Frequency [MHz] ! " # $ %& &'( " Use top & bottom as additional guard. guard band. Giuseppe Bianchi DOWNLINK BS MS 890.4 UPLINK MS BS 890.2.



Similar documents
PART 4 GSM Radio Interface

GSM: PHYSICAL & LOGICAL CHANNELS

GSM Channels. Physical & Logical Channels. Traffic and Control Mutltiframing. Frame Structure

GSM System. Global System for Mobile Communications

Global System for Mobile Communication (GSM)

GSM BASICS GSM HISTORY:

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving

GSM LOGICAL CHANNELS

GSM GSM TECHNICAL May 1996 SPECIFICATION Version 5.0.0

GSM - Global System for Mobile Communications

GSM Radio Part 1: Physical Channel Structure

Wireless systems GSM Simon Sörman

Global System for Mobile Communications (GSM)

GSM Air Interface & Network Planning

RELEASE NOTE. Recc)mmendation GSM Previously distributed version :3.7.0 ( Updated Release 1/90

GSM GSM TECHNICAL July 1996 SPECIFICATION Version 5.1.0

CS Cellular and Mobile Network Security: GSM - In Detail

GSM Network Architecture, Channelisation, Signalling and Call Processing

-The equipment was limited to operate only within the boundaries of each country. -The market for each mo bile equipment was limited.

How To Make A Cell Phone Network More Efficient

MRN 6 GSM part 1. Politecnico di Milano Facoltà di Ingegneria dell Informazione. Mobile Radio Networks Prof. Antonio Capone

Ch GSM PENN. Magda El Zarki - Tcom Spring 98

GSM GSM TECHNICAL May 1996 SPECIFICATION Version 5.0.0

The Global System for Mobile communications (GSM) Overview

GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides)

Wireless Cellular Networks: 1G and 2G

Mobile Communications Chapter 4: Wireless Telecommunication Systems

Appendix C GSM System and Modulation Description

9.1 Introduction. 9.2 Roaming

CS263: Wireless Communications and Sensor Networks

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse

CS Cellular and Mobile Network Security: CDMA/UMTS Air Interface

Global System for Mobile (GSM) Global System for Mobile (GSM)

GSM Architecture and Interfaces

Using TEMS Pocket. Johan Montelius

Implementation of Mobile Measurement-based Frequency Planning in GSM

Exercise 2 Common Fundamentals: Multiple Access

Positioning in GSM. Date: 14th March 2003

How To Understand The Gsm And Mts Mobile Network Evolution

How To Make A Multi-User Communication Efficient

Telecommunication Systems (GSM) Mobile Communications (Ch 4) John Schiller, Addison-Wesley

Optimization. Log File Analysis GSM

Provides a communication link between MS and MSC; Manages DB for MS location. Controls user connection. Transmission.

PW1 Monitoring a GSM network with a trace mobile

A brief Overview of the GSM Radio Interface. Thierry Turletti. Massachussets Institute of Technology. March 1, Abstract

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

NETWORK AND RF PLANNING

Chapter 10 ( PART-1) Existing Wireless Systems

Roadmap for Establishing Interoperability of Heterogeneous Cellular Network Technologies -3-

NAVAL POSTGRADUATE SCHOOL THESIS

How To Test Gsm Cell Phone Network On A Cell Phone

Cellular Network Organization

Integration of Open-Source GSM Networks

Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]

ETSI TS V8.4.0 ( )

COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY BANDS

Figure 1: cellular system architecture

Evaluating GSM A5/1 security on hopping channels

RADIUS. Brief brochure. Product Purpose

MASTER'S THESIS. Improved Power Control for GSM/EDGE

The GSM and GPRS network T /301

The Network Layer Layer 3

Dimensioning, configuration and deployment of Radio Access Networks. Lecture 2.1: Voice in GSM

Coverage measurement systems. Radio Network Analyzer R&S TSMU. Interferences a frequent impairment in radio networks

Location management Need Frequency Location updating

Revision of Lecture Eighteen

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Multiple Access Techniques

FIGURE 12-1 Original Advanced Mobile Phone Service (AMPS) frequency spectrum

Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1

CDMA Network Planning

Keysight E1968A GSM/GPRS/EGPRS Test Application

GSM GSM TECHNICAL December 1996 SPECIFICATION Version 5.0.0

Agilent GSM/EDGE Self-Guided Demonstration for the E4438C ESG Vector Signal Generator and PSA Series Spectrum Analyzers

2G/3G Mobile Communication Systems

EPL 657 Wireless Networks

Bluetooth voice and data performance in DS WLAN environment

Handoff in GSM/GPRS Cellular Systems. Avi Freedman Hexagon System Engineering

Introduction to EDGE. 2.1 What Is EDGE?

Hello viewers, welcome to today s lecture on cellular telephone systems.

Lecture overview. History of cellular systems (1G) GSM introduction. Basic architecture of GSM system. Basic radio transmission parameters of GSM

TSG-RAN Meeting #7 Madrid, Spain, March 2000 RP Title: Agreed CRs to TS Agenda item: 6.3.3

Mobile Communications

Cell Planning in GSM Mobile

GSM Network and Services

CHAPTER 8 MULTIPLEXING

The Evolution of 3G CDMA Wireless Networks. David W. Paranchych IEEE CVT Luncheon January 21, 2003

2G Mobile Communication Systems

Yu.M. Tulyakov, D.Ye. Shakarov, A.A. Kalashnikov. Keywords: Data broadcasting, cellular mobile systems, WCDMA, GSM.

Pocket Guide for Fundamentals and GSM Testing

Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu

GSM GSM TECHNICAL March 1996 SPECIFICATION Version 5.0.0

How To Understand The Power Of A Cell Phone Network

CHAPTER 1 1 INTRODUCTION

Interference Analysis of a Total Frequency Hopping GSM Cordless Telephony System 1

PXI. GSM/EDGE Measurement Suite

CMU200: 2 2,5 Generation of Mobile Communication Systems GSM / GPRS / EGPRS. 2 MAR Re 1 1 CMU 200 GSM / GPRS / EGPRS

System Design in Wireless Communication. Ali Khawaja

Monitoring for Handover from TDD to GSM

How To Improve Data Rates For Global Evolution (Edge)

Transcription:

Frequency [MHz] 960 DOWNLINK BS MS 935 915 UPLINK MS BS 890 890.4 890.2 guard band Use top & bottom as additional guard! " # $ %& &'( " 1 2 3 4 5 6 7 8 F F uplink dwlink ( n) = [ 890.2 + 0.2( n 1) ] ( n) = 935.2 + 0.2( n 1) MHz [ ]MHz

60dB 35dB Specification: 9dB In practice, due to power control and shadowing, adjacent channels Cannot be used within the same cell

!"#$% & &)&( " *+',!!!( " - &'() &'" )&. / +&'0 µ time slot 0 time slot 7 time 577 µs 1 frame = 60/13 ms = 4.615 ms 26 frames = 120 ms (this is the key number)

! "#$ %$ & '( frequency Total n. of channels: 992 200 KHz 200 KHz 200 KHz 200 KHz 200 KHz 200 KHz 200 KHz 200 KHz 200 KHz slot 577us 577us 577us 577us 577us 577us 577us 577us time

$)*+,, $"* 1 2 34 51 +" 1710-1785 MHz uplink; 1805-1880 MHz downlink #6 78 9 ". 1740-1785 MHz uplink; 1835-1880 MHz downlink %&$%+, A total of 374 carriers (versus124 in GSM) -%+ :... First and second operators @ 900 MHz; Third etc @1800 MHz DCS 1800 deployment (1996+):» 15 MHz (=75 carriers) to Wind; 7.5 (=37 carriers) to first and second operator (plus existing 27 GSM 900 carriers)

- ".$%/.0$%1 2 (,, $0 ; ( 0 $0 & 23 *'$+'&<&'$&+'& ; -, *+, ', $, &<,, ', $0 & ; - 0 *, $0 <0!$0 0 -

$./ - MS uses SAME slot number on uplink and downlink - Uplink and downlink carriers always have a 45 MHz separation -I.e. if uplink carrier is 894.2 downlink is 919.2-3 slot delay shift!! 0 1 2 3 4 5 6 7 DOWNLINK UPLINK 0 1 2 3 4 5 6 7 MS: no need to transmit and receive in the same time on two different frequencies!

0#( / 01 1 f7 f6 f5 f4 f3 f2 f1 Hopping sequence (example): f1 f2 f5 f6 f3 f7 f4 f1 Slow = on a per-frame basis - 1 hop per frame (4.615 ms) = 217 hops/second. ; = * > -! ""

$ TB 3 DATA 57 S 1 Normal burst 148 bit burst Training sequence 26 %&& 34 " "? @ " * $ < -? @ " A &. *. - 22.8 kbps gross rate 13 kbps net rate! %35 7 % " B " C7: : * " - S 1 Data 57 156.25 bit (15/26 ms = 0.577 ms) TB 3 GP 8.25

2/" 6'7 7. 8 A. A ". ;. $) ; 7 D " ( ; (58 ; " *, 6 > : A " -. E. F Because channel estimate reliable ONLY when the radio channel sounding is taken! Multipath fading rapidly changes the channel impulse response

/( Different codes used in adjacent cells! Avoids training sequence Disruption because of co-channel interference.

0345 7.6 bits 4.9 bits 156.75 bits; 162.2 bits

d &,"5 &&3 G6.. A. )..!H ) G6 A.!H ) BTS downlink tx 1 2 3 4 MS downlink rx 1 2 3 4 MS uplink rx 1 2,,+59 BTS uplink rx 1 1 Expected RX time!

6/ dwlink slot 1 dwlink slot 4 dwlink slot 1 dwlink slot 4 MS time uplink slot 1 BTS time uplink slot 1 Maximum cell radius: GT C 2d c d c GT 2C bits bits = = 4. 5 rate rate 300000 8.25 2 270833 Is there something wrong? (GSM says that cells go up to 35 km) Km

# 6 TA (transmitted in the SACCH) &5*/1 5.. " G6 A &" / $&!. 6 7" 6 7/ A I.e. transmit after 468.75 bits after downlink slot 6 7/ &! Transmit after 405.75 bits time BTS time TA dwlink slot 4 dwlink slot 4 uplink slot 1 uplink slot 1 uplink slot 1 TA avoids collision! MS time

/1 ":++53 ) ;+:++53 ) ;+:"3 )$6 7," 6 7/ ) &&,+,3 [ bits] [ bits / s] TA 31.5 d = c = 300000 89 2 270833 [ km / s] = 34. [ km] 8.25 bits Guard time additionally available for imperfect sync (+/- error)

07 508 Solution: USE A DIFFERENT BURST FORMAT Access Burst: much longer Guard Period available drawback: much less space for useful information Access burst TB 8 Training sequence 41 Data 36 TB 3 GP 68.25 88 bit burst 156.25 bit (0.577 ms) No collision with subsequent slot for distances up to 37.8 km

-",,* B. G 7G C> : G G.. G

#( )5 Frequency Correction Burst TB 3 Fixed bit pattern (all 0s) 142 TB 3 GP 8.25 /6'<1,$% &3 ; A H &)( *&+'+,!( - => E "%:+",,8

9 #)503 037 1 :"?8& ).. > :. E.g. Fc + Pi/2 Fc Pi/2 % /&&%, 51. >. *> A / A - ).. A 1 = vary phase of Pi/2 in 1 bit symbol 0 = vary phase of Pi/2 in 1 bit symbol 5 A " #B 6 7B 6 7B 1 4 2 > A. I

9 #)503 037 1 :" $% /$ &&%, 51 7 G A "?. @ > A J

9 #)503 037 1 :" Advantage: continuous phase modulation = lower spectrum occupancy Disadvantage: ISI

$ 5 Dummy Burst TB 3 Fixed bit pattern 58 Training sequence 26 Fixed bit pattern 58 TB 3 GP 8.25 ;,*6--! $&+"6--! #. %; G: :

TB 3 65 Sync data 39 558 # ". I >,3 :.. i.e. synchronize frame counter : G#: *G # : %&" - 3 bits network code (operator)» Important at international boundary, where same frequencies can be shared by different operators 3 bits color code To avoid listening a signal from another cell, thinking it comes from the actual one! Synchronization Burst Training sequence 64 Sync data 39 TB 3 GP 8.25

5

;/1 1 Logical channels (traffic channels, signalling (=control) channels) Physical channels (FDMA/TDMA) 6. K A > #. % %. > % %> % 5 G #;. " ; G

;/ / frequency Physical Channel: data rate r, time slot i # $ % frequency Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Logical channel A: data rate r/3, time slot i, frame 3k Logical channel B: data rate 2r/3, time slot i, frame 3k+1, 3k+2

/ Traffic channel (TCH) TCH/F 6 : MS BSS TCH/H 6 : 3 MS BSS Broadcast channel BCCH G BSSMS FCCH C> : BSSMS SCH BSSMS Common Control channel (CCCH) RACH 3. 7 MSBSS AGCH 7J BSSMS PCH 5 BSSMS Dedicated Control channel (DCCH) SDCCH $ MS BSS SACCH ; MS BSS FACCH C MS BSS Additional logical channels available for special purposes (SMS, group calls, )

. 11/// Setup for an incoming call (call arriving from fixed network part - MS responds to a call) Steps: - paging for MS - MS responds on RACH - MS granted an SDCCH - authentication & ciphering on SDCCH - MS granted a TS (TCH/FACCH) - connection completed on FACCH - Data transmitted on TCH

7,, 55

)!<# Periodic pattern of 26 frames (120 ms = 15/26 ms/ts * 8 TS/frame* 26 frame) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 TCH frames over 26 Same TS in every frame 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Theoretical rate: 1/8 channel rate: r=33.85 kbps 2 signalling frames: r 31.25 kbps Burst overhead (114 bits over 156.25): r 22.8 kbps TB 3 DATA 57 S 1 Training Seq. (26) S 1 Data 57 148 bit burst 156.25 bit (0.577 ms) TB GP 3 8.25

/ Analog voice A/D conversion 8000 samples/s 13 bit/sample Digital voice 104 kbps 160 voice samples (20 ms) (2080 bits) Speech CODER (8:1 compression) 260 bits block 13 kbps

$ %+&+&@*/@1 D A " L. 6 A A *,. - talking listening talking time A B.<& A ". 3 C*359 A. ;?. @ :. A " 6 M 7 *,. -.. *#/ -

))/ Coding: needed to move from 10-1 to 10-3 radio channel native BER down to acceptable range (10-5 to 10-6 ) BER 260 bits 182 bits 78 bits Parity bits Tail bits(0000) 50 bits 3 132 bits 4 260 bits block divided into -Class I: important bits (182) -Class Ia: Most important 50 -Class Ib: Less important 132 -Class II: low importance bits (78) Convolutional coding, r=1/2 378 bits 78 bits First step: block coding for error detection in class Ia (errordiscard frame) Second step: convolutional coding for error correction 456 bits

531/ 8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23................................................................ 448 449 450 451 452 453 454 455 57 B1 B2 B3 B4 B5 B6 B7 B8 8 blocks, each with 57 bits

B1 $/1/ Block n-1 Block n Block n+1 B2 B3 B4 B5 B6 B7 B8 B1 B2 B3 B4 B5 B6 B7 B8 B1 B2 B3 B4 B5 B6 B7 B8 n 1 n B5 / B1 n n 1 B B n 1 n n 1 B8 / B / n+ 4 B5 B1 / + 8 4 PRICE TO PAY: delay!! (block spreaded over 8 bursts37 ms) %" "1/ 1 = B n x = n Bx 4 TB 3 S 1 Training sequence 26 S 1 TB 3 GP 8.25

5# A 3 C.. " B<&+,& A B. & A GC# If this happens, receiver muted

0)) 4. 6. TCH/F(0 7) TCH/F(0 7) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 SACCH(0 7) IDLE frame SACCH-0 SACCH-1 SACCH-2 SACCH-3 SACCH-4 SACCH-5 SACCH-6 SACCH-7 1 SACCH burst (per TCH) every 26 frames (120 ms)

))!"3 55 Block coding adds 40 bits (=224) 4 tail (zero) bits (=228) 1/2 Convolutional encoding (=456 bits) B*53, " ( +" < A " " / 7: : " ( I %--!3, " ),. /!,!'!" ) B1 B2 B3 B4 B5 B6 B7 B8 Odd/even interleaving 104 frames = 480 ms

))! '7 "* &5* &+, :8 &+, *&5& 0 1 2 3 4 5 6 7 free free Power level Timing advance (21 bytes datalink layer) Includes measurement reports A *+3 %% E I

0 Maximum power (defined by class) 2 db steps; Minimum power (13 dbm for GSM) (0 dbm for DCS 1800) %) +" 2 ;... &&6+*( & +:+"&: 6%,:%*%--! 5 ; A A $ 0 = 43 dbm (20 W) 15 = 13 dbm (20 mw) 5&3&, +, G: +"++ ":

1 CD.@ 5 ; A 5 H " - CDE; G1 3 * ; - Bit error From To RX signal level From (dbm) To (dbm) Ratio RXQUAL_0 (%) - (%) 0.2 RXLEV_0 - -110 RXQUAL_1 0.2 0.4 RXLEV_1 RXLEV_2 RXLEV_3-110 -109-108 -109-108 -107 RXQUAL_2 RXQUAL_3 RXQUAL_4 0.4 0.8 1.6 0.8 1.6 3.2 RXQUAL_5 3.2 6.4 RXLEV_62-49 -48 RXQUAL_6 6.4 12.8 RXLEV_63-48 - RXQUAL_7 12.8 - Averaged over 1 SACCH block (480ms = 104 frames)

#))?--!3555 2 ; A. ". Call setup Handover?--!:' & B**:, " C+*:/&1-! D " D " ( *- &&?--!, N&)O" ). P/ 0 '( " *A!,!" 7: : I-

#))!)! Via Stealing bits - upper bit = odd bits stolen - lower bit = even bits stolen - both bits = all burst stolen Figure: shows example of 2 FACCH blocks stealing a TCH (note begin and end behavior due to interleaving) time

!%)!<! %++, (:+* %+,FF : ".. A 95 bits class I» + 3 parity + 6 tail + convolutional coding 104/211 17 bits class 2 B*53. A *" ( H H )A - G "?&53 TCH/H 0 7 [subchannel 0] TCH/H 8 15 [subchannel 1] SACCH 0 7 SACCH 8 15 1 2 3 4 5 6 7 8 9 10 11 12

- -! G 0 '&( " * % - 4 Q '<', <0 '&<'<,,5 *- G,,"*3 # A ; / 0 *III-. " A " *( A -

6- -

5) /6,&*(!'!,. *A. - %0:",& ; C> : : *C: : - #.. ; " : *: - 2,&! "! # " 3 R R %!%%G: : 3. 5 *5: -)7J *7J : -O/ 57J : P 51 frame structure - downlink C G G G G 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 10 frame sub-block

5))! 2": : ( 3. 7: 51 frame structure - uplink 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2,8+ /1 ;%6.&%H 2 && -! Provided that: All empty slots are filled with DUMMY bursts Downlink power control must be disabled

0/ First operation when MS turned ON: spectrum analysis (either on list of up to 32 Radio Frequency Channel Numbers of current network) (or on whole 124 carriers spectrum)

/ %5,+ "*/?--!1 : " C B&&,"%-! C *&" > - 3 " 25 bits (+ 10 parity + 4 tail + ½ convolutional coding = 78 bits) 6 bits: BSIC 19 bits: Frame Number (reduced)?<%6--!

%/ 8 TS, 4.615 ms 0 1 2 3 4 5 6 7 1 multiframe = 26 TDMA frames (120 ms) 1 multiframe = 51 TDMA frames (235.38 ms) T T T T T T T T T T T T S T T T T T T T T T T T T C G G G G 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 Multiframe 0 Multiframe 1 Multiframe 2 Multiframe 49 Multiframe 50 Multiframe 0 Multiframe 1 Multiframe 25 1 superframe = 51 x 26-multiframe or 26 x 51-multiframe (1326 TDMA frames, 6.12 s) superframe 0 superframe 1 superframe 2 superframe 2046 superframe 2047 1 hyperframe = 2048 superframe (2715648 TDMA frames, 3h28m53s.76)

9 "7 FN = Superframe # Multiframe # frame #?&H.,& H. ; G: : I.e. which specific information transmitted on BCCH during a given multiframe %+,& H 2. ".

5))! : &" ". A 7: : G: : 184 bits / (51*8*15/26 ms) ~ 782 bps B,&+* 5. " Random access backoff values Maximum power an MS may access (MS_TXPWR_MAX_CCCH) Minimum received power at MS (RXLEV_ACCESS_MIN) Is cell allowed? (CELL_BAR_ACCESS) Etc. 8 Needed if frequency hopping is applied 8 G: : G#: "

1 /6 51 frame structure small capacity cell DOWN C G G G G 5 5 5 5 C 5 5 5 5 5 5 5 5 C C C UP 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Integrates SDCCH in same channel as other control information Leaves additional TS all available for TCH 51 frame structure large capacity cell DOWN G G G G 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 UP 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Used in TS 2 (and, eventually, 4 and 6) of beacon carrier Provides additional paging and RACH channels

9 =>?*7 Last frame (idle) in TCH multiframe (Frame #25) used as search frame! T T T T T T T T T T T T S T T T T T T T T T T T T - An active call transmits/receive in 25 frames, except the last one. - in this last frame, it can monitor the BCCH of this (and neighbor) cell - this particular numbering allows to scan all BCCH slots during a superframe - important slots while call is active: frequency correction FCCH and sync SCH! - needed for handover -Worst case: at most every 11 TCH multiframes (1.32 s), there will be a frequency correction burst of a neighboring cell

55<C&< 55

9 // :. only upon explicit request from MS 5 needed to wake-up MS from IDLE state when incoming call arrives to MS 37: ( Generally SDCCH (but immediate TCH assignment is possible) 1) paging MS 2) Random access 3) Channel assignment BSS/MSC Paging channel: PCH Access Grant Channel: AGCH Random Access Channel: RACH PAGCH CCCH Common Control CHannel

// 55&55%- E A.,,6%- 5. S 5. List of cells where paging should be performed Identity of paged user (IMSI or TMSI) 55&5* *,. ) A 7: : *, &" - 55,&%&G 8+55&5

$$@ %&+55 *<-!*0 " A "! ## 2 A " $ Switches off otherwise -!0+&& 6--! 2 0 " $ 51 frame BCCH structure - downlink C G G G G 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5 C 5 5 5 5 5 5 5 5

"*% # *. - E ". E ; " 6C-! 7", " * T > -!& " +6 parity; + 4 tail; + ½ convolutional coding TB 8 Training Seq. (41) Access burst Data 36 TB 3 GP 68.25 100: response to radio call 101: emergency call 110: new establishment of call 111: supplementary service (SMS, etc) 000: other case Channel_req message $ % & ' # Random discriminator: (0 31) value randomly generated by MS

)! MS-C A,B C,B C A,B A B MS-A MS-B Multiple Access Technique for simultaneous access Collision resolution based on - random retrial period - permission probability Same thing..! (SLOTTED ALOHA protocol)

)! I.&"++ 3% A %A ) *+3 idle : success : collision : ( 1 p) Np N k = 2 ( 1 p) N k N p N 1 k ( 1 p) Maximum efficiency: when p=1/n N k

)! 6--! G (. uniform distribution; max value: 3 to 50... ".. Never greater than 7 +,3. A * / - 37: MSs divided into 10 groups, depending on SIM-related information BTS may block selected groups Allows to reduce RACH load down to as low as 10%» Emergency calls bypass this rule

// //%* MS BTS BSC MSC Channel_request Channel_required rnd number rnd&frame number, Delay (TA estimate) Channel_activation Ch_activation_ack Immediate_assignment rnd&frame number, channel description, Initial TA, initial max power

// +55 #''7J :.. name PAGCH is perhaps better %=+> 37:.. I.e. which message to send in case of many messages, and on which paging slot (4 bursts). " 3M To monitor PAGCH for Immediate Assignment message detection B&&5&G+

7 "%&*&&& 8 ( A %; " &&,& 2"/,1 **+%, 4 : : MS1 MS2 BTS ID1 ID2 leave ID1 continues

// //%= MS BTS BSC MSC Immediate_assignment Initial_message MS ID (IMSI or TMSI), MS capabilities (=classmark), establishment cause Initial_message_ack (UA) Establishment_indication Copy of Initial message (including MS ID) Further signaling: MSC to MS

% $ $) ) ) )% $))! $))! % "!%--! -53%--!, &" A " +,&5/%--!)1, : : *H, 7: : - * %6 - : :. $.. 184 bits / (51*8*15/26 ms) = 598/765 kbps ~ 782 bit/s 7: : A..!!!! & & & & + + + + 7 7 7 7! 7 7 7 7! 7 7 7 7! 7 7 7 7!!!!! & & & & + + + + 7 7 7 & 7 + 7 7 7 & 7 + 7 7 7 & 7 + 7 7 7 & 7 + SDCCH/4 for small cells SDCCH shares BCCH+PAGCH channel - see before -