Project Overview. Collabora'on Mee'ng with Op'mis, 20-21 Sept. 2011, Rome

Similar documents
Data Management in the Cloud: Limitations and Opportunities. Annies Ductan

Data Center Evolu.on and the Cloud. Paul A. Strassmann George Mason University November 5, 2008, 7:20 to 10:00 PM

Return on Experience on Cloud Compu2ng Issues a stairway to clouds. Experts Workshop Nov. 21st, 2013

Chapter 3. Database Architectures and the Web Transparencies

PROJECT PORTFOLIO SUITE

SDN- based Mobile Networking for Cellular Operators. Seil Jeon, Carlos Guimaraes, Rui L. Aguiar

Big Data. The Big Picture. Our flexible and efficient Big Data solu9ons open the door to new opportuni9es and new business areas

Scaling IP Mul-cast on Datacenter Topologies. Xiaozhou Li Mike Freedman

Towards a simple programming model in Cloud Computing platforms

Phone Systems Buyer s Guide

Cloud Compu)ng in Educa)on and Research

Key Challenges in Cloud Computing to Enable Future Internet of Things

Project Por)olio Management

Experiments on cost/power and failure aware scheduling for clouds and grids

BSC vision on Big Data and extreme scale computing

Solving today's challenges with Oracle SOA Suite, and Oracle Coherence

Telephone Related Queries (TeRQ) IETF 85 (Atlanta)

Effec%ve AX 2012 Upgrade Project Planning and Microso< Sure Step. Arbela Technologies

Introduc8on to Apache Spark

League of Legends: Scaling to Millions of Ninjas, Yordles, and Wizards

Cloudian The Storage Evolution to the Cloud.. Cloudian Inc. Pre Sales Engineering

XTM Web 2.0 Enterprise Architecture Hardware Implementation Guidelines. A.Zydroń 18 April Page 1 of 12

SLA BASED SERVICE BROKERING IN INTERCLOUD ENVIRONMENTS

OS/Run'me and Execu'on Time Produc'vity

Chapter Outline. Chapter 2 Distributed Information Systems Architecture. Middleware for Heterogeneous and Distributed Information Systems

Understanding Cloud Compu2ng Services. Rain in business success with amazing solu2ons in Cloud technology

Modernizing EDI: How to Cut Your Migra6on Costs by Over 50%

Distributed systems Lecture 6: Elec3ons, consensus, and distributed transac3ons. Dr Robert N. M. Watson

Manjrasoft Market Oriented Cloud Computing Platform

The Service Revolution software engineering without programming languages

Hunk & Elas=c MapReduce: Big Data Analy=cs on AWS

Infinispan in 50 minutes. Sanne Grinovero

DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing WHAT IS CLOUD COMPUTING? 2

Challenges and Opportunities for formal specifications in Service Oriented Architectures

Using RDBMS, NoSQL or Hadoop?

OpenNebula Leading Innovation in Cloud Computing Management

Saving Time and Money with Web Based Benefits Administra9on and Consolidated Billing

Challenges in Hybrid and Federated Cloud Computing

Clusters in the Cloud

Data Stream Algorithms in Storm and R. Radek Maciaszek

Neil Stobart Cloudian Inc. CLOUDIAN HYPERSTORE Smart Data Storage

The Development of Cloud Interoperability

Manjrasoft Market Oriented Cloud Computing Platform

Big Data, Deep Learning and Other Allegories: Scalability and Fault- tolerance of Parallel and Distributed Infrastructures.

Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop

Cloud Based Tes,ng & Capacity Planning (CloudPerf)

Introduction to Cloud Computing

Chapter 7. Using Hadoop Cluster and MapReduce

Enterprise Data Center Networks

Architec;ng Splunk for High Availability and Disaster Recovery

Ibis: Scaling Python Analy=cs on Hadoop and Impala

WSO2 Message Broker. Scalable persistent Messaging System

Final Report. Cluster Scheduling. Submitted by: Priti Lohani

White Paper: 1) Architecture Objectives: The primary objective of this architecture is to meet the. 2) Architecture Explanation

Best Prac*ces for Deploying Oracle So6ware on Virtual Compute Appliance

Maximize strategic flexibility by building an open hybrid cloud Gordon Haff

Interna'onal Standards Ac'vi'es on Cloud Security EVA KUIPER, CISA CISSP HP ENTERPRISE SECURITY SERVICES

Range of Organiza7onal Approaches

Migration Scenario: Migrating Batch Processes to the AWS Cloud

Business Analysis Standardization A Strategic Mandate. John E. Parker CVO, Enfocus Solu7ons Inc.

C-DAX: A Cyber-Secure Data and Control Cloud for Power Grids C-DAX Consortium

Software design (Cont.)

Introduc)on to the MapReduce Paradigm and Apache Hadoop. Sriram Krishnan

Capitalize on your carbon management solu4on investment

Omni Channel in Retail The TIBCO Retail Platform

EAI. Op'mizing your integra'on cost. Sunil Kumar Pandey Persistent Systems Ltd. Session: 20188

Big Data Processing Experience in the ATLAS Experiment

Blue Medora VMware vcenter Opera3ons Manager Management Pack for Oracle Enterprise Manager

Mission. To provide higher technological educa5on with quality, preparing. competent professionals, with sound founda5ons in science, technology

Transcription:

Project Overview Collabora'on Mee'ng with Op'mis, 20-21 Sept. 2011, Rome

Cloud-TM at a glance "#$%&'$()!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&!"'!()*+!!!!!!!!!!!!!!!!!!!,-./01234156!("*+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&7"7#7"7!("*+!!!!!!!!!!!!!!!!!!!89:!;62!("$+! "$*+',%!,**$-.&#%*$)! )6/-/!8/46</=!"#$%&!"'!()*+! /0$#1*&)! >0/4!?@<9!ABCB!2/!D6E!ABCF! "$*2$#33')! >)GH"&*HABBIHJ!K!LMN95OP9!C7A! 40$%5'$!.&6*$3#1*&)! 3QRSTTUUU75-/@:2479@!

Cloud computing: the vision Cloud computing is at the peak of its hype

Cloud computing: (some) pitfalls Lack of programming models effec'vely hiding the issues of: concurrency distribu'on fault- tolerance elas'city Complexity Lack of effec've tools to automate elas'c scaling: manual monitoring expensive and error- prone automa'c resource provisioning tools s'll in their infancy Data consistency in dynamic systems is extremely challenging: no one size fits all solu'on

Key Question How to remove these roadblocks and materialize the Cloud vision? SIMPLIFYING THE DEVELOPMENT AND ADMINISTRATION OF CLOUD APPLICATIONS

Project Goals Develop an open- source middleware for the Cloud: 1. Providing a simple and intui've programming model: hide complexity of distribu'on, elas'city, fault- tolerance 2. Minimizing administra'on and monitoring costs: automate elas'c provisioning based on QoS/cost constraints 3. Minimize opera'onal costs via self- tuning adap'ng consistency mechanisms to maximize efficiency

The Cloud-TM Solution but first some background

From Transactional Memories Transac'onal Memories (TM): replace locks with atomic transac'ons in the programming language hide away synchroniza'on issues from the programmer avoid deadlocks, priority inversions, debugging nightmare simpler to reason about, verify, compose simplify development of parallel applica8ons

to Distributed Transactional Memories... Distributed Transac'onal Memories (DTM): extends TM abstrac'on over the boundaries of a single machine: enhance scalability ensure fault- tolerance minimize communica'on overhead via: specula'on batching consistency ac'ons at commit- 'me

to the Cloud-TM Programming Paradigm Elas'c scale- up and scale- down of the DTM plauorm: data distribu'on policies minimizing reconfigura'on overhead auto- scaling based on user defined QoS & cost constraints Transparent support for fault- tolerance via data replica'on: self- tuning of consistency protocols driven by workload changes Language level support for: transparent support of object- oriented domain model (incl. search) highly scalable abstrac'ons parallel transac'on nes'ng in distributed environments

Platform s architecture

Architecture Overview 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)

Key Enabling Technologies Integra'on/extension of mainstream open source projects: leverage Red Hat s exper'se avoid reinven'ng the wheel focus on innova'on maximize project s visibility facilitate exploita'on of project s results provide a robust ini'al prototype

CLOUD-TM DATA PLATFORM

Reconfigurable Distributed STM 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)

Reconfigurable Distributed STM (1) Infinispan was selected as reference plauorm: open source project led by JBoss in- memory transac'onal data grid key- value store API par'al and full replica'on

Some users of Infinispan Using Infinispan Today

Reconfigurable Distributed STM (2) Infinispan is being extended to support: addi'onal mechanisms for: data replica'on/distribu'on local concurrency control support for heterogeneous persistence storages online reconfigura'on mechanisms, e.g.: replica'on protocol switching dynamic data placement

Reconfigurable Storage System 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)

Reconfigurable Storage System Plug- in based architecture suppor'ng heterogeneous persistent storages: local file systems cloud storage services (e.g. S3) Cassandra storage solu'ons developed by FP7 projects (TClouds)

Data Platform Programming API 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)

Object Grid Mapper Two approaches are being explored to map a OO domain to the key/value model: JPA compliant API: Pro: widely adopted industry standard Con: constraints imposed by standard compliance Domain Modelling Language (DML) approach: Pro: increased flexibility Con: non- standard approach

Search API Support for JPA Query Language Integra'on with: Hibernate Search: OO query Apache Lucene: full text query 0$%5"5(5,-./)0%+1%'22'("3).-4!"#$%&'($)*+%$ 9$@$1'($5 +#C$3()@+1"3)(+!"#$%&'($)BDE *+%$ A+2'"&)2+9$@ -B,B,-FGH 3+&?$%($% "&9$:$5)8)5$'%37$5 9$@$1'($5) 5$'%37)(+ 0$%5"5(5)"&(+!"#$%&'($) 6$'%37 5$'%37$5)8)"&9$:$5 5(+%$9)"& 9"5(%"#<($9) 4&!&"50'& 4&!&"50'& =$>8?'@<$)5(+%$ 4&!&"50'& 4&!&"50'& 4&!&"50'& 6$'%37)$&1"&$ $&'#@$5) 3+20@$:)C+"&5) '&9)'11%$1'("+& B#C$3(8D%"9)E'00$% Joins, aggrega'ons via Teiid: data virtualiza'on system allowing using data from mul'ple, heterogeneous data stores. ;$""9

Distributed Execution Framework Two main APIs: extension of Java 5 Concurrency APIs: scheduling and execu'on of tasks across the plauorm thread synchroniza'on mechanisms, e.g.: semaphores, queues, barriers concurrent, transac'onal data structures, e.g.: sets, hashmaps Map/reduce variant using data stored in the in- memory transac'onal data grid

AUTONOMIC MANAGER

Autonomic Manager 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%) 1st Annual Review, 4/7/2011, Bruxelles, Belgium 26

Self-tuning in babel! The Cloud- TM plauorm is an ecosystem of components using diverse technologies: JAVA, OCCI, OVF, Unix- dialects each with his own: interfaces parameters key performance indicators objec've func'ons Self- op'miza'on is already a challenge on his own: self- op'mizing a babel of components is impossible!

Generic Tunable Component Interface Abstrac'on layer hiding heterogeneity from Autonomic Manager XML encoding of metadata describing tuning op'ons and hints on rela'ons among op'ons: parameter types and ranges parameters to be considered KPIs parameters whose sejngs can affect KPI u'lity func'ons to use to self- tune each component

QoS/Cost specification API 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)

QoS/Cost specification API Allow applica'ons for specifying agreements with the Cloud- TM plauorm concerning: QoS and cost constraints, e.g.: avg. transac'on execu'on 'me<1sec max opera'onal cost<100 /month applica'ons obliga'ons, e.g.: CPU 'me per transac'on<200msec transac'on conten'on probability<10e- 5 Reuse/extension of open source tools developed by recent FP7 projects: WS Agreement WSAG4J

Workload & QoS monitor 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%) 1st Annual Review, 4/7/2011, Bruxelles, Belgium 31

Workload & QoS monitor Efficient dissemina'on of monitoring data is essen'al in large scale systems Cloud- TM s monitoring framework is based on Lajce: monitoring framework developed in RESERVOIR differen'ated channels and specialized transport mechanisms: IP mul'cast, Pub/sub, etc extensions to enhance: portability across heterogeneous OSs/VMs efficiency in WAN/large datacenter sejngs

Workload Analyzer 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)

Workload Analyzer.)&/-)"+$:*"-(6'&.)&/-)"+ 45"&"4#'&(6"#()*.)&/-)"+ 0)*(#)&!"#"$"%%&'%"#()* "*+$,(-#'&(*%.)&/-)"+$ "*+ &'7)8&4'7$87"%'$+'3"*+ 9&'+(4#()* :+"9#"#()* 0"*"%'& 1)2$3)*(#)&(*%$"*+$ $"-'&#$*)#(,(4"#()* 1)2$79'4(,(4"#()* "*+$ "-'&#$4)*,(%8&"#()*$

Adaptation Manager 31$"456*)01+2$.&) /+#+)01+2$.&) 0"?"$%>"E'&C$%&';&"CC)9;$/%!-$!"#$%$&'()*+%+,-.) J'#M8'-?$-N+8):8"B'9$/%!$ 2=O+8?$5&)*$ 4"NN+&$ #+"&8P$/%!$ 0)-?&)=<?+*$ 6Q+8<B'9$ R&"C+A'&S$ 7+8'9:;<&"=>+$0)-?&)=<?+*$ #'@A"&+$1&"9-"8B'9">$4+C'&D$ 7+8'9:;<&"=>+$#?'&";+$#D-?+C$ F27GH2/0$I$J'#$423!127$ F27GH2/0$/3/HKL67$ /0/%1/1!23$4/3/567$ 0"?"$%>"E'&C$ 2NBC)T+&$ 6>"-B8$#8">)9;$ 4"9";+&$ /+#+)01+2$.&)>-($%?,".+=$%)@)6"%'%,)!""#$%&'()*+&,-.$.-7$".(-) 8.$9'7'$%'%,):) ;<!)%-,$=+=$%)

Adaptation Manager

Key Project Phases Ini'al Pilot Applica'ons Demonstra'on Prototype of Distributed STM & Persistent Storage Final Pilot Applica'ons Final Clout- TM Prototype Prototype of the Autonomic manager Evalua'on YEAR1 YEAR2 YEAR3