Testen mit Produktionsdaten Fluch oder Segen?



Similar documents
Update to V10. Automic Support: Best Practices Josef Scharl. Please ask your questions here Event code 6262

Ein Leben ohne Dropbox, ist möglich und sinnvoll. Novell, Inc. All rights reserved.

Diese Liste wird präsentiert von. Netheweb.de

SAP GLOBAL DIVERSITY POLICY

SPICE auf der Überholspur. Vergleich von ISO (TR) und Automotive SPICE

SAP CRM Detailed View SAP CRM Web Service Tool

Elena Chiocchetti & Natascia Ralli (EURAC) Tanja Wissik & Vesna Lušicky (University of Vienna)

CommVault Simpana 7.0 Software Suite. und ORACLE Momentaufnahme. Robert Romanski Channel SE

Search Engines Chapter 2 Architecture Felix Naumann

ICG-9 Meeting, Prague, Session 3, 11 th Nov Spectrum Monitoring applied to the Detection and Geolocation of GPS Jammers

TIn 1: Lecture 3: Lernziele. Lecture 3 The Belly of the Architect. Basic internal components of the Pointers and data storage in memory

Kapitel 2 Unternehmensarchitektur III

AnyWeb AG

How To Manage Build And Release With Tfs 2013

Wolkige Versprechungen - Freiraum mit Tuecken

Run SAP Implementation Partner Program Guide 2009 ADOPTING THE RUN METHODOLOGY INTO YOUR SAP IMPLEMENTATIONS

IAC-BOX Network Integration. IAC-BOX Network Integration IACBOX.COM. Version English

SAP Sourcing/CLM Webcast Query & User/Contact Maintenance Web Service

Thomas Rümmler AIT GmbH & Co. KG Christian Schlag AIT GmbH & Co. KG. Central Build and Release Management with TFS

LEARNING AGREEMENT FOR STUDIES

SAP Solution Manager Change Request Management. SAP Solution Manager Product Management SAP AG

APPLICATION SETUP DOCUMENT

Heterogeneous ABAP System Copy Technical Overview

Customer Surveys with SAP Contact Center

1Copyright 2013, Oracle and/or its affiliates. All rights reserved.

IBM Security. Alle Risiken im Blick und bessere Compliance Kumulierte und intelligente Security Alerts mit QRadar Security Intelligence

Information Systems 2

Central Release and Build Management with TFS. Christian Schlag

Investing in Volatility Strategies

Data Warehousing Metadata Management

Data Warehousing Metadata Management

Dokumentation über die Übernahme von. "GS-R-3" (The Management System for Facilities and Activities) "Sicherheitskriterien für Kernkraftwerke"

Upgrading Your Skills to MCSA Windows Server 2012 MOC 20417

Die Versant-DB ist ein wesentlicher Bestandteil von CADISON.

Servermigrationen zu Hyper-V / Azure mit Double-Take Move

Security Vendor Benchmark 2016 A Comparison of Security Vendors and Service Providers

Aspekte der DB2 Administration

DATA is just like CRUDE. It s valuable, but if unrefined it cannot really be used.

Mit einem Auge auf den mathema/schen Horizont: Was der Lehrer braucht für die Zukun= seiner Schüler

Project Cost Reporting for PPM

Is Cloud relevant for SOA? Corsin Decurtins

Cloud Performance Group 1. Event. 14. Januar 2016 / Matthias Gessenay (matthias.gessenay@corporatesoftware.ch)

Open Source Customer Relationship Management Solutions Potential for an Impact of Open Source CRM Solutions on Small- and Medium Sized Enterprises

WebSphere Application Server for z/os

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into

A: Ein ganz normaler Prozess B: Best Practices in BPMN 1.x. ITAB / IT Architekturbüro Rüdiger Molle März 2009

SAP Product Road Map SAP Mobile Documents

MySQL Cluster: HA als StorageEngine

Making SAP s User Experience Strategy Reality Nis Boy Naeve, Andreas Hauser SAP SE SESSION CODE: UX204

Timebox Planning View der agile Ansatz für die visuelle Planung von System Engineering Projekt Portfolios

Due Diligence and AML Obligations

Multipurpsoe Business Partner Certificates Guideline for the Business Partner

SAP BI - Data Quality with Business Objects Data Services

LINGUISTIC SUPPORT IN "THESIS WRITER": CORPUS-BASED ACADEMIC PHRASEOLOGY IN ENGLISH AND GERMAN

SAP Solutions for Information Management Overview, Strategy, & Roadmap. Kristin McMahon May 2013

Moderne Sicherheit. Fokussiert auf Business Continuity, Mobilität & Application Control. Marc Mathys Country Manager Switzerland

Microsoft Certified IT Professional (MCITP) MCTS: Windows 7, Configuration ( )

Predictive Analytics and the Big Data Challenge

1. Scope ebm-papst Mulfingen GmbH & Co. KG: ebm-papst St. Georgen GmbH & Co. KG: WN ebm-papst Landshut GmbH:

Neues in SQL Server Evaluierung SQL Server 2016 CTP 3 für den BI Stack. Sascha Götz Inovex GmbH

Berufsakademie Mannheim University of Co-operative Education Department of Information Technology (International)

Registries: An alternative for clinical trials?

Linux & Docker auf Azure

QAS DEBUG - User und Computer

:09: [scheduler thread(5)]: AdvancedCardAllocation.GetAvailableCardsForChannel took 7 msec

Optimize Your Business with SAP Enterprise Dashboards (SAP Smart Business) Powered by SAP HANA

DB2 Version 10 Kapitel DBA

Entwicklung von Integrationslösungen aus einem Guss mit AIA Foundation Pack 11g

Leitfaden für die Antragstellung zur Förderung einer nationalen Biomaterialbankeninitiative

How To Analyse A Flugzeugflugfl\U00Fcgels In 3D Cda

Embedded Software Development and Test in 2011 using a mini- HIL approach

Accelerated Application Delivery

Virtual Organization Virtuelle Fabrik

Building an Architecture Model Entwerfen Sie mit AxiomSys ein Kontextdiagramm, das folgendermaßen aussieht:

Forking, Scratching und Re-Merging

Zielgruppe Dieses Training eignet sich für IT-Professionals.

quick documentation Die Parameter der Installation sind in diesem Artikel zu finden:

How To Connect A Webadmin To A Powerpoint (Utm) From A Usb To A Usb (Net) Or Ipa (Netlan) Device (Netbook) From Your Computer Or Ipam (Netnet

Erste Schritte mit mysql. Der Umgang mit einer relationalen Datenbank

SAP NetWeaver Composite Application Framework (CAF)

TBarCode.NET Barcodes in MS SQL Reporting Services

Stefan Aicheler Regional Sales Manager Alexander Röhlich Systems Engineer

GCE EXAMINERS' REPORTS

DB2 z/os Data Sharing

Created by Johannes Hoppe. Security

Strategic Management in Crisis Communication

TECHNISCHE INFORMATION NR. SI SERVICE INFORMATION NO. SI36-053

Transcription:

Testen mit Produktionsdaten Fluch oder Segen? Thomas Baumann Die Mobiliar ISACA After Hours Seminar Dienstag, 30.Oktober 2012

2 Agenda PART I: Copy from Production to Test Requirements Solutions and experiences @Mobiliar PART II: The Data Masking Process Requirements Solutions and experiences @Mobiliar PART III: The Pre-Production Environment Examples of pre-prod usage @Mobiliar

3 Swiss Mobiliar (major Swiss Insurer for all sectors) HQ located in Bern, Switzerland 4,500 employees IT: 200+ application developers DB2 zos as strategic DBMS for OLTP DWH and CRM (Siebel) running on Oracle Some typical Swiss attributes high precision excellence in winter sports 3

4 Disclaimer The Information contained in this presentation has not been submitted to any formal Swiss Mobiliar or other review and is distributed on an as is basis without any warranty either expressed or implied. The use of this information is the user s responsibility. The procedures, results and measurements presented in this paper were run in either the test and development environment or in the production environment at Swiss Mobiliar in Bern, Switzerland. There is no guarantee that the same or similar results will be obtained elsewhere. Users attempting to adapt these procedures and data to their own environments do so at their own risk. All procedures presented have been designed and developed for educational purposes only.

5 Why Copying from Prod to Pre-Prod All data is valid and consistent All production conditions are in pre-prod Pre-Prod data size corresponds to production Pre-Prod data masked (see Part II) Alternate Solution if Pre-Prod data not masked: Pre-Prod Security Identical to Production Security Compression/Encryption Firewalls Breech Detection/Notification Security Awareness / Training Access limited to strict minimum of people PART I: Copy from Production to Test

6 Daten kopieren: Testfragen (1 richtig, 3 falsch) a) Testdaten unterliegen keinerlei gesetzlichen Anforderungen bezüglich Datenschutz, sofern sie klar als Testdaten gekennzeichnet sind. b) Der Export von Testdaten in Nachbarländer ist ohne Einschränkungen erlaubt. c) Es gibt keinen gesetzlichen Unterschied zwischen Testdaten und Produktionsdaten. d) Testdaten sind implizit stets für internen Gebrauch klassifiziert, nie aber als vertraulich. PART I: Copy from Production to Test

7 Think before you Copy 46+ US jurisdictions with laws about protecting financial data 1996: HIPAA (Health Insurance Portability and Accountability Act) 1999: Gramm-Leach Bliley Act Payment Card Industry Data Security Standard (PCI DSS) EU Data Processing Directive Company Reputation and Consumer Trust Legally no difference between production and test data PART I: Copy from Production to Test

8 Security Breach Hall of Shame www.privacyrights.org Chronology of Data Breaches PART I: Copy from Production to Test

9 Copy From Production to Test: Scope CustomerDB ContractsDB ObjectsDB ClaimsDB Product Metadata PART I: Copy from Production to Test

10 Copy From Production to Test: Scope (cont.) DB2 Oracle PART I: Copy from Production to Test

11 Data Replication (Scope: Customer Data) PART I: Copy from Production to Test

12 Other Requirements As close to no-interruption of production as possible Only Part of DB instance (selected tables) Efficient processing (source + target) Minimum manual intervention Restartable Support of different schema names in source and target Support of different schema structures OK if done before and/or after the copy process Repeatable on single-object level Data masking (see second part of presentation) supported PART I: Copy from Production to Test

13 Some Solutions: The Big Picture Unload / Load Cross- Load Clone Saves PIT Recover Cloning Solutions out of the box additional licenses PART I: Copy from Production to Test

14 The Copy Process: Summary Many solutions available Easy to use Not very expensive software Capture & Replay solutions to repeat (production) workload also available PART I: Copy from Production to Test

15 Agenda PART I: Copy from Production to Test Requirements Solutions and experiences @Mobiliar PART II: The Data Masking Process Requirements Solutions and experiences @Mobiliar PART III: The Pre-Production Environment Examples of pre-prod usage @Mobiliar

16 Data Masking Requirements Legal privacy requirements define scope @Mobiliar DB2 core data: Different columns of 19 tables identified Irreversible scramble (not just encryption ) No way for the original production data to be recreated Can t turn the crank backwards and get the pig back Performance requirements of pre-production No loss of data correlation within tables No loss of data correlation among tables Column data distribution identical to production environment PART II: The Data Masking Process

17 Row-oriented vs. Column-oriented Masking Row-Oriented Masking Column-Oriented Masking PART II: The Data Masking Process

18 Row-Oriented vs. Column-Oriented Masking Row-Oriented Masking Scope of masking algorithm is one single row Difficult to preserve data correlations among many rows while maintaining high data privacy Column-Oriented Masking Scope of masking algorithm are all rows values of a single table column, or of a group of columns of the same table if dependent from each other Data distributions can be maintained If necessary, additional row-masking possible (social security number, financial record/credit/debit card information) PART II: The Data Masking Process

19 Daten maskieren: Testfragen (1 richtig, 3 falsch) a) Zeilen- (row-) basierte Anonymisierung und Spalten- (column-) basierte Anonymisierung schliessen sich gegenseitig aus. b) Es genügt, Daten spaltenbasiert zu anonymisieren, eine zusätzliche Anonymisierung auf Zeilenebene bringt keine erhöhte Sicherheit. c) Die Anonymisierung auf virtueller Ebene (Views, data masking) genügt, falls stets via Views zugegriffen wird und keine Benutzerrechte direkt auf Tabellen Ebene existieren. d) Die Anonymisierung auf virtueller Ebene genügt nicht, da Sicherungen auf der physischen Ebene (tablespaces in der Datenbanksprache) durchgeführt werden, und bei bloss virtueller Anonymisierung diese in ihrer ursprünglichen unverschlüsselten Form sichtbar bleiben. PART II: The Data Masking Process

20 Column-Oriented Masking: The Basic Idea CustNo Name FirstName Phone Year of Birth 123 Baumann Thomas +4179 34 1963 456 Hrle Namik +49 1958 789 +33.. 012 345 CustNo Name FirstName Phone Year of Birth 123 +33 1963 456 +1.. 1958 789 Hrle Namik 012 Baumann Thomas +49 345 +4179 34 PART II: The Data Masking Process

21 Stream of Scripts for row-based data masking Complex process, based on application-know how Takes 5-10 times longer than simple copy from prod to pre-prod PART II: The Data Masking Process

22 The Data Masking Process: Summary Needs application Know How Row-based masking takes 5-10x longer than the copy process Automated Solutions available for row-based processing Solutions available for data masking on virtual layer PART II: The Data Masking Process

23 Agenda PART I: Copy from Production to Test Requirements Solutions and experiences @Mobiliar PART II: The Data Masking Process Requirements Solutions and experiences @Mobiliar PART III: The Pre-Production Environment Examples of pre-prod usage @Mobiliar

24 The Pre-Production Environment Continuous Query Performance Monitoring Goal: Compare, predict, optimize access paths at pre-prod What-If Performance Analysis Goal: Avoid inefficient access path (often caused by correlation between tables not reflected in the statistics data) Performance Prediction IT Performance (Response Times) is one of the three CIO s top priorities PART III: The Pre-Production Environment

25 Daten nutzen: Testfragen (1 richtig, 3 falsch) a) Auf einem anonymisierten Testdatenbestand sind keine Benutzer Zugriffs Einschränkungen mehr notwendig. b) Auf einem anonymisierten Testdatenbestand sind keine Benutzer Zugriffs Einschränkungen mehr erlaubt. c) Auf synthetisch generierten Testdaten sind keine Zugriffseinschränkungen notwendig. d) Der Zugriff auch auf anonymisierte Testdaten sollte auf einem rollenbasierten Zugriffskonzept basieren. PART III: The Pre-Production Environment

26 Summary Copy from Production to Pre-Prod Test Efficient and non-disruptive solutions available Data Masking Need to understand how applications process data Pre-Production Environment Benefits What-If Analysis for Performance Issues rat (=real application testing) Enables Production Performance Prediction

Thomas Baumann Die Mobiliar thomas.baumann@mobi.ch Testen mit Produktionsdaten Fluch oder Segen?