Slope and Rate of Change



Similar documents
= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).

2.2. Instantaneous Velocity

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

2 Limits and Derivatives

Average rate of change

Answer Key for California State Standards: Algebra I

Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity

Review of Fundamental Mathematics

Physics Kinematics Model

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Rolle s Theorem. q( x) = 1

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Mathematics 31 Pre-calculus and Limits

18.01 Single Variable Calculus Fall 2006

Math 120 Final Exam Practice Problems, Form: A

Chapter 4 One Dimensional Kinematics

Solutions to Exercises, Section 5.1

1.3.1 Position, Distance and Displacement

2-1 Position, Displacement, and Distance

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

Section 1.1. Introduction to R n

MA107 Precalculus Algebra Exam 2 Review Solutions

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

1 of 7 9/5/2009 6:12 PM

2After completing this chapter you should be able to

Sect Solving Equations Using the Zero Product Rule

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

A Quick Algebra Review

Slope-Intercept Equation. Example

1.1 Practice Worksheet

Example SECTION X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Projectile motion simulator.

Performance. 13. Climbing Flight

Elements of a graph. Click on the links below to jump directly to the relevant section

To define concepts such as distance, displacement, speed, velocity, and acceleration.

4.3 Lagrange Approximation

Functions Modeling Change: A Precalculus Course. Marcel B. Finan Arkansas Tech University c All Rights Reserved

This copy of the text was produced at 16:02 on 5/31/2009.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

AP Physics 1 and 2 Lab Investigations

Algebra I Vocabulary Cards

Solutions to old Exam 1 problems

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Solving Simultaneous Equations and Matrices

PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall Sept. 30, 2004 ANSWERS

In order to describe motion you need to describe the following properties.

The Basics of Physics with Calculus. AP Physics C

x), etc. In general, we have

What are the place values to the left of the decimal point and their associated powers of ten?

TOPIC 4: DERIVATIVES

F = ma. F = G m 1m 2 R 2

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

AP Calculus AB 2003 Scoring Guidelines

1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.

MATH 221 FIRST SEMESTER CALCULUS. fall 2009

Chapter 11 Equilibrium

Section 6.4: Work. We illustrate with an example.

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

A synonym is a word that has the same or almost the same definition of

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

Answer Key for the Review Packet for Exam #3

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

2013 MBA Jump Start Program

Solving Quadratic Equations

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Derivatives as Rates of Change

Section 1.1 Linear Equations: Slope and Equations of Lines

Understanding Basic Calculus

Jump Shot Mathematics Howard Penn

Algebra 1 End-of-Course Exam Practice Test with Solutions

Warm-Up Oct. 22. Daily Agenda:

REVIEW OF ANALYTIC GEOMETRY

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Summer Math Exercises. For students who are entering. Pre-Calculus

Determining the Acceleration Due to Gravity

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

Mathematics Placement

Calculus with Parametric Curves

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Name Summer Assignment for College Credit Math Courses

Functions, Expressions, and Equations

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS

5.1 Derivatives and Graphs

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Exam 1 Review Questions PHY Exam 1

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

CHAPTER 1 Linear Equations

Math 241, Exam 1 Information.

Instantaneous Rate of Change:

PRE-CALCULUS GRADE 12

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.

1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Math Placement Test Practice Problems

Transcription:

Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the derivative. Student Learning Objectives The student will: 1. Be able to distinguish between the slopes of secant lines and tangent lines. 2. Understand the concept of a limit. 3. Understand the relationship between slopes of a function and the derivative. 4. Learn the definition of a derivative. 5. Learn the relationship between tangent lines and the velocity problem. The Mathematics of Change Calculus is about change. More specifically, if gives us ways to explain, using mathematics, how a variable y might change when a variable x changes. Why do we care about this? Because change is a fact of life. We can use calculus to figure out how fast our local reservoir will empty during the next drought; to plan a flight path between Atlanta and London that uses the least fuel; to figure out how long it will take to pay off a mortgage; to figure out the dimensions of the largest rectangular tree-house you can build with a fixed amount of plywood; or to predict how fast a penny dropped off the top of the CN Tower in Toronto would be falling when it hit the ground. All of these problems involve figuring out how one variable changes in comparison to, or as mathematicians often like to say, with respect to, another variables. You ve probably already come across this concept in an algebra or pre-calculus class through the use of the slope of a line. Suppose we draw the plot of a non-vertical line y = mx + b (1.1) where m is the slope and b is the y intercept (figure 1.1). If we pick any two points (x 1, y 1) and (x 2, y 2) on that line, then the slope is defined as slope = change in y change in x = rise y2 y1 = (1.2) run x 2 x 1 5

6 Chapter 1. Slope and Rate of Change Calculus Calculus is the quantitative description of how things change in comparison to one another. It has two branches: a) Differential Calculus: calculation and application of the derivative to find rates of change. b) Integral Calculus: calculate of areas under curves and inversion of the process of differentiation. We have introduced the terms rise and run in equation 1.2 to refer to the change in x and change in y, respectively. These terms are commonly used throughout algebra and analytic geometry. Sometimes we also use the expressions y and x to refer to the rise and the run, Figure 1.1: Slope of a line. x 2,y 2 y 2 y 1 change in y or y x 1,y 1 x 2 x 1 change in x, or x y = y 2 y 1 read this as Delta y (1.3) x = x 2 x 1 read this as Delta x (1.4) Here the Greek letter is not a variable that is multiplied by the x or the y but part of the variable name, so that x is single complete variable name, and y is a single complete variable name. 1 Tangent Lines We want to extend the concept of the slope of a line to curves. Since curves can bend in any which-way they might choose, the idea of a single slope that applies to the entire curve doesn t make much sense. Instead, given any particular curve, and a particular point P, on that curve, we observe that if we look at it through a powerful enough magnifying glass, it looks more and more like a straight line as we get closer and closer to that point (see figure 1.2). Imagine, then, that we can figure out the slope m of this almost-nearly-straight line, and construct the line through P. This new line, which we have just drawn, has the same slope as the curve at P. We call this line the tangent line to the curve at P. The word tangent is derived from the latin verb tangere, to touch, as in, to touch, but not to cross or intersect. A tangent line (as we have described it above) just touches the curve at a single point, but does not cross it 1 Technically, is an operator that means change in so x means change in x. It comes from the Liebniz notation that we will study in chapter 8.

Chapter 1. Slope and Rate of Change 7 Figure 1.2: Illustration of a point on a smooth curve, and two successive blow-ups under the magnifying glass, as you move from the left to the root, showing how the points in the neighborhood of the smooth curve look very much like a straight line if you look at the point under a magnifying glass and ignore the rest of the figure. or intersect it (figure 1.3). The slope of a curve at the point P is defined to be the slope of the tangent line at P. Definition 1.1. Slope of a Curve The slope of a curve at a point P is the slope m of a line that is tangent to the curve at P. Figure 1.3: Examples of tangent lines. The tangent line is just touching, but not intersecting, at the point of tangency. Not Tangent Tangent Tangent Tangent Let f(x) be a smooth function. We want to develop an easy, methodical process for calculating the slope of the tangent line through a point P on the plot of f(x). Let the coordinates of P be (x 1, y 1). Let Q = (x 2, y 2) be another point on the curve, and construct the secant line through P and Q (see the curve in the left frame of figure 1.4.) Next, we imagine marching point Q Figure 1.4: Using a sequence of secant lines to define the tangent line. The image on the left shows a single secant line between the points Q and P. Then, on the right, as the point Q approaches P, the secant line approaches the tangent line at P. Q Q P P towards P, as indicated by the arrows in the right frame of figure 1.4. As Q gets closer and closer to P, the secant line gets closer and closer to the tangent line through P. We call this process of one point getting closer and closer to another point taking a limit or a limiting

8 Chapter 1. Slope and Rate of Change process. We denote the limiting process by Q P, which we read as Q goes to P, or the limit as Q goes to P. As Q is marching closer and closer to P, Q is trying to get as close as possible. Q may actually get all the way to P ; but there are some cases where it may not actually get there. For example, we may have chosen P to be a hole in the function (a point x = c where f(x) is not defined, surrounded by an open neighborhood in which f(x) is defined). It is often still possible to define the slope at a hole, even though the function is not defined there. In order to do calculations, it is more convenient to talk about the coordinates (x, y) instead of P and Q. Since both P and Q lie on the function f(x), we have P = (x 1, y 1) = (x 1, f(x 1)) (1.5) Q = (x 2, y 2) = (x 2, f(x 2)) (1.6) Since x is the independent variable and y is the dependent variable, instead of saying Q approaches P, we say that x 2 approaches x 1, which we write as x 2 x 1. Instead of saying the limit as Q goes to P we say the limit as x 2 goes to x 1. At the same time, we observe that y 2 y 1 because Q P. Since the slope of the secant is m secant = f(x2) f(x1) x 2 x 1 (1.7) we can then define the slope of the tangent line at x 1 as the limit of m secant as x 2 x 1. We will call this slope f (x 1). f (x 1) = f(x 2) f(x 1) lim (1.8) x 2 x 1 x 2 x 1 If we define the fixed point x 1 = a and let x = x 2 then (1.8) becomes f f(x) f(a) (a) = lim x a x a (1.9) Equation 1.9 gives the slope of the tangent line at the point x = a. It is a number, and is called the derivative of f(x) at the point x = a. If we instead define h = x 2 x 1 in (1.8) then x 2 = x 1 + h. So when x 2 x 1, h must go to zero; it is the horizontal distance between the coordinates of P and Q. Substituting, f (x 1) = f(x 1 + h) f(x 1) lim x 1 +h x 1 h (1.10) Since there is only one x coordinate (that of P ) the index is no longer needed, and the equation for the slope of the tangent line at x becomes f (x) = lim h 0 f(x + h) f(x) h (1.11) We call the slope of the tangent line at x the derivative of f(x) and denote it by f (x). When the limit (1.11) exists we say that f(x) is differentiable at x. We emphasize here that while the slope of a line is a number, and the slope of a curve at a particular point, the derivative of a function is another function. The derivative f (x) gives the slope of f(x) as a continually changing function of x.

Chapter 1. Slope and Rate of Change 9 Definition 1.2. The Derivative The derivative of a function f(x) is the function f (x) defined by f f(x + h) f(x) (x) = lim h 0 h (1.12) The derivative at the point x = a is a number f (a) that may be calculated either by by setting x = a in the formula for f (x) or by calculating a limit such as or f (a) = lim h 0 f(a + h) f(a) h f f(x) f(a) (a) = lim x a x a (1.13) (1.14) Example 1.1. Find the slope of the tangent line to y = x 2 at the point (1, 1) by simulating the process of Q P empirically, and use this slope to calculate the equation of the tangent line at (1, 1). Solution. By an empirical calculation we mean we want to experimentally calculate the values of the slop as Q marches toward P. Let Q = (x, y) = (x, x 2 ) be any other point on the curve of y = x 2. Then the slope is m = y 2 y 1 x 2 1 lim = lim x 2 x 1 x 2 x 1 x 1 x 1 = lim (x 1)(x + 1) = x + 1 (1.15a) x 1 x 1 We will arbitrarily pick a sequence of values of x that approach 1 from the left, and see what the slope appears to be approaching: x m = 1 + x 0.9 1.9 0.99 1.99 0.999 1.999 0.9999 1.999 0.9999999999 1.9999999999 as x 1 from the left, it would appear that m 2. the right? We can repeat the empircal calculation: x m = 1 + x 1.1 2.1 1.01 2.01 1.001 2.001 1.0001 2.0001 1.0000000001 2.0000000001 What about if x 1 from It would appear that m 2 as x 1 from the right as well. Thus the tangent line through (1, 1) is (using the point-slope form of the equation of a line), y 1 = 2(x 1) = 2x 2 (1.15b) Bringing the 1 to the right hand side gives the equation in the more standard slopeintercept form of y = 2x 1. As it turns it, we could have simply plugged x = 1 into the last step of equation (1.15a) x 2 1 m = lim x 1 x 1 = lim (x + 1) = 2 (1.16) x 1

10 Chapter 1. Slope and Rate of Change We will see why we can do this when we discuss the limit laws (such as theorem 3.9) in chapter 2. In this case, since f(x) = x + 1 is a polynomial, theorem 3.9 allows us to simply substitute the value of x into the formula for f(x). We could not have plugged x = 1 into g(x) = x2 1 x 1, even though g(x) = f(x) for all x 1, to calculate the limit because that would have led to the rather perplexing conundrum of fraction equal to 0/0. We will also discus 0/0 limits in chapter 2. Average and Instantaneous Rate of Change Suppose that the amount or quantity of something is a function of time: position, altitude of an airplane, the odometer on your car, amount of flour in a cannister on your kitchen counter, amount of gasoline in your car. We want to be able to describe that quantity y = f(t) changes with time. Suppose there is an amount y 1 = f(t 1) at time t 1, and an amount y 2 = f(t 2) at time t 2. Let t = t 2 t 1 be the change in t, and y = y 2 y 1 be the corresponding change in y over the timespan t starting at t 1. Then the average rate of change of y is the total change in y divided by t, and we will denote this by v average: v average = y t = f(t2) f(t1) t 2 t 1 (1.17) If y is the position, for example, then v is the average velocity or speed, and is measured in km/sec. If y is the amount of gasoline in your car, it may be measured in gallons/day. If y is the number of gallons in a tank of water, then dy/dt is rate at which you use the water. We observe that the average rate of change is the slope of the secant line to f(t) from time t = t 1 to time t = t 2. We use the term instantaneous rate of change to refer to the limit (see figure 1.5) f(t 2) f(t 1) y v instantenous(t 1) = lim = lim t 2 t 1 t 2 t 1 t 0 t (1.18) which is precisely the derivative at t 1. Hence v instantaneous(t) = f f(a) f(t) f(t + h) f(t) (t) = lim = lim a t a t h 0 h (1.19) The instantaneous rate of change at any time t = a is the slope of the tangent line at t = a, and is equal to the value of the derivative f (a). Example 1.2. In the absence of air resistance, the distance an object falls when it is dropped is related to the time since it has fallen by the equation y = 1 2 gt2 (1.20) where g = 9.80665 m/sec 2 is the Earth standard acceleration due to gravity. Estimate the velocity that a US penny has when it hits the ground if it is dropped off the top of the tallest building in Los Angeles (the US Bank tower, 310 Meters). Solution. We first solve for the time it takes to hit the ground; solving (1.20) for t, 2y 2 310 t = g = = 7.95125 sec (1.21a) 9.80665

Chapter 1. Slope and Rate of Change 11 Figure 1.5: Average and instantaneous rate of change. The function f(t) is plotted on the dependent axis and time on the independent axis. The instantaneous rate of change at any particular time, such as at the time points A and C (illustrated) is the slope of the tangent line at that point. The average rate of change is measured over and interval between two points, and is the slope of the secant line connecting the values of the function at the two endpoints of the interval [A, B]. Slope v instantaneous A Slope v average B,C f t Slope v instantaneous C A B C t Next, we need to figure out the instantaneous velocity at t = 7.95125. velocity between t 1 and t 2 is v average = gt2 2/2 gt 2 1/2 = g (t2 t1)(t2 + t1) g(t2 + t1) = t 2 t 1 2 t 2 t 1 2 The average (1.21b) The instantaneous velocity is v(t 1) = lim t 2 t 1 g(t 2 + t 1) 2 (1.21c) The instantaneous velocity at t = 7.95125 is then v(7.95125) = g(t + 7.95125) lim t 7.95125 2 (1.21d) Calculating this limit empirically from the left we obtain the following values: Here is a table as we approach from the right t g(t + 7.95125)/2 7.9 77.7238 7.95 77.9690 7.951 77.9739 7.9512 77.9749 7.95125 77.9751 t g(t + 7.95125)/2 8 78.2142 7.96 78.018 7.952 77.9788 7.9513 77.9754 7.95126 77.9752

12 Chapter 1. Slope and Rate of Change Truncating to three decimals we estimate that the instantaneous velocity is 77.975 meters/second. In fact, due to air resistance, the speed would probably only be about half that fast (because the equation we started with is actually incorrect). Exercises Empirically estimate the slope of each of the following functions at the specified point. 1. y = x 3 4 at x = 2 ans: 12 2. y = sin x at x = π 3 ans: 0.5 3. y = x(x 1) at x = 0.5 ans: 0 4. y = x 4 x 2 at x = 1 ans: 2 5. y = x at x = 2 ans: 0.353553 6. y = 1 x at x = 4 ans: -0.0625 Use an empirical estimate of the slope to find the equation of the tangent line to each of the following functions at the specified point. 7. y = x 4 x 2 at x = 1 ans:y = 2x 2 8. y = x x 3 at x = 2 ans: y = 16 11x 9. y = tan x at x = π 4 Ä 1 ä 10. y = x sin at x = 1 x x ans: y = πx 1 ans: y = 2x 0.571 11. Suppose that a ball is thrown straight up into the air with an initial velocity of 50 ft/sec so that its height in feet after t seconds is given by y = 50t 16t 2. (a) Find the average velocity over the period 1 t 1.5 (b) Find the average velocity over the period 1 t 1.1 (c) Find the average velocity over the period 1 t 1.01 (d) Estimate the instantaneous velocity at t = 1 12. The position of a particle moving in a straight line is given by t 2 4t + 8 meters, where t is measured in seconds. (a) Estimate the average velocity over the interval [3, 4] (b) Estimate the average velocity over the interval [3.5, 4] (c) Estimate the average velocity over the interval [4, 5] (d) Estimate the average velocity over the interval [4, 4.5] (e) Estimate the instantaneous velocity at t = 4.