GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving
|
|
|
- Owen Mosley
- 10 years ago
- Views:
Transcription
1 GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving 1
2 Space Division Multiple Access of the signals from the MSs A BTS with n directed antennae covers mobile stations in n cells Each cell defines a space 2
3 Space Division Multiple Access of the signals from the MSs A given BTS j covers the i th cell and the cell is presently covering k mobile stations, MS1, MS2,, MSk k can vary with time MS can always change its location and move into another cell) 3
4 Uplink and downlink capacities of GSM network channels Enhances using SDMA as this allows serving multiple users in the same frequency but in distinct time slots 4
5 Frequency Division Multiple Access Dividing the allotted or available bandwidth into different frequency channels for communication by multiple sources (sets of MTs) 5
6 Radio-carrier channels A set of maximum 124 radio-carrier channels each of 200 khz can be used in GSM 900 downlink channel (MSC to BSC, BSC to BTS, and BTS to MS) 124 in the uplink channel (MS to BTS, BTS to BSC, and BSC to MSC) 6
7 Radio-carrier channels The 124 slots in GSM 900 in the uplink frequency range ch1: MHz ± 100 khz, ch2: MHz ± 100 khz, and so on till ch124: MHz ± 100 khz Downlink frequency slots ch1: MHz ± 100 khz, ch2: MHz ± 100 khz and the last frequency is ch124: MHz ± 100 khz 7
8 Guard band GSM 900 system permits a guard band of 50 khz at the lowest frequency end and a guard band of 50 khz at highest frequency band Thus Actual frequency band for the MHz ± 100 khz ch1 is MHz ± 50 khz The guard bands guard against frequency drifts in radio carriers 8
9 Channels allotted at a given instant to a BTS Maximum 10 The mobile service provider reserves one channel per BTS for transmission to MS or BSC 9
10 Total number of channels assigned to a BTS is 11 A GSM system station is permitted use the ch2 to ch123 only 122 channels are available in GSM 900 Total number of reserve channels can be 32 for the data transmission of mobile service provider 10
11 BTSs All the BTSs taken together can communicate over 90 channels (ch0,, ch89) available in GSM band 11
12 Data Frame in a Channel Each channel transmits data frames of ms (8 time-slots) each 12
13 Data Frame in a Channel The frequency-slot for each channel is 200 khz A set of maximum 8 MSs (out of l MSs) can be assigned (by BTS j ) a radio carrier channel frequency for uplink Downlink frequency is greater than the uplink frequency of a radio-carrier channel by 45 MHz 13
14 A Cell i formed by SDMA with two radio-carrier channels ch m and ch n 14
15 TDMA and FDMA both in GSM system Cell i with two radio-carrier channels ch m and ch n using FDMA (Up to 124 permitted) Each MS in each channel transmitting bursts in 577 µs time-slots using TDMA 15
16 TDMA in a radio-carrier channel ch m A set of maximum 8 MSs out of l MS s can be assigned a radio carrier channel by a BTS j using FDMA Transmits in distinct time slots SL0, SL1,, SL7, each of 577 µs An MS uses one of the 8 distinct time slots in a given channel 16
17 Data bursts in a data frame A set of data bits in an SL A set of 8 data bursts defines a data frame Each frame uses different channel (radio carrier frequency) 17
18 Example of three mobile stations, MS1, MS2, and MS3 Assume B1, B2, and B3 the data bursts of MS1, MS2, and MS3, respectively) Using the same radio-carrier channel ch m Assume B1 assigned SL0 B2 assigned SL1, SL4, and SL7 B3 assigned SL2 and SL6 18
19 Data frame At an instant, a data frame can have bursts B1, B2, B3, X, B2, B3, X, B2 transmitted in 8 time slots SL0 SL7, respectively X represents unassigned slots for access by either BTS j or other MSs that are using the same radio carrier channel 19
20 Time for data burst and frame Since an SL = 577 µs, data burst period = 577 µs Each data frame transmits in µs = ms 20
21 Half Duplex Transmission The transceiver of a mobile device can function in half duplex mode when the uplink time slot t u and downlink time slot t d are assigned separately by a BTS tu td is constant = µs 21
22 Frequency Hopping in Data Frames Specific frequency values result in signal fading at an instant Do not provide expected signal strengths A data frame frequency channel assigned to an MS by the BTS can be changed (hop) these select frequencies at a certain rate according to a predetermined sequence 22
23 Frequency Hopping This helps in ensuring better signal quality for most of the period GSM hopping rates are hop/s 23
24 Delays in Data burst during transmission Variable delays during transmission the reflected signals take different amounts of time Original signals reconstructed using a digital signal processor (DSP) The DSP spends computational time in processing the signals 24
25 Format of a Data Burst Guard space in time slot At the beginning and end of every data burst of 577 µs, a guard spaces of µs (equal to bit transmission time interval) each reserved to account for delays in the reflected signal and computational time 25
26 Format of a 577 µs TDMA burst The effective transmission time for the data bits is, therefore, [577 ( )] = µs 148 bits transmitted in µs Data transmission rate = (8 148) bits/4.615 ms = kbps Transmission by GMSK modulation and at kbps (3.898 µs/bit) 26
27 Division among 148 bits Six bits, 3 at the head (H) and 3 at the tail (T) [called tail bits (TB)] At H, bits 000 At T, bits =
28 Division among bits in the middle of the burst are transmitted as training (TR) bits The TR bits enable the receiver to (a) synchronize using H, TR, and T bits and (b) select the strong components of the signals Direct path or wide reflection angle signals are the strongest ones as they travel the least distance between the transmitter and the receiver 28
29 Division among (142 26)/2 = 58 bits each after H and before T Data in the burst can be of two kinds MS data or mobile-service NSS control data On either side of the TR bits, an S bit can be placed to specify whether the source is the MS or NSS control data Meaningful data bits are 57 after H and 57 before T 29
30 Division among 57 bits each between H and TR, and TR and T Assuming that only one time slot used in a data frame of 8 slots when transmitting voice and assuming that the only data bursts are voice data bursts Total 114 bits ( ) for the user data in a data burst (timeslot) Total number of bits per second = 114/4.615 bit/ms = 24.7 kbps 30
31 User and Other than user slots 12 slots for user data User data followed by one slot for control signals data The voice data (user data) rates 24.7 kbps but 12/ kbps = 22.8 kbps 31
32 User and Other than user slots Additional slots required for the frequency correction and synchronization bursts The control data slot is replaced by an empty slot X in every alternate set of 13 frames 32
33 Traffic multiframe Total 26 data frames in one in which there are one control data, one empty, and 24 user data frames Traffic multiframes transmit TCH, FACCH, and SACCH data (Next lesson) 33
34 Control channel capacity Within a traffic multiframe one control channel Capacity = (1 26) 24.7 kbps = 950 bps 34
35 Traffic multiframe Transmits in ms = 120 ms interval 35
36 Interleaving in a Traffic Multiframe Interleaving means inserting in-between The packets, each consisting of 456 bits in a 20 ms time slot, are interleaved in a traffic multiframe for voice traffic 36
37 Example Assume two MSs, MS i and MS j multiplexed in TDMA slots There are 57 bits after H and 57 bits before T in the data bursts TCH/F (traffic channel full rate) transmission rate = 22.8 kbps Therefore, there are 456 (= 8 57) bits per 20 ms in voice traffic from two MSs 37
38 Example When 20 ms packets of MS i and MS j interleave, then all the 57 bit time-slots after H in each data burst are used by MS i and all the 57 bits before T in each data burst are used by MS j Interleaving distributes the effects of channel characteristics variations with time on multiple MSs 38
39 Summary Space division multiplexing to increase user capacities, FDMA to provide 124 uplink and 124 down link channels and TDMA in 8 time slots of each = 577µs Guard space between radio carrier channels Each slot carrying a data burst Data frame has 8 data bursts of 4.6 ms 39
40 Summary Guard interval in each time slot to account for delays in reflected signals 3 H bits, 3 T bits, 26 TR bits, 1 S bit and total 57 after H and 57 before T for user data After 12 user slots one control data slot or empty slot in traffic multiframe of 26 frames in 120 ms 40
41 End of Lesson 07 GSM Radio Interface, Data bursts and Interleaving 41
GSM: PHYSICAL & LOGICAL CHANNELS
GSM: PHYSICAL & LOGICAL CHANNELS AN OVERVIEW Prepared by Learntelecom.com 1. GSM: PHYSICAL AND LOGICAL CHANNELS GSM uses a mix of Frequency Division Multiple Access (FDMA) and Time Division Multiple Access
GSM Channels. Physical & Logical Channels. Traffic and Control Mutltiframing. Frame Structure
GSM Channels Physical & Logical Channels Traffic and Control Mutltiframing Frame Structure Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Radio Interface The radio interface
GSM System. Global System for Mobile Communications
GSM System Global System for Mobile Communications Introduced in 1991. Settings of standards under ETSI (European Telecommunication Standards Institute) Services - Telephone services - Data services -
How To Understand The Gsm And Mts Mobile Network Evolution
Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems
Global System for Mobile Communications (GSM)
Global System for Mobile Communications (GSM) Nguyen Thi Mai Trang LIP6/PHARE [email protected] UPMC/PUF - M2 Networks - PTEL 1 Outline Principles of cellular networks GSM architecture Security
GSM Radio Part 1: Physical Channel Structure
GSM Radio Part 1: Physical Channel Structure 1 FREQUENCY BANDS AND CHANNELS...2 2 GSM TDMA...4 3 TDMA FRAME HIERARCHY...6 4 BURST STRUCTURE...7 5 TDMA MULTIFRAME STRUCTURE...9 5.1 Traffic Multiframe (26-Multiframe)...10
Appendix C GSM System and Modulation Description
C1 Appendix C GSM System and Modulation Description C1. Parameters included in the modelling In the modelling the number of mobiles and their positioning with respect to the wired device needs to be taken
Frequency [MHz] ! " # $ %& &'( " Use top & bottom as additional guard. guard band. Giuseppe Bianchi DOWNLINK BS MS 890.4 UPLINK MS BS 890.2.
Frequency [MHz] 960 DOWNLINK BS MS 935 915 UPLINK MS BS 890 890.4 890.2 guard band Use top & bottom as additional guard! " # $ %& &'( " 1 2 3 4 5 6 7 8 F F uplink dwlink ( n) = [ 890.2 + 0.2( n 1) ] (
Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse
Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of
Wireless Cellular Networks: 1G and 2G
Wireless Cellular Networks: 1G and 2G Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available
GSM GSM 05.01 TECHNICAL May 1996 SPECIFICATION Version 5.0.0
GSM GSM 05.01 TECHNICAL May 1996 SPECIFICATION Version 5.0.0 Source: ETSI TC-SMG Reference: TS/SMG-020501Q ICS: 33.060.50 Key words: Digital cellular telecommunications system, Global System for Mobile
GSM Air Interface & Network Planning
GSM Air Interface & Network Planning Training Document TC Finland Nokia Networks Oy 1 (40) GSM Air Interface & Network Planning The information in this document is subject to change without notice and
CS263: Wireless Communications and Sensor Networks
CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA
GSM - Global System for Mobile Communications
GSM - Global System for Mobile Communications VLR BTS BSC GMSC PSTN MS HLR 1) Overview of GSM architecture 2) GSM channel structure 05-1 GSM - Global System for Mobile Communications VLR BTS BSC GMSC PSTN
The Global System for Mobile communications (GSM) Overview
The Global System for Mobile communications (GSM) Overview GSM D-AMPS Japan Digital PCS 1900 DCS 1800 CDMA Digital Cellular Systems World-wide Multiple Access Techniques In the GSM/DCS mobile system each
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular
Global System for Mobile Communication (GSM)
Global System for Mobile Communication (GSM) Li-Hsing Yen National University of Kaohsiung GSM System Architecture Um (ME/SIM) C E C PSTN, ISDN, PSPDN, CSPDN A-bis A F A-bis C B BTS BSS BSC HLR VLR EIR
GSM BASICS GSM HISTORY:
GSM BASICS GSM HISTORY: In 1982 the Nordic PTTs sent a proposal to CEPT (Conference of European Postal & telegraph Administration) to study and to improve digital cellular technology by forming a team
3GPP Wireless Standard
3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation
GSM LOGICAL CHANNELS
GSM LOGICAL CHANNELS There are two types of GSM logical channels 1. Traffic Channels (TCHs) 2. Control Channels (CCHs) Traffic channels carry digitally encoded user speech or user data and have identical
Wireless systems GSM 2015-05-04. Simon Sörman
Wireless systems GSM 2015-05-04 Simon Sörman Contents 1 Introduction... 1 2 Channels... 2 2.1 Physical channels... 2 2.1.1 FDMA/TDMA... 2 2.1.2 Bursts... 3 2.2 Logical channels... 3 2.3 Mapping of logical
GSM BTS Development & GSM/EDGE Receiver based on FDE
GSM BTS Development & GSM/EDGE Receiver based on FDE Dinakar. P [email protected] Dept. of Electrical Engineering Indian Institute of Technology - Madras ComNet - 2007 Introduction: GSM Global System
2G/3G Mobile Communication Systems
2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management
The GSM and GPRS network T-110.300/301
The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic
Exercise 2 Common Fundamentals: Multiple Access
Exercise 2 Common Fundamentals: Multiple Access Problem 1: TDMA, guard time. To set up a GSM-connection, the base station (BTS) and the mobile station (MS) use the following short access burst in a TDMA-slot
2G Mobile Communication Systems
2G Mobile Communication Systems 2G Review: GSM Services Architecture Protocols Call setup Mobility management Security HSCSD GPRS EDGE References Jochen Schiller: Mobile Communications (German and English),
192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]
192620010 Mobile & Wireless Networking Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] Geert Heijenk Outline of Lecture 5 Cellular Systems (UMTS / LTE) (1/2) q Evolution of cellular
Positioning in GSM. Date: 14th March 2003
Positioning in GSM Date: 14th March 2003 Overview of seminar Potential applications in cellular network Review of localization system and techniques Localization in GSM system Progress of the project with
Lecture overview. History of cellular systems (1G) GSM introduction. Basic architecture of GSM system. Basic radio transmission parameters of GSM
Lecture overview History of cellular systems (1G) GSM introduction Basic architecture of GSM system Basic radio transmission parameters of GSM Analogue cellular systems 70 s In the early 70 s radio frequencies
Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1
Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Note Bandwidth utilization is the wise use of
MRN 6 GSM part 1. Politecnico di Milano Facoltà di Ingegneria dell Informazione. Mobile Radio Networks Prof. Antonio Capone
Politecnico di Milano Facoltà di Ingegneria dell Informazione MRN 6 GSM part 1 Mobile Radio Networks Prof. Antonio Capone A. Capone: Mobile Radio Networks 1 General characteristics of the system A. Capone:
How To Make A Cell Phone Network More Efficient
Cellular Network Planning and Optimization Part V: GSM Jyri Hämäläinen, Communications and Networking Department, TKK, 18.1.2008 GSM Briefly 2 General GSM was the first digital cellular system. GSM was
Wireless Telecommunication Systems GSM, GPRS, UMTS. GSM as basis of current systems Satellites and
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: Wireless Telecommunication Systems GSM, GPRS,
Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction
Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu Market GSM Overview Services Sub-systems Components Prof. Dr.-Ing. Jochen
GSM Network and Services
GSM Network and Services Cellular networks GSM Network and Services 2G1723 Johan Montelius 1 The name of the game The number one priority for mobile/cellular networks is to implement full-duplex voice
How To Understand The Theory Of Time Division Duplexing
Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple
Analysis of GSM Network for Different Transmission Powers
Analysis of GSM Network for Different Transmission Powers Mandeep Singh 1, Supreet Kaur 2 1,2 (Department of Electronics and Communication Engineering, Punjabi University, Patiala, India) Abstract: To
Mobile Communications Chapter 4: Wireless Telecommunication Systems
Mobile Communications Chapter 4: Wireless Telecommunication Systems Market GSM Overview Services Sub-systems Components GPRS DECT Not a part if this course! TETRA Not a part if this course! w-cdma (rel
MASTER'S THESIS. Improved Power Control for GSM/EDGE
MASTER'S THESIS 2005:238 CIV Improved Power Control for GSM/EDGE Fredrik Hägglund Luleå University of Technology MSc Programmes in Engineering Department of Computer Science and Electrical Engineering
Dimensioning, configuration and deployment of Radio Access Networks. Lecture 2.1: Voice in GSM
Dimensioning, configuration and deployment of Radio Access Networks. Lecture.: Voice in GSM GSM Specified by ETSI Frequency Division Duplex TDMA system Originally at 900MHz, but today also at 800, 800,
GSM GSM 05.08 TECHNICAL July 1996 SPECIFICATION Version 5.1.0
GSM GSM 05.08 TECHNICAL July 1996 SPECIFICATION Version 5.1.0 Source: ETSI TC-SMG Reference: TS/SMG-020508QR ICS: 33.060.50 Key words: Digital cellular telecommunications system, Global System for Mobile
Revision of Lecture Eighteen
Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses
Implementation of Mobile Measurement-based Frequency Planning in GSM
Implementation of Mobile Measurement-based Frequency Planning in GSM Comp.Eng. Serkan Kayacan (*), Prof. Levent Toker (**) (*): Ege University, The Institute of Science, Computer Engineering, M.S. Student
EPL 657 Wireless Networks
EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing
Hello viewers, welcome to today s lecture on cellular telephone systems.
Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture minus 31 Cellular Telephone Systems Hello viewers, welcome to today s lecture
GSM GSM 05.02 TECHNICAL May 1996 SPECIFICATION Version 5.0.0
GSM GSM 05.02 TECHNICAL May 1996 SPECIFICATION Version 5.0.0 Source: ETSI TC-SMG Reference: TS/SMG-020502Q ICS: 33.060.50 Key words: Digital cellular telecommunications system, Global System for Mobile
Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight
TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency
A brief Overview of the GSM Radio Interface. Thierry Turletti. Massachussets Institute of Technology. March 1, 1996. Abstract
A brief Overview of the GSM Radio Interface Thierry Turletti Telemedia Networks and Systems Group Laboratory for Computer Science Massachussets Institute of Technology [email protected] March 1, 1996
Cellular Network Organization
Cellular Networks Cellular Network Organization Use multiple low-power transmitters (100 W or less) Areas divided into cells o Each served by its own antenna o Served by base station consisting of transmitter,
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
Frequency Hopping for GSM Base Station Tests with Signal Generators SME
Frequency Hopping for GSM Base Station Tests with Signal Generators SME Application Note 1GPAN28E A. Winter 07.95 Products: Signal Generator SME Software Package SME-K1 Introduction One of the problems
How To Improve Data Rates For Global Evolution (Edge)
EDGE: Enhanced Data Rates for GSM Evolution SIDDARTH WANDRE ID: 999-29-3194 CS 548: Broadband Networks ILLINOIS INSTITUTE OF TECHNOLOGY Abstract:- This paper gives an overview of the EDGE concept. It gives
GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper
GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper Table of contents VAMOS increases your GSM voice capacity at minimum investment / 1 Take the full benefit of VAMOS / 1 Standard aspects / 1
Mobile Computing. Basic Call Calling terminal Network Called terminal 10/25/14. Public Switched Telephone Network - PSTN. CSE 40814/60814 Fall 2014
Mobile Computing CSE 40814/60814 Fall 2014 Public Switched Telephone Network - PSTN Transit switch Transit switch Long distance network Transit switch Local switch Outgoing call Incoming call Local switch
FIGURE 12-1 Original Advanced Mobile Phone Service (AMPS) frequency spectrum
FIGURE 12-1 Original Advanced Mobile Phone Service (AMPS) frequency spectrum FIGURE 12-2 Complete Advanced Mobile Phone Service (AMPS) frequency spectrum TABLE 12-1 AMPS Frequency Allocation TABLE 12-2
Lecture 1. Introduction to Wireless Communications 1
896960 Introduction to Algorithmic Wireless Communications Lecture 1. Introduction to Wireless Communications 1 David Amzallag 2 May 25, 2008 Introduction to cellular telephone systems. How a cellular
How To Make A Multi-User Communication Efficient
Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the
RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS
RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS Edward Nowicki and John Murphy 1 ABSTRACT The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplify wireless
RELEASE NOTE. Recc)mmendation GSM 05.08. Previously distributed version :3.7.0 ( Updated Release 1/90
ETSI /TC SMG Release by : ETSI /PT 12 Release date : December 1995 RELEASE NOTE Recc)mmendation GSM 05.08 Radio Sub - system Link Control Previously distributed version :3.7.0 ( Updated Release 1/90 New
PART 4 GSM Radio Interface
PRT 4 GSM Radio Interface Lecture 4. Physical channels Frequency [MHz] 960 OWNLINK BS MS 95 95 UPLINK MS BS 890 GSM Radio Spectrum 890.4 890.2 guard band 2 x 25 Mhz band uplex spacing: 45 MHz 24 carriers
Mobile Communication Systems: DECT Digital Enhanced Cordless Telecommunication
Mobile ommunication Systems: DET Digital Enhanced ordless Telecommunication Mobile ommunication: Telecommunication Systems - Jochen Schiller http://www.jochenschiller.de 1 Overview DET (Digital European
Agilent GSM/EDGE Self-Guided Demonstration for the E4438C ESG Vector Signal Generator and PSA Series Spectrum Analyzers
Agilent GSM/EDGE Self-Guided Demonstration for the E4438C ESG Vector Signal Generator and PSA Series Spectrum Analyzers Product Note Striving to meet all your test needs Agilent knows that the time you
How To Understand And Understand The Power Of A Cdma/Ds System
CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle
Ch 2.3.3 GSM PENN. Magda El Zarki - Tcom 510 - Spring 98
Ch 2.3.3 GSM In the early 80 s the European community decided to work together to define a cellular system that would permit full roaming in all countries and give the network providers freedom to provide
Supplementary material: Digital Enhanced Cordless Telecommunications (DECT)
Supplementary material: Digital Enhanced Cordless Telecommunications (DECT) 1.1 Introduction 1.1.1 History Analog cordless phones came into use in the early 1980s. They enabled communications between handsets
PW1 Monitoring a GSM network with a trace mobile
LPRO WireLess Network and security PW1 Monitoring a GSM network with a trace mobile Module GSM MOBILE LPRO 2012-13 Experimental set-up: 1. SAGEM OT230/OT260 Trace Mobile and charger 2. GSM antenna and
Wireless Cellular Networks: 3G
Wireless Cellular Networks: 3G Raj Jain Washington University Saint Louis, MO 63131 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 7-1 Overview Wireless
Wireless Mobile Telephony
Wireless Mobile Telephony The Ohio State University Columbus, OH 43210 [email protected] http://www.cis.ohio-state.edu/~durresi/ 1 Overview Why wireless mobile telephony? First Generation, Analog
Introduction to EDGE. 2.1 What Is EDGE?
2 Introduction to EDGE This chapter is the first of a series dedicated to EDGE. It introduces the different EDGE concepts from a global point of view, explaining how they have been introduced into the
Figure 1: cellular system architecture
Question 1: (30 marks) Consider a FDM cellular system with 120 cites, a frequency reuse factor of N=12, and 900 overall two-way channels. Omni-directional antennas are used: Figure 1 shows some of the
Evolution of GSM in to 2.5G and 3G
CMPE 477 Wireless and Mobile Networks Evolution of GSM in to 2.5G and 3G New Data Services for GSM CMPE 477 HSCSD GPRS 3G UMTS IMT2000 UMTS Architecture UTRAN Architecture Data services in GSM I Data transmission
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
Global System for Mobile Communication (GSM)
Global System for Mobile Communication (GSM) Definition Global system for mobile communication (GSM) is a globally accepted standard for digital cellular communication. GSM is the name of a standardization
GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides)
GSM Example of a PLMN (Public Land Mobile Network) At present most successful cellular mobile system (over 200 million subscribers worldwide) Digital (2 nd Generation) cellular mobile system operating
Multiple Access Techniques
Chapter 8 Multiple Access Techniques Multiple access techniques are used to allow a large number of mobile users to share the allocated spectrum in the most efficient manner. As the spectrum is limited,
CDMA Network Planning
CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications
Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth
1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where
GSM Architecture Training Document
Training Document TC Finland Nokia Networks Oy 1 (20) The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation.
Mobile Communications TCS 455
Mobile Communications TCS 455 Dr. Prapun Suksompong [email protected] Lecture 26 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 Announcements Read the following from the SIIT online
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur ABSTRACT W-CDMA (Wideband Code-Division Multiple Access), an ITU standard derived
CS 8803 - Cellular and Mobile Network Security: GSM - In Detail
CS 8803 - Cellular and Mobile Network Security: GSM - In Detail Professor Patrick Traynor 9/27/12 Cellular Telecommunications Architecture Background Air Interfaces Network Protocols Application: Messaging
Mobile Communications
October 21, 2009 Agenda Topic 2: Case Study: The GSM Network 1 GSM System General Architecture 2 GSM Access network. 3 Traffic Models for the Air interface 4 Models for the BSS design. 5 UMTS and the path
Course 1. General view on the fixed telephone network. Digital networks. General aspects. Definitions.
Course 1. General view on the fixed telephone network. Digital networks. General aspects. Definitions. 1. General view on the fixed telephone network Communication network dedicated to voice transmission;
1. Introduction: The Evolution of Mobile Telephone Systems
IEC: The Global System for Mobile Communication Tutorial: Index Page 1 of 14 Global System for Mobile Communication (GSM) Tutorial Definition Global System for Mobile Communication (GSM) is a globally
9.1 Introduction. 9.2 Roaming
9 Location Updating Objectives After this chapter the student will: be able to define the concepts of roaming and location updating. be able to name the different types of location updating and why they
The Evolution of 3G CDMA Wireless Networks. David W. Paranchych IEEE CVT Luncheon January 21, 2003
The Evolution of 3G CDMA Wireless Networks David W. Paranchych IEEE CVT Luncheon January 21, 2003 Outline Past: cdma2000 1xRTT Present: 1xEV-DO What is it? How does it work? How well does it work? What
Bluetooth voice and data performance in 802.11 DS WLAN environment
1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical
Cellular Telephone Systems
CELLULAR TELEPHONE SYSTEMS First- Generation Analog Cellular Telephone, Personal Communications system, Second- Generation, N-AMPS, Digital Cellular Telephone, Interim Standard, North American Cellular
EE 4105 Communication Engg-II Dr. Mostafa Zaman Chowdhury Slide # 1
EE 4105 Communication Engg-II Dr. Mostafa Zaman Chowdhury Slide # 1 1 Circuit-Switched Systems In a circuit-switched system, each traffic channel is dedicated to a user until its cell is terminated. Circuit
CHAPTER 1 1 INTRODUCTION
CHAPTER 1 1 INTRODUCTION 1.1 Wireless Networks Background 1.1.1 Evolution of Wireless Networks Figure 1.1 shows a general view of the evolution of wireless networks. It is well known that the first successful
9 Wireless Telephone Service
9 Wireless Telephone Service Introduction Wireless cellular mobile telephone service is a high-capacity system for providing direct-dial telephone service to automobiles, and other forms of portable telephones,
Fundamentals of Telecommunications
Fundamentals of Telecommunications Professor of CIS Columbus, OH 43210 [email protected] http://www.cis.ohio-state.edu/~jain/ 1 Overview Time Division Multiplexing T1, T3, DS1, E1 T1 Framing Echo Cancellation
CHAPTER 8 MULTIPLEXING
CHAPTER MULTIPLEXING 3 ANSWERS TO QUESTIONS.1 Multiplexing is cost-effective because the higher the data rate, the more cost-effective the transmission facility.. Interference is avoided under frequency
PXI. www.aeroflex.com. GSM/EDGE Measurement Suite
PXI GSM/EDGE Measurement Suite The GSM/EDGE measurement suite is a collection of software tools for use with Aeroflex PXI 3000 Series RF modular instruments for characterising the performance of GSM/HSCSD/GPRS
ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS
ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS Ch Usha Kumari 1, G Sasi Bhushana Rao and R Madhu Department of Electronics and Communication Engineering, Andhra University College of Engineering,
Yu.M. Tulyakov, D.Ye. Shakarov, A.A. Kalashnikov. Keywords: Data broadcasting, cellular mobile systems, WCDMA, GSM.
Аnalysis of data broadcasting in modern cellular mobile systems of ground radio communications Yu.M. Tulyakov, D.Ye. Shakarov, A.A. Kalashnikov At the analysis of channel formation in WCDMA networks the
