Project Information Title: CO2 sequestration in Douro Coalfield Objectives: 1) to define the CO2 storage capacity in a range of coal beds of different geologic characteristics 2) to establish the feasibility of a CO2-free industry based on CO2 storage in coal seams (abandoned mines or non-mined deep seams) done by a systematic study of selected sites Description: the WP includes 3 phases: 1) Characterization and evaluation of several sites, 2) Field feasibility tests, 3) Economic analysis Expected results: An assessment of the scientific controls to the adsorption of CO2 in a range of typical coal seams, and the selection of abandoned or non-mined deep coal seams in Europe as suitable sites for CO2 storage Keywords: CO2 sequestration, CO2 storage, coal bed, coal seams
Portuguese Consortium Coordinator: Centro de Modelação e Análise de Sistemas Ambientais, Universidade Fernando Pessoa CEMAS/UFP Instituto Superior Técnico (IST): Centro de Valorização de Recursos Minerais (CVRM) Centro de Engenharia Mecânica (IDMEC) Universidade do Porto Centro de Geologia (CGUP) Universidade Católica Faculdade de Direito (FDUC) Universidade de Aveiro Grupo de Emissões, Modelação e Alteração Climáticas (GEMAC/UA) Instituto D. Luiz - Laboratório de Sistemas, Instrumentação e Modelação em Ciências e Tecnologias do Ambiente e do Espaço (SIM) do Laboratório Associado Air Liquide Group Centro de Estudos em Economia e Energia dos Transportes e do Ambiente (CEEETA)
Contacts Coordinator: Centro de Modelação e Análise de Sistemas Ambientais, Universidade Fernando Pessoa CEMAS/UFP Prof. LEMOS DE SOUSA +351 93 305 9777 (mobile) mlsousa@fc.up.pt and lemosdesousa@gmail.com CEEETA - Centro de Estudos em Economia e Energia dos Transportes e do Ambiente Prof. Álvaro Martins (alvaro.martins@ceeeta.pt ) Eng. Carlos Laia (carlos.laia@ceeeta.pt +351 91 862 84 87 - mobile)
M.J. Lemos de Sousa, Zuleika L. Carretta and Co-workers
Legislation Kyoto Protocol EU/Portugal Directive (Parliament and Council) 2003/87/CE, 13 October Decreto lei nº 233/2004, 14 December Decreto-lei nº 243-A/2004, 31 December Portaria nº 121/2005, 31 January + other Portarias RCM nº 53/2005, 3 March Despacho conjunto nº 686 E/2005, 13 September Registo Portugues de Licenças de Emissão RPLE
Portugal - National Allowance Allocation Plan 2005-2007 Main Sectors and Installations PNALE 2005-2007 / Despacho conjunto nº 686 E/2005, 13 Setembro Allowances/year Nr Sector Sub-sector Installations (t CO2) 1 Electricity Generation Coal Central Termoeléctrica do Pego (Tejo Energia) 3 801 434 2 Coal Central Termoeléctrica de Sines (CPPE) 7 837 380 4 CCGT Central Termoeléctrica do Ribatejo (CPPE) 2 019 570 5 CCGT Central de Ciclo Combinado da Tapada do Outeiro (Turbogas) 2 600 858 6 Fuel Central Termoeléctrica do Carregado (CPPE) 1 088 575 8 Fuel Central Termoeléctrica de Setúbal (CPPE) 2 505 210 17 Petroleum Refining P. Refining Refinaria de Sines (Petrogal) 2 313 908 18 P. Refining Refinaria do Porto (Petrogal) 951 969 88 Cement & Lime Cement Maceira-Liz (CMP) 778 033 89 Cement Secil - Outão (Secil) 1 541 495 90 Cement Alhandra (Cimpor) 1 736 995 91 Cement Loulé (Cimpor) 509 112 92 Cement Souselas (Cimpor) 1 719 333 93 Cement Cibra Pataias (CMP) 479 892 Total 29 883 764 (81%) Others 7 002 404 (19%) Total allowances 36 886 068 (100%)
The Real Problem Is the European Union able to: reduce fossil fuel industrial combustion emissions by CO2 capture + sequestration/storage, and implement CO2 capture + storage technologies economically, i.e., in a competitive way with the emissions allowance trading system of the EU Directive 2003/87/EC, therefore permitting medium and long term sustainable competitiveness, both in energy production and industrial development?
Storage Sites Herzog et all, 2000
Some Constraints and Guidelines The disposal of the captured CO2 presents long term challenges that may be best addressed through geological storage in favourable locations. Amongst the technologies proposed for CO2 storage in natural bodies, there are some still at the very early stages of development and therefore require much greater understanding before they can be put into practice.
Some Constraints and Guidelines (Continuation 1) In contrast, geologic storage in coal seams of abandoned mines and/or in deep unmineable seams is a technology presently easy to implement and considered to be the best longer term option [1]. In this case the CO2 is considered to be stored as adsorbed/dissolved in coal pores/matrix under already well known conditions, most of them recently developed in the scope of Coalbed Methane (CBM) prospecting, exploring and exploiting [2, 3, 4]. However, although this is the most promising way to mitigate CO2 emissions, the involved methodologies still require concentrated research to be fully developed. [1] Gentzis, 2000, Int. J. Coal Geology, 43, 287-305; [2] Ozdemir et al, 2004, Fuel, 83, 1085-1094; [3] Larsen, 2004, Int. J. Coal Geology, 57, 63-70; [4] Rodrigues, 2002, PhD Thesis, Faculty of Sciences, University of Porto
Some Constraints and Guidelines (Continuation 2) The Killer Lakes problem Nyos and Monoun lakes, Cameroon Kivu lake, Ruanda
CO2 Projects European CO2 Capture and Storage Projects IEA Greenhouse Gas R&D Programme R&D, Demonstration and Commercial Projects Database EOR Enhanced Oil Recovery EGR Enhanced Gas Recovery ECBM Enhanced CBM USA The Coal-Seq II Consortium: Advancing the Science of CO2 Sequestration in Deep, Unmineable Coalseams
Basic and fundamental studies in CBM prospecting/exploring Total moisture and Moisture Holding Capacity analyses Density Proximate and Ultimate analyses Petrographic analyses (Reflectance, Macerals, Microlithotypes, Carbominerites and Minerite) Mineral Matter content by low-temperature ashing Chemical and mineralogical analyses of the mineral matter Isotopic composition of produced gas Palaeofacies of coal sedimentation Q1 (lost), Q2 (desorbed) and Q3 (residual) gas contents Molar composition of the produced gas Gas sorption (adsorption + desorption) ) isotherms Detailed study of the Cleat System Water produced with Coalbed Methane
Cristina Fernanda Alves Rodrigues The application of isotherm studies to evaluate the Coalbed Methane potential of the Waterberg Basin, South Africa Universidade do Porto, Faculdade de Ciências Departamento de Geologia Dezembro 2002
Outline Implementation of Pilot Project Objectives Scientific: to define the CO2 storage capacity in a range of coal beds of different geologic characteristics. The storage capacities will be assessed mainly through the use of sorption isotherms and the detailed study of the coal cleat system. Technical: to establish the feasibility of a CO2-free industry based on CO2 storage in coal seams (abandoned mines or non-mined deep seams) done by a systematic study of selected sites. Expected outcome An assessment of the scientific controls to the adsorption of CO2 in a range of typical coal seams, and the selection of abandoned or non-mined deep coal seams in Europe as suitable sites for CO2 storage.
Outline Implementation of Pilot Project Main Tasks (Continuation 1) WP1 Sites full characterization and evaluation 1. Selection criteria 2. Modelling of selected sites a. Coal reserves/resources and underground geometry of existing seams b. Boreholes c. Laboratory analyses and calculations 3. Monitoring of eventual CBM and/or CMM emissions, and associated water production WP2 Pilot feasibility tests: Borehole drilling, CO2 injection tests and diffusion monitoring WP3 Economic analysis Economics of capture + storage costs versus allowance trading costs in the exchange spot market (the technologies under study will only be applicable in practice if the costs are competitive with those of gas emission allowances trading under the EU Directive 2003/87/EC)
Outline Implementation of Pilot Project Additional Tasks (Continuation 2) 1. Refinement of monitoring and statistics of CO2 emissions by the industry 2. Legal Aspects of CO2 Storing 3. CO2 capture: status of technologies and case studies 4. Socio-economic analysis
Outline Implementation of Pilot Project (Continuation 3) Portuguese Partners Consortium Air Liquide Group AL Centro de Engenharia Mecânica, Instituto Superior Técnico IDMEC/IST Centro de Estudos em Economia e Energia dos Transportes e do Ambiente, Universidade Nova de Lisboa - CEEETA/UNL Centro de Geologia da Universidade do Porto CGUP Centro de Modelação e Análise de Sistemas Ambientais, Universidade Fernando Pessoa CEMAS/UFP Centro de Valorização de Recursos Minerais, Instituto Superior Técnico CVRM/IST Faculdade de Direito da Universidade Católica FDUC Grupo de Emissões, Modelação e Alteração Climáticas, Universidade de Aveiro GEMAC/UA Laboratório de Sistemas, Instrumentação e Modelação em Ciências e Tecnologias do Ambiente e do Espaço (SIM) do Laboratório Associado Instituto D. Luiz (IDL)
Terrestrial Carboniferous and Lower Permian Occurrences in the Western Part of the Iberian Peninsula (After Wagner, 1983) 3 Douro Coalfield Potentially Most Suitable Coalfields for CBM Prospecting/Exploring (decreasing order of importance) 18 Ciňera-Matallana 14 Cerredo Villablino 21 La Pernía Barruelo 16 Central Asturian Coalfield 15 El Bierzo (After Lemos de Sousa & Pinheiro, 1996)
Douro Beira Carboniferous Trough
Douro Beira Carboniferous Trough
Douro Coalfield
Douro Coalfield
Douro Coalfield
Douro Coalfield Samples (daf) Nr Ash (db) VM C H O Reflectivity LS 15 3.60 3.42 95.02 1.87 1.66 6.07± 0.004 LS 20 6.40 4.70 94.23 2.03-5.44± 0.05
Douro Coalfield Sorption Isotherm of Sample LS 15 (Floor complex) Gas Content (scf/ton) 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 Sample nr: LS-15 Gas Composition: CO2 M: 20,0% Max adsorp: 761,56scf/ton (P = 684,02 psi) 21.57 m 3 /ton 87 ton CO 2 /ton coal Langmuir eq: V=(Px937,04)/(P+140,17) 0 100 200 300 400 500 600 700 Pressure (psi) Adsorption Desorption Isotherm
Douro Coalfield Sorption Isotherm of Sample LS 20 (Roof complex) 550 500 450 400 Gas Content (scf/ton) 350 300 250 200 150 100 50 0 Sample nr: LS-20 Gas Composition: CO2 M: 16,3% Max adsorp: 501,74scf/ton (P = 525,19 psi) 14.21 m 3 /ton 60 ton CO 2 /ton coal Langmuir eq: V=(Px631,79)/(P+167,69) 0 100 200 300 400 500 600 700 Pressure (psi) Adsorption Desorption Isotherm
Sample LS 15 Diffusion during Total Adsorption Total Adsorption 0,000025 Diffusion coefficient (cm2/sec) 0,00002 0,000015 0,00001 0,000005 0-0,000005 0 5 10 15 20 25 30 35 40 45 50 Pressure step (bar) Pressure step (bar) Total Adsorption Diffusion coefficient (cm2/sec) 7,5563 1,91559E-05 17,9195 7,89003E-11 28,2675 6,69771E-11 38,07207 4,07441E-10 47,16294 1,23817E-09
Sample LS 15 Diffusion during Total Desorption Total Desorption 8E-10 7E-10 Diffusion coefficient (cm2/sec) 6E-10 5E-10 4E-10 3E-10 2E-10 1E-10 0-1E-10 0 5 10 15 20 25 30 35 40 45 Pressure step (bar) Pressure step (bar) Total Desorption Diffusion coefficient (cm2/sec) 42,2241 1,13427E-10 35,1197 1,83464E-12 28,7719 7,24207E-10 22,169 3,1229E-10 15,3454 1,40779E-11 10,7688 2,65901E-10 7,7121 1,84538E-10
Sample LS 15 Diffusion during Adsorption/Desorption 0,000025 Diffusion Diffusion coefficient (cm2/sec) 0,00002 0,000015 0,00001 0,000005 0-0,000005 0 5 10 15 20 25 30 35 40 45 50 Pressure step (bar) Adsorption Desorption
Wall complex (seam nr 1) Borehole total length (estimated): 377m Coalseam thickness (estimated): 2m
Roof complex (nr (seam 4 seam) nr 4 seam) Borehole Total total length (estimated): 146m Coal bed (estimated): 2.5m Coalseam thickness (estimated): 2.5m
Pressurising energy requirements Gielen, 2003