Genetic conservation of microsatellite sequences in Suidae* *



Similar documents
ANNALES UNIVERSITATIS MARIAE CURIE-SKŁ ODOWSKA LUBLIN POLONIA

Gene Mapping Techniques

FISH-based comparative analysis of human and porcine

A N N A L E S U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N P O L O N I A

Forensic DNA Testing Terminology

The Human Genome Project

Polymorphism of selected microsatellite DNA sequences in Simmental cattle chosen for identification of QTLs for meat traits

CHROMOSOMES Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

The following chapter is called "Preimplantation Genetic Diagnosis (PGD)".

Isolation and characterization of nine microsatellite loci in the Pale Pitcher Plant. MARGARET M. KOOPMAN*, ELIZABETH GALLAGHER, and BRYAN C.

PrimeSTAR HS DNA Polymerase

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

How many of you have checked out the web site on protein-dna interactions?

Troubleshooting for PCR and multiplex PCR

Genomics GENterprise

1/12 Dideoxy DNA Sequencing

Protocols. Internal transcribed spacer region (ITS) region. Niklaus J. Grünwald, Frank N. Martin, and Meg M. Larsen (2013)

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

Annex to the Accreditation Certificate D-PL according to DIN EN ISO/IEC 17025:2005

IIID 14. Biotechnology in Fish Disease Diagnostics: Application of the Polymerase Chain Reaction (PCR)

Fluorescence in situ hybridisation (FISH)

DNA: A Person s Ultimate Fingerprint

Commonly Used STR Markers

Biology Final Exam Study Guide: Semester 2

Introduction To Real Time Quantitative PCR (qpcr)

Genetic Analysis. Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

Becker Muscular Dystrophy

DNA PROFILING IN FORENSIC SCIENCE

CCR Biology - Chapter 9 Practice Test - Summer 2012

DNA MARKERS FOR ASEASONALITY AND MILK PRODUCTION IN SHEEP. R. G. Mateescu and M.L. Thonney

DNA Sequence Analysis

GENOTYPING ASSAYS AT ZIRC

Chapter 13: Meiosis and Sexual Life Cycles

PicoMaxx High Fidelity PCR System

Gene mutation and molecular medicine Chapter 15

A quick and simple method for the identi cation of meat species and meat products by PCR assay

ABSTRACT. Promega Corporation, Updated September Campbell-Staton, S.

Development of two Novel DNA Analysis methods to Improve Workflow Efficiency for Challenging Forensic Samples

Application Guide... 2

GenScript BloodReady TM Multiplex PCR System

Single Nucleotide Polymorphisms (SNPs)

Sanger Sequencing and Quality Assurance. Zbigniew Rudzki Department of Pathology University of Melbourne

Genetics Test Biology I

360 Master Mix. , and a supplementary 360 GC Enhancer.

HiPer RT-PCR Teaching Kit

Hepatitis B Virus Genemer Mix

BacReady TM Multiplex PCR System

14.3 Studying the Human Genome

Technical Note. Roche Applied Science. No. LC 18/2004. Assay Formats for Use in Real-Time PCR

Thermo Scientific DyNAmo cdna Synthesis Kit for qrt-pcr Technical Manual

Nucleic Acid Techniques in Bacterial Systematics

Overview of Genetic Testing and Screening

Molecular typing of VTEC: from PFGE to NGS-based phylogeny

Individualization of tiger by using microsatellites

The Central Dogma of Molecular Biology

RT-PCR: Two-Step Protocol

PyroPhage 3173 DNA Polymerase, Exonuclease Minus (Exo-)

Computer with GeneMapper ID (version or most current) software Microsoft Excel, Word Print2PDF software

MCB41: Second Midterm Spring 2009

The Biotechnology Education Company

Rapid Acquisition of Unknown DNA Sequence Adjacent to a Known Segment by Multiplex Restriction Site PCR

Heredity - Patterns of Inheritance

Genetics Module B, Anchor 3

DNA and Forensic Science

A Fast, Accurate, and Automated Workflow for Multi Locus Sequence Typing of Bacterial Isolates

Speed Matters - Fast ways from template to result

VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10

Troubleshooting Sequencing Data

CompleteⅡ 1st strand cdna Synthesis Kit

quantitative real-time PCR, grain, simplex DNA extraction: PGS0426 RT-PCR: PGS0494 & PGS0476

A Primer of Genome Science THIRD

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Worksheet - COMPARATIVE MAPPING 1

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Genomic DNA Clean & Concentrator Catalog Nos. D4010 & D4011

Sequencing Guidelines Adapted from ABI BigDye Terminator v3.1 Cycle Sequencing Kit and Roswell Park Cancer Institute Core Laboratory website

Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs)

The Chinese University of Hong Kong School of Life Sciences Biochemistry Program CUGEN Ltd.

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN POLONIA

Microarray Technology

Fact Sheet 14 EPIGENETICS

Methylation Analysis Using Methylation-Sensitive HRM and DNA Sequencing

SOP Title: Multiplex-PCR check of genomic DNA isolated from FFPE tissue for its usability in array CGH analysis

Touch DNA and DNA Recovery. H. Miller Coyle

Biotechnology: DNA Technology & Genomics

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2

Improved methods for site-directed mutagenesis using Gibson Assembly TM Master Mix

Appendix 2 Molecular Biology Core Curriculum. Websites and Other Resources

Intended Use: The kit is designed to detect the 5 different mutations found in Asian population using seven different primers.

Essentials of Real Time PCR. About Sequence Detection Chemistries

Genetics 301 Sample Final Examination Spring 2003

Mapping the porcine RN gene

Transcription:

Ann. Anim. Sci., Vol. 9, No. 3 (2009) 243 248 Genetic conservation of microsatellite sequences in Suidae* * A n n a K o z u b s k a - S o b o c i ń s k a 1, B a r b a r a R e j d u c h 1, M a r i a O c z k o w i c z 2, M a r e k B a b i c z 3 1 Department of Animal Immuno- and Cytogenetics, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland 2 Department of Animal Genetics and Breeding, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland 3 Department of Pig Breeding and Production Technology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland Abstract The aim of the study was to identify genetic conservation between several species of Suidae (Sus scrofa domestica, Sus scrofa scrofa, Sus vittatus, Phacochoerus aethiopicus) and Tayassuidae (Tayassu tajacu) families, using microsatellite sequences (SW983, SWC27, SW902, SW1430, SW2411, SW2623, SW2160) characteristic of the domestic pig (Sus scrofa domestica) genome. The results obtained in the present study made it possible to consider the analysed markers as conservative in the Suidae species (Sus scrofa domestica, Sus scrofa scrofa, Phacochoerus aethiopicus, Sus vittatus). Clear differences in relation to the Suidae species compared were shown by Tayassu tajacu (Tayassuidae family), in which no genetic conservation was found in any of the microsatellite sequences analysed. Key words: Suidae, microsatellite DNA markers, comparative study of genomes Interspecific comparative analyses of the genomes are based on the phenomenon of genetic conservation. This concerns groups of linked or syntenic genes that often have the same relationships even in taxonomically distant species (Botstein el al., 1980; Babicz et al., 2008), nucleotide sequences of genes coding for the same products in different animal species (Kozubska-Sobocińska et al., 2006), microsatellite sequences (Kacirek et al., 2001; Behl et al., 2002; Rejduch et al., 2003 a; Kozubska- -Sobocińska et al., 2008 b) and chromosome banding patterns (Rejduch et al., 2003 b; Kozubska-Sobocińska et al., 2008 a). Microsatellite DNA markers, identified in different animal species using comparative analysis, provide modern and precise tools to study genetic structure and variation in both domesticated and feral animals (Ellegren et al., 1994; Laval et al., 2000; Kacirek et al., 2001; Behl et al., 2002; Knoll and Putnova, 2002). This study was conducted as part of NRIAP statutory activity, project no. 3212.1.

244 A. Kozubska-Sobocińska et al. The aim of the study was to identify genetic conservation between several species of Suidae (Sus scrofa domestica, Sus scrofa scrofa, Sus vittatus, Phacochoerus aethiopicus) and Tayassuidae (Tayassu tajacu) families, using microsatellite sequences (SW983, SWC27, SW902, SW1430, SW2411, SW2623, SW2160) characteristic of the domestic pig (Sus scrofa domestica) genome. Material and methods Experimental material For comparative analyses the following species of the Suidae were used: domestic pig (Sus scrofa domestica) of the Polish Large White breed (five boars and five sows), wild boar (Sus scrofa scrofa) (six animals), Vietnamese pot-bellied pig derived from the Asian wild pig (Sus vittatus) (two animals), wart hog (Phacochoerus aethiopicus) (two animals) and collared peccary (Tayassu tajacu) (one sow). The blood samples were obtained from animals from the Experimental Stations of the National Research Institute of Animal Production, zoological gardens in Wrocław and Warszawa, farm of the University of Life Sciences in Lublin and forensic studies. Analytical methods Isolation of DNA DNA isolation from peripheral blood leukocytes was carried out according to Kawasaki (1990) as modified by Coppieters et al. (1992). Amplification Amplifications of the DNA isolated from individual animals were performed through PCR using fluorescently labelled primers for 7 microsatellite markers: SW983, SWC27, SW902, SW1430, SW2411, SW2623, SW2160 selected from the http://www. projects.roslin.ac.uk/pigmap database (Table 1 and Figure 1), enabling simultaneous amplification of all the markers tested in a single reaction sample (multiplex-type PCR). Table 1. Starter sequences for 7 microsatellite sequences: SWC27, SW983, SW902, SW2160, SW2623, SW2411 and SW1430 Locus Primers Primer A (5-3 ) Primer B (5-3 ) SWC27 CCATTTTCCAAAAACATGGG FAM-CTGAGACTGTGCTGCTCACTG SW983 ATAATGCTGCTATGAACACTGTAGTG FAM- GCAGTCCCACTCTTAGG- TATATATCC SW902 CTTGCCTCAAAGAGTTGTAAGG FAM- ATCAGTTGGAAATGATGGCC SW2160 TTTCTCAGCAATCTGATTGGG TAMRA-TCTGCTTTTTTTCCCCCTG SW2623 GATTCCACTCTGCTCGAGATG TAMRA-TCGGAGAATGAGGTAGCTGC SW2411 TTCCTATTCTGTCCTGCCTTG JOE-CCTGGACTCATTCTTGCTTTG SW1430 AGGACTCAGAGAACAGAGGTGG JOE- TGTTACACCTTGGCAGATTCC

Comparison of microsatellite sequences in Suidae 245 Figure 1. Chromosomal location of microsatellite markers: SW1430, SW2623, SW902, SW2160, SW983, SWC27 and SW2411 in Sus scrofa domestica PCR reaction was performed according to the PCR-Protocol under the following conditions: starting denaturation at 93 C for 10 minutes, 35 cycles of denaturation at 93 C for 30 seconds, annealing at 60 C for 30 seconds, extension at 72 C for 1 minute, final extension at 72 C for 60 minutes. In the PCR reaction we used the following components: 20 ng double-stranded DNA, buffer for PCR reaction, mixture of dntp deoxynucleotides (1.25 mm for each nucleotide), DNA Ampli Taq Gold polymerase (5 units/µl), deionized water and 2.5 pmol of each starter sequence. The PCR reaction products were subjected to vertical electrophoresis in 4% denaturing polyacrylamide gel in an ABI PRISM 377 DNA sequencer. The size of the analysed DNA fragments was determined in base pairs using Genotyper 2.1 software (Applied Biosystems). Results The results of cross-species amplification in 7 microsatellite loci (SW983, SWC27, SW902, SW1430, SW2411, SW2623, SW2160) of Suidae (domestic pig, wild boar, Vietnamese pot-bellied pig, wart hog) and Tayassuidae (collared peccary) families are presented in Table 2.

246 A. Kozubska-Sobocińska et al. Table 2. Comparison of microsatellite DNA sequences in species of Suidae and Tayassuidae families Marker Domestic pig (Sus scrofa domestica) Range of alleles (bp) / No. of alleles Wild boar (Sus scrofa scrofa) Vietnamese pot-bellied pig (Sus vittatus) Wart hog (Phacochoerus aethiopicus) Collared peccary (Tayassu tajacu) SW983 109-123 / 4 109-123 / 4 117 / 1 109-123 / 3 - SWC27 149-165 / 5 149-165 / 3 161 / 1 149-165 / 2 - SW902 189-203 / 5 189-203 / 4 190-198 / 2 189-204 / 2 - SW1430 152-178 / 5 152-178 / 4 178 / 1 164-168 / 2 - SW2411 188-206 / 4 188-206 / 3 211 / 1 211-213 / 2 - SW2623 132-142 / 5 132-142 / 5 129 / 1 132-142 / 2 - SW2160 175-187 / 5 175-187 / 4-175-187 / 2 - The results obtained showed a conservative nature of all 7 microsatellite DNA sequences analysed in 3 Suidae species: Sus scrofa domestica, Sus scrofa scrofa, Phacochoerus aethiopicus. Six of these markers (SW983, SWC27, SW902, SW1430, SW2411, SW2623) were also classified as conservative in Sus vittatus of the Suidae family. Clear differences in relation to the species compared were shown by Tayassu tajacu (Tayassuidae family), in which no genetic conservation was found in any of the 7 analysed microsatellite DNA sequences, characteristic of the domestic pig genome. Discussion Suidae family includes three subfamilies: Suinae, Phacocherinae and Babyroussinae, of which Suinae (4 species compared: Sus scrofa domestica, Sus scrofa scrofa, Phacochoerus aethiopicus, Sus vittatus) was most strongly represented in our study. For comparative analyses we also used Tayassu tajacu, a species once classified as Suidae (Tayassuinae subfamily) and now belonging to the Tayassuidae family (Grubb, 1993). The analysis of genetic conservation based on comparative tests of G-bands on chromosomes, performed in four Suidae species (domestic pig, wild boar, Vietnamese pot-bellied pig, wart hog) showed homologies and homeologies for whole chromosomes or their arms. The genetic conservation shown at the banding pattern level, as well as differences in chromosome number between the species compared, with the same number of autosome arms (NF) indicate that the interspecific differences are due to Robertsonian translocations. This high similarity of karyotypes confirmed the close phylogenetic relationship between Sus and Phacochoerus species (Rejduch et al., 2003 b; Kozubska-Sobocińska et al., 2008 a). Genetic conservation of heterosomes in Suidae enabled interspecific in situ hybridization (FISH), in which porcine molecular probes were used to identify sex chromosomes in metaphase preparations of the wild boar, peccary and wart hog (Babicz et al., 2008).

Comparison of microsatellite sequences in Suidae 247 Genetic characterization of Suidae based on microsatellite DNA sequences is conducted by many research centres in the world (Ellegren et al., 1994; Korwin-Kossakowska et al., 1998; Behl et al., 2002). These studies are performed mainly with the Sus scrofa domestica population and rarely concern wild species such as Sus scrofa strofa, Phacochoerus aethiopicus, Sus vittatus or Tayassu tajacu (Rejduch et al., 2003 a; Rejduch et al., 2003 b). The results obtained in the present study make it possible to consider the analysed markers, characteristic of the domestic pig genome, as conservative in the analysed species (Sus scrofa domestica, Sus scrofa scrofa, Phacochoerus aethiopicus, Sus vittatus) of Suidae. Clear differences in relation to the Suidae species compared were shown by Tayassu tajacu, (Tayassuidae family), in which no genetic conservation was found in any of the 7 microsatellite DNA sequences analysed (SW983, SWC27, SW902, SW1430, SW2411, SW2623, SW216). Considering that the species compared were represented by small groups of animals (Phacochoerus aethiopicus, Sus vittatus) or even single animal (Tayassu tajacu), the results obtained offer a basis for determining genetic conservation at the level of microsatellite sequences in the Suidae family, but cannot be used to characterize genetic variation of populations, for which the polymorphism of genetic markers has to be determined (Rejduch et al., 2003 a). The microsatellite DNA markers identified in Suidae could be used as a precise tool to study the genome of both domesticated and wild animals belonging to this family (Laval et al., 2000; Kacirek et al., 2001; Behl et al., 2002; Babicz et al., 2008). References B a b i c z M., K o z u b s k a - S o b o c i ń s k a A., R e j d u c h B. (2008). Hybrydyzacje porównawcze heterosomów u Suidae. LXXIII Zjazd PTZ, Mat. Konf., Lublin 26 28.06.2008. B e h l R., K a u l R., S h e o r a n N., B e h l J., T a n t i a M.S., V i j h R.K. (2002). Genetic identity of two Indian pig types using microsatellite markers. Anim. Genet., 33: 158 167. B o t s t e i n D., W h i t e R.L., S k o l n i c k M., D a v i s R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314 331. C o p p i e t e r s W., V a n Z e v e r e n A., V a n D e W e g h e A., P e e l m n L., B o u g u e t Y. (1992). Rechtstreekse genotypering von stress (on) gevoelligheit bij verkens met behulp met van DNA onderzoek. Vlaams Diergeneeskunding Tijdschrift, 61: 68 72. E l l e r g r e n H., C h o w d a r y B., J o h a n s s o n M., A n d e r s s o n L. (1994). Integrating physical and linkage map using cosmid-derived markers. Anim. Genet., 25: 155 164. G r u b b P. (1993). Order Artiodactyla. In: Mammal Species of the World. Smithsonian Inst., pp. 377 379. K a c i r e k S.L., I r v i n K.M., D i m s o s k i S.J., M o e l l e r S.J., D a v i s M.E., H i n e s H.C. (2001). Variation at microsatellite loci in the Large White, Yorkshire and Hampshire breeds of swine. Proceedings of Ohio State University, pp. 1 4. K a w a s a k i E.S. (1990). Sample preparation from blood cells and other fluids. In: PCR Protocols: A Guide to Methods and Applications. J. Acad. Press, New York, pp. 146 152. K n o l l A., P u t n o v a L. (2002). Comparison of two microsatellite panels for parentage verification in pigs in Czech Republic. Abstr. 28th Conf. ISAG, pp. 113 114. K o r w i n - K o s s a k o w s k a A., P i e r z c h a ł a M., C y m e r o w s k a - P r o k o p c z y k I. (1998). The Polish Pig Genome Mapping project. X. Polymorphism of selected microsatellite DNA sequences in the Zlotnicka Spotted and Polish Large White pigs and their F1 and F2 crosses. Anim. Sci. Pap. Rep., 17 (2): 35 47.

248 A. Kozubska-Sobocińska et al. K o z u b s k a - S o b o c i ń s k a A., B a b i c z M., R e j d u c h B. (2008 a). Genetic conservation of chromosome G-bands in Suidae. Ann. Anim. Sci., 8, 4: 349 355. K o z u b s k a - S o b o c i ń s k a A., R a d k o A., R e j d u c h B., S ł o t a E. (2008 b). Genetic conservation of Y chromosome based on microsatellite sequences in some species of Bovidae. Ann. Anim. Sci., 8, 3: 249 254. K o z u b s k a - S o b o c i ń s k a A., Ż y g a A., S ł o t a E. (2006). Preliminary identification of the transcription products of Xist gene in Bovidae family. 17th European Colloquium on Animal Cytogenetics and Gene Mapping 18 21.06.2006 Lisbon, Portugal. Book of Abstracts, pp. 46 47. L a v a l G., I a n n u c c e l l i N., L e g a u t C., M i l a n D., G r o e n e n M.A.M., G i u f f r a E., A n d e r s o n L., N i s s e n P.H., J o r g e n s e n C.B., F o u l l e y J-L., C h e v a l e t C., O l l i v i e r L. (2000). Genetic diversity of eleven European pig breeds. Genet. Sel. Evol., 32: 187 203. R e j d u c h B., R a d k o A., Z ą b e k T., S ł o t a E. (2003 a). Wstępne badania polimorfizmu sekwencji mikrosatelitarnych DNA u dzika w Polsce. Rocz. Nauk. Zoot., 25, 1: 121 123. R e j d u c h B., S ł o t a E., S y s a P., K o ś c i e l n y M., W r z e s k a M., B a b i c z M. (2003 b). Synaptonemal complexes analysis of the European wild boars carriers of the 15;17 Robertsonian translocation. Ann. Anim. Sci., 3, 2: 255 262. Accepted for printing 10 VIII 2009 Anna Kozubska-Sobocińska, Barbara Rejduch, Maria Oczkowicz, Marek Babicz Konserwatyzm genetyczny sekwencji mikrosatelitarnych u Suidae Streszczenie Celem badań była identyfikacja konserwatyzmu genetycznego u kilku gatunków z rodziny Suidae (Sus scrofa domestica, Sus scrofa scrofa, Sus vittatus, Phacochoerus aethiopicus) i Tayassuidae (Tayassu tajacu), przy wykorzystaniu sekwencji mikrosatelitarnych (SW983, SWC27, SW902, SW1430, SW2411, SW2623, SW2160) charakterystycznych dla genomu świni domowej (Sus scrofa domestica). Uzyskane wyniki pozwoliły na uznanie analizowanych markerów za konserwatywne u gatunków należących do Suidae (Sus scrofa domestica, Sus scrofa scrofa, Phacochoerus aethiopicus, Sus vittatus). Od porównywanych gatunków z rodziny Suidae wyraźnie różnił się Tayassu tajacu, należący do rodziny Tayassuidae, u którego nie stwierdzono konserwatyzmu genetycznego żadnej z analizowanych sekwencji mikrosatelitarnych.