Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation
|
|
|
- Melissa Norris
- 9 years ago
- Views:
Transcription
1 Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why is this relationship useful?? There is a large scatter a second parameter? Fundamental Plane: Surface brightness vs. luminosity The missing parameter is effective radius (discovered in 1987). There are four observables (but only 3 independent parameters): Luminosity Effective radius Mean surface brightness Velocity dispersion You can fit a FUNDAMENTAL PLANE through the observables r e! " 1.24 <I> Any model of galaxy formation has to reproduce this relation Can also define the D n -" relation for use as a distance indicator
2 Velocity dispersion vs. effective radius Fundamental Plane Stellar Populations: Stellar Populations of Ellipticals In 1944, Walter Baade used the 100 inch Mt. Wilson telescope to resolve the stars in several nearby galaxies: M31, its companions M32 and NGC 205, as well as the elliptical galaxies NGC 147 and NGC 145 Realized the stellar populations of spiral and elliptical galaxies were distinct: Population I: objects closely associated with spiral arms luminous, young hot stars (O and B), Cepheid variables, dust lanes, HII regions, open clusters, metal-rich Population II: objects found in spheroidal components of galaxies (bulge of spiral galaxies, ellipticals) older, redder stars (red giants), metal-poor Ellipticals are full of old, red stars Ellipticals follow a color-magnitude relation such that more luminous galaxies are redder Is this due to age or metallicity? Age/metallicity degeneracy!!
3 Typical Elliptical galaxy spectrum Evolution of a single burst population B-V for different metallicity populations Stellar Populations of Ellipticals There is also a strong correlation between Mg 2 and velocity dispersion such that galaxies with higher velocity dispersions have stronger Mg 2 absorption Thus, more luminous/massive galaxies are more metal rich -- deeper potentials hold ISM longer allowing metals to build up There are also color & abundance gradients in elliptical galaxies
4 Color luminosity relation Mg2 vs velocity dispersion Abundance gradients in ellipticals Many ellipticals have extended x-ray halos of gas Optical M49 X-ray
5 Hot Gas in Ellipticals Hot Gas in Ellipticals Many ellipticals have extended x-ray halos of gas. T~10 6 K Where does it come from? Why is it hot? Many ellipticals have extended x-ray halos of gas Where does it come from? Mass loss of AGB stars! Why is it hot? Motions of stars heat the gas: 1/2m" 2 ~ 3/2 kt T = 10 6 K!!! M (gas) ~ M! Globular clusters in Ellipticals Globular cluster color distributions Ellipticals are surrounded by numerous globular clusters (about twice as many as a similarly luminous spiral) Globular cluster colors in ellipticals show a bimodal distribution E2 S0 Rhode & Zepf 2004 This is probably a metallicity effect, so there is a population of metal poor and a population of metal rich GCs E3 E5 What does this mean? B-R color
6 Globular clusters in Ellipticals Many (all?) ellipticals (& bulges) have black holes Globular cluster colors have implications for formation process: Either Merger of two galaxies metal poor clusters are old, metal rich clusters formed during merger process Hierarchical formation metal rich population builds up during accretion of gas rich clumps First direct detection Ford et al (1994) Many (all?) ellipticals (& bulges) have black holeseven compact ones like M32! Black holes Currently there are observations of at least 40 BH masses in nearby ellipticals and spiral bulges There is a strong correlation between black hole mass and galaxy luminosity and velocity dispersion Can measure BH masses for galaxies without central disks via their velocity dispersion
7 Black hole mass vs. galaxy luminosity & velocity dispersion Black hole formation From Kormendy (2003) review Observations imply BH mass directly tied to the formation of bulges and ellipticals Either All proto-galaxy clumps harbored an equal sized (relative to total mass) BH, and BH merged as galaxy formed BH started out small and grew as galaxy formed e.g., central BH is fed during process of formation and is the seed of the formation process (all galaxies have BHs?) Dark matter in elliptical galaxies Dark matter in elliptical galaxies Expected mass to light ratio of the stellar population implies M/L V ~ 3-5 Orbital motions of the stars in the centers of ellipticals imply they are not dark matter dominated In those (few!) ellipticals containing cold gas, we can measure the circular orbits of the gas we find M/L ~ But are these galaxies typical?? Also can use the amount of mass required to retain the hot x-ray gas, find M/L~100 for galaxies with large x-ray halos Are these typical? Need a tracer particle that can be easily measured kinematically at large galactic radii 2 possibilities globular clusters and planetary nebulae Recent results of PN dynamics around (a few) elliptical galaxies show NO dark matter, the galaxies are naked Recent results of GC dynamics around (a few) elliptical galaxies show large dark halo. Are we measuring the galaxy potential or the potential of the cluster it lives in??
8 Planetary nebulae dynamics Planetary nebulae dynamics Romanowsky et al Romanowsky et al. 2003
Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0
Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,
Class #14/15 14/16 October 2008
Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM
Elliptical Galaxies. Galaxies and Their Properties, Part II: Fine Structure in E-Galaxies: A Signature of Recent Merging
Elliptical Galaxies Ay 21 - Lecture 12 Galaxies and Their Properties, Part II: Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals
Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies
Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:
Origins of the Cosmos Summer 2016. Pre-course assessment
Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of
Chapter 15.3 Galaxy Evolution
Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You
Populations and Components of the Milky Way
Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate
Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14
Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,
The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC
The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is
Observing the Universe
Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass
165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars
Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching
Modeling Galaxy Formation
Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages
A Universe of Galaxies
A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.
Top 10 Discoveries by ESO Telescopes
Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical
Qué pasa si n = 1 y n = 4?
Galaxias Elípticas Qué pasa si n = 1 y n = 4? Isophotal Shapes For normal elliptical galaxies the axis ratio lies in the range 0.3
7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.
1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space
The Milky Way Galaxy is Heading for a Major Cosmic Collision
The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing
Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.
Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus
The Messier Objects As A Tool in Teaching Astronomy
The Messier Objects As A Tool in Teaching Astronomy Dr. Jesus Rodrigo F. Torres President, Rizal Technological University Individual Member, International Astronomical Union Chairman, Department of Astronomy,
Lecture 6: distribution of stars in. elliptical galaxies
Lecture 6: distribution of stars in topics: elliptical galaxies examples of elliptical galaxies different classes of ellipticals equation for distribution of light actual distributions and more complex
Using Photometric Data to Derive an HR Diagram for a Star Cluster
Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and
Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer
Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe
UNIT V. Earth and Space. Earth and the Solar System
UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system
Galaxy Classification and Evolution
name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally
Evolution of Close Binary Systems
Evolution of Close Binary Systems Before going on to the evolution of massive stars and supernovae II, we ll think about the evolution of close binary systems. There are many multiple star systems in the
Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt
Instructions: Answers are typed in blue. Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Crab Nebula What is embedded in the center of the nebula? Neutron star Who first
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
Study Guide: Solar System
Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.
How Do Galeries Form?
8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-1 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-2 Galaxy Formation Leading questions for today How do
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The
Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
Class 2 Solar System Characteristics Formation Exosolar Planets
Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System
1 A Solar System Is Born
CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system
Einstein Rings: Nature s Gravitational Lenses
National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book
Magellanic Cloud planetary nebulae as probes of stellar evolution and populations. Letizia Stanghellini
Magellanic Cloud planetary nebulae as probes of stellar evolution and populations Letizia Stanghellini Planetary nebulae beyond the Milky Way - May 19-21, 2004 1 Magellanic Cloud PNe The known distances,
IV. Molecular Clouds. 1. Molecular Cloud Spectra
IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:
Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars
Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,
Problem #1 [Sound Waves and Jeans Length]
Roger Griffith Astro 161 hw. # 8 Proffesor Chung-Pei Ma Problem #1 [Sound Waves and Jeans Length] At typical sea-level conditions, the density of air is 1.23 1 3 gcm 3 and the speed of sound is 3.4 1 4
Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula
Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain
Beginning of the Universe Classwork 6 th Grade PSI Science
Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All
TELESCOPE AS TIME MACHINE
TELESCOPE AS TIME MACHINE Read this article about NASA s latest high-tech space telescope. Then, have fun doing one or both of the word puzzles that use the important words in the article. A TELESCOPE
What is the Sloan Digital Sky Survey?
What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining
National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As
National Aeronautics and Space Administration Science Background Teacher s GalaxY Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust
Astronomy & Physics Resources for Middle & High School Teachers
Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the
Exceptionally massive and bright, the earliest stars changed the course of cosmic history
THE FIRST STARS IN THE UNIVERSE Exceptionally massive and bright, the earliest stars changed the course of cosmic history BY RICHARD B. LARSON AND VOLKER BROMM ILLUSTRATIONS BY DON DIXON We live in a universe
A short history of telescopes and astronomy: Galileo to the TMT
A short history of telescopes and astronomy: Galileo to the TMT Telescopes in the last 400 years Galileo 1608 Hans Lippershey applied for a patent for seeing things far away as if they were nearby 1609
THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk
THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk 1.INTRODUCTION Late in the nineteenth century, astronomers had tools that revealed a great deal about stars. By that time, advances in telescope
Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints. Roeland van der Marel
Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints Roeland van der Marel Why Study IMBHs in Globular Clusters (GCs)? IMBHs: IMBHs can probe a new BH mass range, between
Hubble Diagram S George Djorgovski. Encyclopedia of Astronomy & Astrophysics P. Murdin
eaa.iop.org DOI: 10.1888/0333750888/2132 Hubble Diagram S George Djorgovski From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics Publishing
Unit 8 Lesson 2 Gravity and the Solar System
Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe
The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy
Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003 ed. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium4/proceedings.html)
Week 1-2: Overview of the Universe & the View from the Earth
Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf ([email protected]) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made
Stellar Evolution. The Basic Scheme
Stellar Evolution The Basic Scheme Stars live for a very long time compared to human lifetimes. Even though stellar life-spans are enormous, we know how stars are born, live, and die. All stars follow
Name Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
Proceedings of the NATIONAL ACADEMY OF SCIENCES
Proceedings of the NATIONAL ACADEMY OF SCIENCES Volume 55 * Number 1 * January 15, 1966 DYNAMICS OF SPHERICAL GALAXIES, II* BY PHILIP M. CAMPBELL LAWRENCE RADIATION LABORATORY, LIVERMORE, CALIFORNIA Communicated
1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"
Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was
How the properties of galaxies are affected by the environment?
How the properties of galaxies are affected by the environment? Reinaldo R. de Carvalho - DAS/INPE Marina Trevisan Reinaldo Rosa The activities in this project follow from the Tatiana Moura general context
The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture
The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:
Summary: Four Major Features of our Solar System
Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar
PLAGIARISM. Types of Plagiarism considered here: Type I: Copy & Paste Type II: Word Switch Type III: Style Type IV: Metaphor Type V Idea
SPECIAL THANKS TO DR. CECILIA BAMBAUM, WHO HAS GRACIOUSLY AGREED TO ALLOW US TO POST THIS DOCUMENT IT WILL BE USED BY SEVERAL TEACHERS DURING THE YEAR TO HELP EXPLAIN PLAGIARISM IN ALL ITS FORMS TO FIRESIDE
Light. What is light?
Light What is light? 1. How does light behave? 2. What produces light? 3. What type of light is emitted? 4. What information do you get from that light? Methods in Astronomy Photometry Measure total amount
Star Clusters. Star Clusters E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS
Star Clusters Even a small telescope shows obvious local concentrations of stars scattered around the sky. These star clusters are not chance juxtapositions of unrelated stars. They are, instead, physically
Activity: Multiwavelength Bingo
ctivity: Multiwavelength background: lmost everything that we know about distant objects in the Universe comes from studying the light that is emitted or reflected by them. The entire range of energies
Cosmic Journey: Teacher Packet
Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the
Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri
Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri Purpose: 1) To understand the H-R Diagram; 2) To understand how the H-R Diagram can be used to follow
The Interstellar Medium Astronomy 216 Spring 2005
The Interstellar Medium Astronomy 216 Spring 2005 Al Glassgold & James Graham University of California, Berkeley The Interstellar Medium/Media (ISM) What is the ISM? Just what it says: The stuff between
STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves
Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to
astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.
1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room
Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,
Star Clusters and Stellar Dynamics
Ay 20 Fall 2004 Star Clusters and Stellar Dynamics (This file has a bunch of pictures deleted, in order to save space) Stellar Dynamics Gravity is generally the only important force in astrophysical systems
White Dwarf Properties and the Degenerate Electron Gas
White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................
The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.
Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:
Lesson Plan G2 The Stars
Lesson Plan G2 The Stars Introduction We see the stars as tiny points of light in the sky. They may all look the same but they are not. They range in size, color, temperature, power, and life spans. In
