameter o scaling for various properties (luminosity, surface brightness, and redshift) of the galaxies. Motivated by the apparent abrupt boundary between the C IV absorbing and nonabsorbing regions and the apparent lack of a W versus o anticorrelation described in 3.3, we modeled the distribution of C IV clouds in the extended gaseous envelopes of galaxies by uniform spheres of radius that depends on some property of the galaxy. Then the number n of C IVÈabsorbing clouds intercepted along the line of sight is proportional to the path length through the sphere: CIV 1548 [må] n \ 2l [R2(x) [ o2]1@2, (1) where l is the number density per unit length of the clouds, R is the radius of the sphere, and x is some property of the galaxy. Because C IV equivalent width is correlated with the number of individual absorbing components intercepted along the line of sight (Wolfe 1986; York et al. 1986; Petitjean & Bergeron 1994), we take W \ nk, where k is the equivalent width of a typical absorbing component. Combining equations (1) and (2), the C IV equivalent width W expected at impact parameter o is given by CIV 1548 [må] 5 15 2 o [ R(x), o Z R(x), W \ 4 5 6 2kl [R2(x) [ o2]1@2 ρ /R vir =. 1.5 ρ /R vir =. 1.5 as a functionof some property of the galaxy x. First, we established a Ðducial Ðt of the model described by equation (2) to the observations ρ for / Rthe vir case in which the radius of the sphere does not depend on any property of the galaxy, i.e., for R \ R, where R is the absorbing radius of (2)..2.4.6.8 1. 1.2 1.4 plot_rb_test: dwarfs_6_4 vs_rhokpc.eps Thu Jan 2 13:16:26 214 plot_rb_test: dwarfs_6_4 vs_rvir.eps Thu Jan 2 13:43: 214

How does CIV absorption depend on SFR? plot_rb_test: dwarfs_6_4 vs_sfr.eps Thu Feb 27 12:18:28 214 R /R vir =..5 CIV 1548 [må] 2 1 1 log SFR [M sun yr 1 ]

What about Mass? ρ /R vir =..5 CIV 1548 [må] 8 9 11 12 log M * [M sun ]

Dichotomy between ssfr and presence of CIV ρ /R vir =..5 CIV 1548 [må] 13 12 11 9 8 log ssfr [yr 1 ]

plot_rb_test: junk_tt.eps Thu Jan 2 12:51:19 214 COS-Dwarfs ρ /R vir =..5 COS-Halos CIV 1548 [må] 13 12 11 9 8 log ssfr [yr 1 ] Bordoloi+14 Tumlinson+11

Kinematics log M * 8. 8.5 9. 9.5..5 4 HI log M * 8. 8.5 9. 9.5..5 4 CIV 2 2 v [km s 1 ] v [km s 1 ] 2 Bound 2 Bound 4 Unbound 11. 11.5 12. 12.5 log [M Halo / M sun ] 4 Unbound 11. 11.5 12. 12.5 log [M Halo / M sun ] Bordoloi+14

How Much Carbon is Out There?

(Almost) As Much Carbon in the CGM as in the ISM! MCIV = πr 2 NCIV 12mH fc M... then apply ionization correction fciv... MCarbon 1.2 x 6 (.3/fCIV) M This is a conservative CIV ionization correction: Masses could easily be x higher! Bordoloi et al. f CIV.1.. f CIV.1 ρ/ ρ ρ/ ρ = 5 ρ/ ρ ρ/ ρ = 5 ρ/ ρ = ρ/ ρ = ρ/ ρ = 5 ρ/ ρ = 5.. 8 8 7 M carbon [M sun ] 7 M carbon [M sun ] 6 6 1. 1. 4. 4.5 5. 5.5 6. 4. 4.5 5. log T 5.5 6. log T Bordoloi+14 FIG.7. MassestimateforCarbonintheCGMofsub-L galaxies compared to their galactic reservoirs. Left Panel: Thecurvesshowthefractionofga arbon in the C IV ionization state ( f CIV )asafunctionoftemperature,forfouroverdensitiesrelative to the cosmic mean (ρ/ ρ). All values of ρ/ ρ e black curve on which collisional ionization dominates, whereas for lower values, photoionization by the extragalactic background can increase f CIV a

Total Inventory of Galactic Metals Adapted from Peeples et al. (214) arxiv:13.2253

Total Inventory of Galactic Metals Adapted from Peeples et al. (214) arxiv:13.2253 Typical star forming galaxies have ejected at least as many metals as they have retained.

Total Inventory of Galactic Metals C II+IV CGM Adapted from Peeples et al. (214) arxiv:13.2253 Typical star forming galaxies have ejected at least as many metals as they have retained.

.1 ρ/ ρ ρ/ ρ = 5 ρ/ ρ = ρ/ ρ = 5 8. W CIV 1548 [må] f CIV. 7 M carbon [M sun ] 6 1. 1.2 1.4 1.6 1.8 2. 2.2 log [R / kpc] 1. 4. 4.5 5. 5.5 6. log T Bordoloi+14

.1 ρ/ ρ ρ/ ρ = 5 ρ/ ρ = ρ/ ρ = 5 8 W CIV 1548 [må] f CIV.. 7 M carbon [M sun ] 6 1. 1.2 1.4 1.6 1.8 2. 2.2 log [R / kpc] 1. 4. 4.5 5. 5.5 6. log T Bordoloi+14 2-25 % increase in mass if we integrate from.5 Rvir to 1 Rvir. MCGM ~ MISM in carbon also suggests enrichment over ~ Gyr or more:

Testing Feedback Models Wind Model Wind Velocity Mass-Loading Factor Fiducial v2 energy driven scaling for dwarfs (ezw) Vw = σ gal / 15 km/s σ gal > 75 km/s, η σ gal -1 σ gal < 75 km/s, η σ gal -2 Constant Wind (CW) Vw =68 km/s η=2

Testing Feedback Models 12 Bordoloi et al. 8 9 EZW 1..8 Stellar Mass selected (star forming galaxies) W [må] W 3 [må] EZW log ssfr [yr 1 ] 11 C f [CIV].6.4 log N [CIV] [cm 2 ].2 12 8. 8.5 9. 9.5..5 log M * /M sun. 2 4 6 8 12 14 R [kpc] 8 9 CW 1..8 Stellar Mass selected (star forming galaxies) Bordoloi+14 W [må] W 3 [må] CW [yr 1 ] V].6 ] [cm 2 ]

log N [CI Cf [C log ssfr Testing Feedback Models.4 11.2 12. 8. 8.5 9. 9.5. log M*/Msun.5 8.8.6 Cff [CIV] 9 4 6 8 Bordoloi et al. R [kpc] 12 14 Stellar Mass selected (star forming galaxies) W [må] W 3 [må] CW EZW 1. CW EZW 1 log ssfr [yr 1 ] 2 2 log N [CIV] [cm 2 ] 12.4 11.2 12. 8. 8.5 9. 9.5. log M*/Msun.5 2 4 6 8 R [kpc] 12 14.6 ] [cm 2] V] [yr 1] F IG. 9. Comparison of two different feedback prescriptions in hydro simulations with observations. The d 8 Mass selected (star forming 1. for 117 galaxies with different feedback prescriptions (diamonds) andstellar 43 COS-Dwarfs galaxiesgalaxies) (blue and red sq Bordoloi+14 CW [må] fraction estimates for star-forming galaxies are shown in the middle panels. The coloredw bands represent c W 3 [må] prescriptions. The error bars represent the 68% confidence intervals. Right Panels: The C IV column dens 9.8 compared to the simulations. The hashed regions represent the 1σ spread of column density in thecwmodel sight the mean column density radial profiles in the simulations.

Conclusions HI is ubiquitous------ Uniformly distributed! 15 5 1.7 1.9 2.2 2.4 2.6 2.9 3.1 5 15 plot_rb_test: dwarfs_6_4 vs_rvir.eps Thu Jan 2 13:43: 214 ρ /R vir =. 1.5 Metals are bound and patchy, seen up to 1/2 Rvir CIV 1548 [må]..2.4.6.8 1. 1.2 1.4 plot_rb_test: junk_tt.eps Thu Jan 2 12:51:19 214 ρ /R vir =..5 Dichotomy between ssfr and presence of CIV. CIV 1548 [må] There is at least as much Carbon in the CGM as in the ISM. f CIV 13 12 11 9 8 log ssfr [yr 1 ].1.1.1 ρ/ ρ ρ/ ρ =5 ρ/ ρ = ρ/ ρ =5 8 log Mcarbon[M ] 7 6 1 4 4.5 5 log T 5.5 6

Thank You!