Ibis: Scaling Python Analy=cs on Hadoop and Impala
|
|
|
- Veronica Skinner
- 9 years ago
- Views:
Transcription
1 Ibis: Scaling Python Analy=cs on Hadoop and Impala Wes McKinney, Budapest BI Forum
2 Me R&D at Cloudera Serial creator of structured data tools / user interfaces Mathema=cian MIT 07 Professional SQL programmer (@ AQR) Created pandas (Python library) in 2008 Wrote bestseller Python for Data Analysis 2012 Founder of DataPad 2
3 Python is popular Python has become a standard language of data science Why is it popular? Maximizes produc=vity for data engineers and data scien=sts Build robust socware and do interac=ve data analysis with 100% Python code Easy- to- learn and makes happy and produc=ve data teams Large, diverse open source development community Comprehensive libraries: data wrangling, ML, visualiza=on, etc. Main use case: data science & engineering swiss army knife on small- to- medium size data 3
4 but Python does not scale today Python ecosystem confined to single- node analysis Great for smaller data sets Requires sampling or aggrega=ons for larger data Distributed tools compromise in various ways Extrac=ng samples or aggrega=ons for larger data means: Scales by losing more fidelity Addi=onal ETL overhead to extract samples/aggrega=ons Loss of produc=vity with mul=ple languages, tools, etc Blocks certain analysis and use cases 4
5 Some simplis=c generaliza=ons Industry Analy=cs Heterogeneous data Flat tables and JSON Spark / MapReduce SQL DFS- friendly / streaming data formats More physical machines Scien=fic Compu=ng Homogeneous data Mul=dimensional arrays HPC tools Linear algebra Scien=fic data formats Fewer physical machines 5
6 Some simplis=c generaliza=ons Industry Analy=cs Heterogeneous data Flat tables and JSON Spark / MapReduce SQL DFS- friendly / streaming data formats More physical machines Python: light investment, generally Scien=fic Compu=ng Homogeneous data Mul=dimensional arrays HPC tools Linear algebra Scien=fic data formats (e.g. HDF5) Fewer physical machines Python: heavy investment, generally 6
7 pandas Hugely popular Python table / data frame library Labeled table, array, and =me series data structures Popular for data prepara=on, ETL, and in- memory analy=cs Built using Python s scien=fic compu=ng stack User API / domain specific language Bespoke in- memory analy=cs / rela=onal algebra engine IO interfaces (CSV, SQL, etc.) Expanded data type system (beyond NumPy) Supports flat data only (or semi- structured data that can be flaqened) 7
8 Many SQL engines and more 8
9 The Great Decoupling for Big Data UI Ibis, SQL, Spark API, Storage HDFS, Kudu, HBase Compute Analytic SQL, Spark, MapReduce 9
10 A sample big data architecture Application data HDFS Kafka JSON Spark/MapReduce Kafka Kafka Kafka Columnar storage Analytic SQL Engine User SQL 10
11 Nested / Complex types support Arrays, structs, maps, and unions as first- class value types Analyze JSON- like data directly without flaqening or normaliza=on Most new SQL engines have some level of support Impala Presto Drill BigQuery Spark SQL Hive 11
12 Ibis in a nutshell For Python programmers doing analy=cs in industry Project Blog: hqp://blog.ibis- project.org Joint project with Impala Cloudera Apache- licensed, open source hqp://github.com/cloudera/ibis Cracing a compelling Python- on- Hadoop user experience Remove SQL coding from user workflows Develop high performance Python extension APIs 12
13 Ibis in a nutshell, cont d Composable Python DSL ( Ibis expressions ) makes hand- coding SQL SELECT statements unnecessary Ibis for SQL Programmers: hqp://docs.ibis- project.org/sql.html Development roadmap targets Impala (C++ / LLVM) query engine but SQL compiler toolchain is general purpose Current supports Impala and SQLite, but soon other dialects We welcome external contributors for other Analy=c SQL engines 13
14 14
15 Benefits of Ibis Maximize developer produc=vity Mirrors single- node Python experience Solve big data problems without leaving Python Leverage Python skills, ecosystem, and tools Python as first- class language for Hadoop Full- fidelity analysis without extrac=ons Python analysis at any scale Na=ve hardware speeds for a broad set of use cases 15
16 Brief interac=ve demo 16
17 Ibis/Impala Joint Roadmap More natural data modeling Complex types support Integra=on with full Python data ecosystem Advanced analy=cs + machine learning Enable use of performance compu=ng tools User extensibility with na=ve performance In- memory columnar format Python- to- LLVM IR compila=on Workflow and usability tools 17
18 Execu=ng data science languages in the compute layer UI Ibis, SQL, Spark API, Python, R, Julia,? Storage HDFS, Kudu, HBase Compute Analytic SQL, Spark, MapReduce 18
19 Enabling interoperability with big data systems Distributed / MPP query engines: implemented in a host language Typically C/C++ or Java/Scala User- defined func=ons (UDFs) through various means Implement in host language Implement in user language through some external language protocol (ocen RPC- based) External UDFs are usually very slow (cf: PL/Python, PySpark, etc.) 19
20 What are UDFs good for? Note: industry data scien=sts have libraries containing 100s of UDFs for Hive or other distributed query engines Custom data transforma=ons Custom domain logic (date / =me / data types) Custom data types Custom aggrega=ons (incl. machine learning / sta=s=cs expressible as reduc=ons) 20
21 Why are external UDFs slow? Serializa=on / deserializa=on overhead Scalar vs vectorized computa=ons RPC overhead 21
22 Example: Vectoriza=on for interpreted languages SUM(CASE WHEN x > y THEN x ELSE x + y END) 22
23 Vectorized vs Interpreted perf 23
24 How to make them fast? Common run=me memory representa=on for tabular data Share- memory (zero- copy or memcpy- only) external UDF protocol Vectorized UDF interface (for interpreted languages) Impala is uniquely posi=oned to play well with Ibis Best- in- class performance and scalability C++ and LLVM- based (JIT compiler) run=me Unified, efficient data interchange amongst Ibis, Impala, and Kudu will enable high performance real =me analy=cs from Python 24
25 Memory representa=on Many query engines are standardizing on in- memory columnar rep n of materialized transient data Impala: hqp://blog.cloudera.com/blog/2015/07/whats- next- for- impala- more- reliability- usability- and- performance- at- even- greater- scale/ Apache Drill: hqps://drill.apache.org/faq/ Industry- standard serializa=on format: Apache Parquet hqps://parquet.apache.org/ 25
26 Serializa=on vs In- memory Serializa=on formats (e.g. Parquet) Op=mize for IO / DFS throughput at expense of CPU/memory bus throughput Do not consider random access or in- memory analy=cs as a goal No standardized in- memory containers for materialized data from file / RPC protocols (Parquet, Thric, protobuf, Avro, etc.) 26
27 Standardized in- memory columnar (IMC) Compact in- memory representa=on for semistructured data Part of Impala s upcoming dev roadmap Some prior IMC- for- SQL work: Apache Drill Standardized memory representa=on means data can be shared without serializa=on Create a canonical C/C++ implementa=on for use in Python / R / Julia 27
28 Ibis s Vision Uncompromised Python experience 100% Python end- to- end user workflows Enable integra=on with the exis=ng Python data ecosystem (pandas, scikit- learn, NumPy, etc) Interac=ve at big data scale Full- fidelity analysis without extrac=ons Scalability for big data Na=ve hardware speeds for a broad set of use cases 28
29 Thank you Wes Views are my own 29
Introduc8on to Apache Spark
Introduc8on to Apache Spark Jordan Volz, Systems Engineer @ Cloudera 1 Analyzing Data on Large Data Sets Python, R, etc. are popular tools among data scien8sts/analysts, sta8s8cians, etc. Why are these
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
The Internet of Things and Big Data: Intro
The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Unlocking the True Value of Hadoop with Open Data Science
Unlocking the True Value of Hadoop with Open Data Science Kristopher Overholt Solution Architect Big Data Tech 2016 MinneAnalytics June 7, 2016 Overview Overview of Open Data Science Python and the Big
Apache Hadoop: The Pla/orm for Big Data. Amr Awadallah CTO, Founder, Cloudera, Inc. [email protected], twicer: @awadallah
Apache Hadoop: The Pla/orm for Big Data Amr Awadallah CTO, Founder, Cloudera, Inc. [email protected], twicer: @awadallah 1 The Problems with Current Data Systems BI Reports + Interac7ve Apps RDBMS (aggregated
Apache Spark 11/10/15. Context. Reminder. Context. What is Spark? A GrowingStack
Apache Spark Document Analysis Course (Fall 2015 - Scott Sanner) Zahra Iman Some slides from (Matei Zaharia, UC Berkeley / MIT& Harold Liu) Reminder SparkConf JavaSpark RDD: Resilient Distributed Datasets
Using RDBMS, NoSQL or Hadoop?
Using RDBMS, NoSQL or Hadoop? DOAG Conference 2015 Jean- Pierre Dijcks Big Data Product Management Server Technologies Copyright 2014 Oracle and/or its affiliates. All rights reserved. Data Ingest 2 Ingest
Ali Ghodsi Head of PM and Engineering Databricks
Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
SQL on NoSQL (and all of the data) With Apache Drill
SQL on NoSQL (and all of the data) With Apache Drill Richard Shaw Solutions Architect @aggress Who What Where NoSQL DB Very Nice People Open Source Distributed Storage & Compute Platform (up to 1000s of
Native Connectivity to Big Data Sources in MicroStrategy 10. Presented by: Raja Ganapathy
Native Connectivity to Big Data Sources in MicroStrategy 10 Presented by: Raja Ganapathy Agenda MicroStrategy supports several data sources, including Hadoop Why Hadoop? How does MicroStrategy Analytics
DNS Big Data Analy@cs
Klik om de s+jl te bewerken Klik om de models+jlen te bewerken! Tweede niveau! Derde niveau! Vierde niveau DNS Big Data Analy@cs Vijfde niveau DNS- OARC Fall 2015 Workshop October 4th 2015 Maarten Wullink,
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Real-Time Data Analytics and Visualization
Real-Time Data Analytics and Visualization Making the leap to BI on Hadoop Predictive Analytics & Business Insights 2015 February 9, 2015 David P. Mariani CEO, AtScale, Inc. THE TRUTH ABOUT DATA We think
.nl ENTRADA. CENTR-tech 33. November 2015 Marco Davids, SIDN Labs. Klik om de s+jl te bewerken
Klik om de s+jl te bewerken Klik om de models+jlen te bewerken Tweede niveau Derde niveau Vierde niveau.nl ENTRADA Vijfde niveau CENTR-tech 33 November 2015 Marco Davids, SIDN Labs Wie zijn wij? Mijlpalen
Self-service BI for big data applications using Apache Drill
Self-service BI for big data applications using Apache Drill 2015 MapR Technologies 2015 MapR Technologies 1 Data Is Doubling Every Two Years Unstructured data will account for more than 80% of the data
Bringing Big Data to People
Bringing Big Data to People Microsoft s modern data platform SQL Server 2014 Analytics Platform System Microsoft Azure HDInsight Data Platform Everyone should have access to the data they need. Process
Big Data and Hadoop. Module 1: Introduction to Big Data and Hadoop. Module 2: Hadoop Distributed File System. Module 3: MapReduce
Big Data and Hadoop Module 1: Introduction to Big Data and Hadoop Learn about Big Data and the shortcomings of the prevailing solutions for Big Data issues. You will also get to know, how Hadoop eradicates
A Brief Introduction to Apache Tez
A Brief Introduction to Apache Tez Introduction It is a fact that data is basically the new currency of the modern business world. Companies that effectively maximize the value of their data (extract value
Self-service BI for big data applications using Apache Drill
Self-service BI for big data applications using Apache Drill 2015 MapR Technologies 2015 MapR Technologies 1 Management - MCS MapR Data Platform for Hadoop and NoSQL APACHE HADOOP AND OSS ECOSYSTEM Batch
Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum
Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
This is a brief tutorial that explains the basics of Spark SQL programming.
About the Tutorial Apache Spark is a lightning-fast cluster computing designed for fast computation. It was built on top of Hadoop MapReduce and it extends the MapReduce model to efficiently use more types
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements
Datenverwaltung im Wandel - Building an Enterprise Data Hub with
Datenverwaltung im Wandel - Building an Enterprise Data Hub with Cloudera Bernard Doering Regional Director, Central EMEA, Cloudera Cloudera Your Hadoop Experts Founded 2008, by former employees of Employees
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 PART 2 PART 3 BIG DATA PATTERNS...253 PART 4 BEYOND MAPREDUCE...385
brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 1 Hadoop in a heartbeat 3 2 Introduction to YARN 22 PART 2 DATA LOGISTICS...59 3 Data serialization working with text and beyond 61 4 Organizing and
Python for Data Analysis and Visualiza4on. Fang (Cherry) Liu, Ph.D [email protected] PACE Gatech July 2013
Python for Data Analysis and Visualiza4on Fang (Cherry) Liu, Ph.D PACE Gatech July 2013 Outline System requirements and IPython Why use python for data analysis and visula4on Data set US baby names 1880-2012
TE's Analytics on Hadoop and SAP HANA Using SAP Vora
TE's Analytics on Hadoop and SAP HANA Using SAP Vora Naveen Narra Senior Manager TE Connectivity Santha Kumar Rajendran Enterprise Data Architect TE Balaji Krishna - Director, SAP HANA Product Mgmt. -
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing Andre Luckow, Peter M. Kasson, Shantenu Jha STREAMING 2016, 03/23/2016 RADICAL, Rutgers, http://radical.rutgers.edu
Beyond Hadoop with Apache Spark and BDAS
Beyond Hadoop with Apache Spark and BDAS Khanderao Kand Principal Technologist, Guavus 12 April GITPRO World 2014 Palo Alto, CA Credit: Some stajsjcs and content came from presentajons from publicly shared
NERSC Data Efforts Update Prabhat Data and Analytics Group Lead February 23, 2015
NERSC Data Efforts Update Prabhat Data and Analytics Group Lead February 23, 2015-1 - A little bit about myself Computer Scien.st Brown, IIT Delhi Real- 3me Graphics, Virtual Reality, HCI Computa3onal
Next-Gen Big Data Analytics using the Spark stack
Next-Gen Big Data Analytics using the Spark stack Jason Dai Chief Architect of Big Data Technologies Software and Services Group, Intel Agenda Overview Apache Spark stack Next-gen big data analytics Our
Data Stream Algorithms in Storm and R. Radek Maciaszek
Data Stream Algorithms in Storm and R Radek Maciaszek Who Am I? l Radek Maciaszek l l l l l l Consul9ng at DataMine Lab (www.dataminelab.com) - Data mining, business intelligence and data warehouse consultancy.
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn Presented by :- Ishank Kumar Aakash Patel Vishnu Dev Yadav CONTENT Abstract Introduction Related work The Ecosystem Ingress
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Data Governance in the Hadoop Data Lake. Kiran Kamreddy May 2015
Data Governance in the Hadoop Data Lake Kiran Kamreddy May 2015 One Data Lake: Many Definitions A centralized repository of raw data into which many data-producing streams flow and from which downstream
Data Governance in the Hadoop Data Lake. Michael Lang May 2015
Data Governance in the Hadoop Data Lake Michael Lang May 2015 Introduction Product Manager for Teradata Loom Joined Teradata as part of acquisition of Revelytix, original developer of Loom VP of Sales
SEIZE THE DATA. 2015 SEIZE THE DATA. 2015
1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP. Eva Andreasson Cloudera
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP Eva Andreasson Cloudera Most FAQ: Super-Quick Overview! The Apache Hadoop Ecosystem a Zoo! Oozie ZooKeeper Hue Impala Solr Hive Pig Mahout HBase MapReduce
Impala: A Modern, Open-Source SQL Engine for Hadoop. Marcel Kornacker Cloudera, Inc.
Impala: A Modern, Open-Source SQL Engine for Hadoop Marcel Kornacker Cloudera, Inc. Agenda Goals; user view of Impala Impala performance Impala internals Comparing Impala to other systems Impala Overview:
Making big data simple with Databricks
Making big data simple with Databricks We are Databricks, the company behind Spark Founded by the creators of Apache Spark in 2013 Data 75% Share of Spark code contributed by Databricks in 2014 Value Created
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA. by Christian Tzolov @christzolov
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA by Christian Tzolov @christzolov Whoami Christian Tzolov Technical Architect at Pivotal, BigData, Hadoop, SpringXD,
Spark in Action. Fast Big Data Analytics using Scala. Matei Zaharia. www.spark- project.org. University of California, Berkeley UC BERKELEY
Spark in Action Fast Big Data Analytics using Scala Matei Zaharia University of California, Berkeley www.spark- project.org UC BERKELEY My Background Grad student in the AMP Lab at UC Berkeley» 50- person
Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue
High Performance Big Data Analy5cs powered by Unique Web Accelera5on and NoSQL. The Big Data Engine
High Performance Big Data Analy5cs powered by Unique Web Accelera5on and NoSQL Foster City, CA July 31, 2012 Big Data requires new thinking The challenges and opportuni5es of Big Data Big Data requires
EMC Federation Big Data Solutions. Copyright 2015 EMC Corporation. All rights reserved.
EMC Federation Big Data Solutions 1 Introduction to data analytics Federation offering 2 Traditional Analytics! Traditional type of data analysis, sometimes called Business Intelligence! Type of analytics
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
Cloudera Impala: A Modern SQL Engine for Hadoop Headline Goes Here
Cloudera Impala: A Modern SQL Engine for Hadoop Headline Goes Here JusIn Erickson Senior Product Manager, Cloudera Speaker Name or Subhead Goes Here May 2013 DO NOT USE PUBLICLY PRIOR TO 10/23/12 Agenda
Dell In-Memory Appliance for Cloudera Enterprise
Dell In-Memory Appliance for Cloudera Enterprise Hadoop Overview, Customer Evolution and Dell In-Memory Product Details Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert [email protected]/
Big Data at Spotify. Anders Arpteg, Ph D Analytics Machine Learning, Spotify
Big Data at Spotify Anders Arpteg, Ph D Analytics Machine Learning, Spotify Quickly about me Quickly about Spotify What is all the data used for? Quickly about Spark Hadoop MR vs Spark Need for (distributed)
SQream Technologies Ltd - Confiden7al
SQream Technologies Ltd - Confiden7al 1 Ge#ng Big Data Done On a GPU- Based Database Ori Netzer VP Product 26- Mar- 14 Analy7cs Performance - 3 TB, 18 Billion records SQream Database 400x More Cost Efficient!
Reference Architecture, Requirements, Gaps, Roles
Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
Big Data and Industrial Internet
Big Data and Industrial Internet Keijo Heljanko Department of Computer Science and Helsinki Institute for Information Technology HIIT School of Science, Aalto University [email protected] 16.6-2015
W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract
W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet Ema Iancuta [email protected] Radu Chilom [email protected] Buzzwords Berlin - 2015 Big data analytics / machine
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
Building Your Big Data Team
Building Your Big Data Team With all the buzz around Big Data, many companies have decided they need some sort of Big Data initiative in place to stay current with modern data management requirements.
MapR: Best Solution for Customer Success
2015 MapR Technologies 2015 MapR Technologies 1 MapR: Best Solution for Customer Success Best Product High Growth 700+ Customers Premier Investors Apache Open Source 2X 2X Growth In Direct Customers Growth
Apache Hadoop in the Enterprise. Dr. Amr Awadallah, CTO/Founder @awadallah, [email protected]
Apache Hadoop in the Enterprise Dr. Amr Awadallah, CTO/Founder @awadallah, [email protected] Cloudera The Leader in Big Data Management Powered by Apache Hadoop The Leading Open Source Distribution of Apache
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
Fast and Expressive Big Data Analytics with Python. Matei Zaharia UC BERKELEY
Fast and Expressive Big Data Analytics with Python Matei Zaharia UC Berkeley / MIT UC BERKELEY spark-project.org What is Spark? Fast and expressive cluster computing system interoperable with Apache Hadoop
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
HPE Vertica & Hadoop. Tapping Innovation to Turbocharge Your Big Data. #SeizeTheData
HPE Vertica & Hadoop Tapping Innovation to Turbocharge Your Big Data #SeizeTheData The HPE Vertica portfolio One Vertica Engine running on Cloud, Bare Metal, or Hadoop Data Nodes HPE Vertica OnDemand &
Data Management in the Cloud: Limitations and Opportunities. Annies Ductan
Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 Ralph Kimball Associates 2014 The Data Warehouse Mission Identify all possible enterprise data assets Select those assets
INDUS / AXIOMINE. Adopting Hadoop In the Enterprise Typical Enterprise Use Cases
INDUS / AXIOMINE Adopting Hadoop In the Enterprise Typical Enterprise Use Cases. Contents Executive Overview... 2 Introduction... 2 Traditional Data Processing Pipeline... 3 ETL is prevalent Large Scale
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth
MAKING BIG DATA COME ALIVE Big Data Architecture & Analytics A comprehensive approach to harness big data architecture and analytics for growth Steve Gonzales, Principal Manager [email protected]
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Highly competitive enterprises are increasingly finding ways to maximize and accelerate
Big Data Management and Security
Big Data Management and Security Audit Concerns and Business Risks Tami Frankenfield Sr. Director, Analytics and Enterprise Data Mercury Insurance What is Big Data? Velocity + Volume + Variety = Value
Parquet. Columnar storage for the people
Parquet Columnar storage for the people Julien Le Dem @J_ Processing tools lead, analytics infrastructure at Twitter Nong Li [email protected] Software engineer, Cloudera Impala Outline Context from various
White Paper November 2015. Technical Comparison of Perspectium Replicator vs Traditional Enterprise Service Buses
White Paper November 2015 Technical Comparison of Perspectium Replicator vs Traditional Enterprise Service Buses Our Evolutionary Approach to Integration With the proliferation of SaaS adoption, a gap
locuz.com Big Data Services
locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.
WHITE PAPER USING CLOUDERA TO IMPROVE DATA PROCESSING
WHITE PAPER USING CLOUDERA TO IMPROVE DATA PROCESSING Using Cloudera to Improve Data Processing CLOUDERA WHITE PAPER 2 Table of Contents What is Data Processing? 3 Challenges 4 Flexibility and Data Quality
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software?
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? 可 以 跟 資 料 庫 結 合 嘛? Can Hadoop work with Databases? 開 發 者 們 有 聽 到
Interactive data analytics drive insights
Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has
Data Warehouse 2.0 How Hive & the Emerging Interactive Query Engines Change the Game Forever. David P. Mariani AtScale, Inc. September 16, 2013
Data Warehouse 2.0 How Hive & the Emerging Interactive Query Engines Change the Game Forever David P. Mariani AtScale, Inc. September 16, 2013 THE TRUTH ABOUT DATA We think only 3% of the potentially useful
Data Discovery, Analytics, and the Enterprise Data Hub
Data Discovery, Analytics, and the Enterprise Data Hub Version: 101 Table of Contents Summary 3 Used Data and Limitations of Legacy Analytic Architecture 3 The Meaning of Data Discovery & Analytics 4 Machine
Spark: Cluster Computing with Working Sets
Spark: Cluster Computing with Working Sets Outline Why? Mesos Resilient Distributed Dataset Spark & Scala Examples Uses Why? MapReduce deficiencies: Standard Dataflows are Acyclic Prevents Iterative Jobs
Apache Hadoop: The Big Data Refinery
Architecting the Future of Big Data Whitepaper Apache Hadoop: The Big Data Refinery Introduction Big data has become an extremely popular term, due to the well-documented explosion in the amount of data
Trafodion Operational SQL-on-Hadoop
Trafodion Operational SQL-on-Hadoop SophiaConf 2015 Pierre Baudelle, HP EMEA TSC July 6 th, 2015 Hadoop workload profiles Operational Interactive Non-interactive Batch Real-time analytics Operational SQL
YARN Apache Hadoop Next Generation Compute Platform
YARN Apache Hadoop Next Generation Compute Platform Bikas Saha @bikassaha Hortonworks Inc. 2013 Page 1 Apache Hadoop & YARN Apache Hadoop De facto Big Data open source platform Running for about 5 years
