Repetitive firing (layer 2/3) May 1998

Similar documents
Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods Yes Yes No No.

Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law Medical Biophysics 3970

Action Potentials I Generation. Reading: BCP Chapter 4

Lab 1: Simulation of Resting Membrane Potential and Action Potential

BIOPHYSICS OF NERVE CELLS & NETWORKS

The Membrane Equation

Passive Conduction - Cable Theory

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential

Model Neurons I: Neuroelectronics

How To Understand The Distributed Potential Of A Dendritic Tree

The Action Potential Graphics are used with permission of: adam.com ( Benjamin Cummings Publishing Co (

The Time Constant of an RC Circuit

Stochastic modeling of a serial killer

Biological Neurons and Neural Networks, Artificial Neurons

Slide 1. Slide 2. Slide 3. Cable Properties. Passive flow of current. Voltage Decreases With Distance

Refractoriness and Neural Precision

Bi 360: Midterm Review

See Horenstein 4.3 and 4.4

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

Frequency Response of Filters

EXCITABILITY & ACTION POTENTIALS page 1

Measurement of Capacitance

Refractoriness and Neural Precision

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

Simulating Spiking Neurons by Hodgkin Huxley Model

Appendix 4 Simulation software for neuronal network models

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

CHAPTER 5 SIGNALLING IN NEURONS

The FitzHugh-Nagumo Model

The Leaky Integrate-and-Fire Neuron Model

1 Example of Time Series Analysis by SSA 1

Wiring optimization in the brain

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski

Simulating a Neuron Soma

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Biology Slide 1 of 38

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor

Lab 6: Bifurcation diagram: stopping spiking neurons with a single pulse

Multimodal Transition and Excitability of a Neural Oscillator

Nerves and Conduction of Nerve Impulses

Cross channel correlations in tetrode recordings: implications for spike-sorting.

Lab 2: Resistance, Current, and Voltage

PART I: Neurons and the Nerve Impulse

Correlated Neuronal Response: Time Scales and Mechanisms

Series and Parallel Resistive Circuits

12. Nervous System: Nervous Tissue

Synaptic depression creates a switch that controls the frequency of an oscillatory circuit

Circuit Analysis using the Node and Mesh Methods

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain).

DENDRITIC INTEGRATION OF EXCITATORY SYNAPTIC INPUT

Field-Effect (FET) transistors

SERIES-PARALLEL DC CIRCUITS

Bayesian probability theory

Self Organizing Maps: Fundamentals

Chapter 7 Direct-Current Circuits

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DURING last few years we have witnessed a shift of the emphasis

Determine If An Equation Represents a Function

Masters research projects. 1. Adapting Granger causality for use on EEG data.

Theta, Gamma, and Working Memory

Lab #6: Neurophysiology Simulation

Nodus 3.1. Manual. with Nodus 3.2 Appendix. Neuron and network simulation software for Macintosh computers

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in Written By: Tristan Miller Tristan@CatherineNorth.com

Bistability in a Leaky Integrate-and-Fire Neuron with a Passive Dendrite

Learning to classify complex patterns using a VLSI network of spiking neurons

Cable and Compartmental Models of Dendritic Trees

Origin of Electrical Membrane Potential

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

INTERFERENCE OF SOUND WAVES

13.10: How Series and Parallel Circuits Differ pg. 571

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Ion Channels. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

Step Response of RC Circuits

Agent Simulation of Hull s Drive Theory

Electrical Resonance

The Action Potential

Inductors in AC Circuits

CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS.

Precision Diode Rectifiers

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

Chapter 7: The Nervous System

Confidence Intervals for One Standard Deviation Using Standard Deviation

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

LOCAL LARGEST LYAPUNOV EXPONENT IS CRITICAL TO THRESHOLD VOLTAGE AND REFRACTORY PERIODS FOR HODGKIN-HUXLEY MODEL

Nerves and Nerve Impulse

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in Written By: Tristan Miller Tristan@CatherineNorth.com

Resistors in Series and Parallel

Section 1.4 Place Value Systems of Numeration in Other Bases

Experiment NO.3 Series and parallel connection

Experiments on the Basics of Electrostatics (Coulomb s law; Capacitor)

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR

A Biophysical Network Model Displaying the Role of Basal Ganglia Pathways in Action Selection

Problem Solving 8: RC and LR Circuits

The MOS Transistor in Weak Inversion

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Resting membrane potential ~ -70mV - Membrane is polarized

Electrophysiological Properties of Inferior Olive Neurons: A Compartmental Model

Transcription:

Proceedings of the 5th Joint Symposium on Neural Computation (1998) UCSD, La Jolla, CA Corresponding author: A Zador (zador@salkedu) Novel Integrate-and-re-like Model of Repetitive Firing in Cortical Neurons Charles F Stevens The Salk Institue Biological Studies La Jolla, CA 92037 Anthony M Zador The Salk Institue Biological Studies La Jolla, CA 92037 Abstract Cortical neurons convert synaptic inputs arising from thousands of other neurons into a single output spike train In order to better understand this basic computation, we have derived a simple repetitive ring model from the Hodgkin-Huxley equations This novel model is related to the conventional integrate-and-re model, but uses a time-varying time constant (whose value follows a stereotyped trajectory after each spike) in place of the usual xed time constant The model, whose parameters can be extracted from as few as two interspike intervals, provides an excellent t to the responses of cortical neurons in vitro to both constant and time-varying inputs Neurons in the cortex convert the synaptic input generated by thousands of other neurons into an output spike train Because this transformation is central for cortical computation, an understanding of the computation performed by cortical circuits requires an understanding of this basic inputoutput transformation Encoding is, at least in principle, well understood The basic framework for our modern understanding was provided by Hodgkin and Huxley almost fty years ago [Hodgkin and Huxley, 1952] They showed that spike generation in the axon of the giant squid could be described in terms of just two distinct nonlinear conductance mechanisms: a sodium channel, and a potassium channel Since that time, hundreds of new channels have been identied Dozens of channels coexist in single cortical neurons, distributed inhomogeneously throughout the dendritic tree Thus while a description of the squid axon required measurement of the properties of only two channels, and the corresponding one or two dozen parameters, a comparably complete and accurate description of a cortical neuron a description of each channel, along with its distribution throughout the dendritic tree would require measurement of thousands of parameters In practice, such a feat remains beyond the capacity of current experimental techniques Moreover, even if it were possible, a complete description might be too complex to be of much use We have therefore pursued a dierent strategy We have asked what the simplest model is that can account for the ring of cortical cells Fig 1 shows typical repetitive ring in a regular-ring layer 2/3 cortical neuron Our goal, then, is to derive a simple model of such responses to a constant stimulation, and of the responses to more complex stimuli

Repetitive firing (layer 2/3) 031197 31 May 1998 Figure 1: Repetitive ring in a layer 2/3 cortical neuron The responses to injection of constant current ateach of three stimulus intensities (bottom to top: 0:1, 0:24 and 0:32 na) are shown Standard slice recording methods were used (see [Stevens and Zador, 1998] for details) Calibration:100 msec, 20 mv 1 Conventional integrate-and-re model The conventional simple model of repetitive ring is the leaky integrate-and-re mechanism [Tuckwell, 1988] Let I(t) is the input to a leaky integrator with a time constant and a threshold As long as the voltage is subthreshold, V (t) <, the voltage is given by C _ V =, V (t), V rest R n + I(t); (1) where _ V is the time derivative of V (t), Rn is the input resistance, C = =R n is the membrane capacitance, and V rest is the resting potential At the instant the voltage reaches the threshold, the neuron emits a spike, and resets to some level V reset < The ve parameters of this model,, V reset, V rest, and R n, determine its response to a given input current This model might be expected to provide a good t to data if (1) neurons have sharp spike threshold; and (2) the subthreshold behavior is well described as a simple passive circuit Direct inspection of Fig 1 conrms that this neuron does have have a rather sharp spike threshold In order to test whether the second condition is met, we injected a hyperpolarizing current step from the rest potential V rest =,0 mv Fig 2A shows that, indeed, the subthreshold behavior is well-described by a simple R-C circuit, with a time constant of = 15 msec and an input resistance of R n = 150 M Thus two basic conditions of the simple integrate-and-re model are satised To test whether this simple integrate-and-re model could account for the this repetitive ring, the two remaining parameters (the threshold and the reset voltage V reset ) were determined by inspection of Fig 1 Fig 2B shows that the model provides a very poor t to the data The model overestimates by almost three-fold the actual spike rate Why has the standard integrate-and-re model failed so dramatically? A more detailed view of a single experimentally recorded interspike interval (Fig 2C) shows that the voltage follows a smooth concave trajectory By contrast, the model shows an convex exponential approach to threshold, as required by Eq 1 This suggests that a third basic assumption implicit in the standard integrate-and- re model that the subthreshold behavior during repetitive spiking is the same as that near rest is not satised The voltage trajectory during the interval between spikes suggests a fundamental way in which the standard integrate-and-re model fails

Subthreshold passive properties τ = 15 msec R n = 150 MΩ data model Integrate and fire model 031197 // 13 May 1998 model (thin): 80 spikes data (thick): 28 spikes 031197 13 May 1998 Integrate and fire model (detail) 10 mv 10 msec 031197 13 May 1998 Figure 2: Conventional integrate-and-re model fails to account for repetitive ring A, top left The subthreshold response to a,0:04 na hyperpolarizing current step is well described as a simple passive circuit, with a time constant of 15 msec and an input resistance of 150 M The data are taken from the same layer 2/3 cortical neuron shown in the previous gure B, top right The passive properties measured from the subthreshold response, along with the measured spike threshold and reset, lead to an integrate-and-re model that dramatically overestimates the spike rate C, bottom A close-up of a single experimentally recorded interspike interval is compared to the 2 or 3 corresponding model intervals The model shows an exponential convex approach to threshold, while the experimental record shows amuch smoother concave approach 2 Time-varying integrate-and-re model Why did the conventional integrate-and-re model fail? In order to understand the problem, let us return to the underlying Hodgkin-Huxley equations for a single compartment Hodgkin-Huxley model, C _ V =, N X i g i [V (t), E i ]+I(t); (2) where V (t) is the membrane voltage, C is the cell capacitance, g i (t; V (t)) are the N time- and voltagedependent conductances (such the fast sodium conductance underlying an action potential, as well as the passive membrane conductance), E i are the associated batteries, and I(t) is an externally injected current We can rewrite Eq (2) as C _ V =, V (t), E(t) R(t) + I(t); (3) where we have dened R(t) = P i 1=g i and E(t) =R(t) P i E ig i R(t) is a time-varying resistance corresponding to the trajectory of the inverse of the total conductance following an action potential, while E(t) is the associated driving force Eqs (2) and (3) are formally equivalent During the brief millisecond or two of an action potential, the underlying conductances typically follow a rather stereotyped trajectory Do the conductances and batteries between action potentials show similarly stereotyped behavior? To answer this, we must estimate R(t) and E(t) for a single interspike inteval

100 Time varying membrane parameters 10 Instantaneous time constant Resistance (MΩ) or battery (mv) 80 0 40 20 0 20 40 0 031197 31 May 1998 80 0 5 10 15 20 25 Time since last spike (msec) τ (msec) 8 4 2 031197 14 May 1998 0 0 5 10 15 20 25 30 Time since last spike (msec) Figure 3: Resistance and driving forces following an action potential show stereotyped behavior A, left The time-varying resistor R(t) (upper curve) and driving force E(t) (lower curves), computed from Eq (4), are plotted as a function of the time since the last action potential Each data curve was computed from ISIs representing responses to a dierent pair of stimuli (0:1 & 0:24 or 0:24 & 0:32 na), which together span the entire range of stimuli tested The fact that the derived curves are nearly superimposed upon each other over this wide range of stimuli indicates the R(t) and E(t) behave in a stereotyped fashion that is essentially independent of the ring rate The smooth ts, used to generate the model repsonses in subsequent gures, were given by R(t) = 14=(0:05 + e,t=3 + e,t=12 ) M and E(t) =,32, 0:5t mv B, right The time-varying resistance can also be thought of as a time-varying time constant Here the time-varying resistance from (A) has been replotted following multiplication by the membrane capacitance C 21 Estimating R(t) and E(t) In order to compute the trajectories from data, it is convenient to rewrite Eq (3) as i R(t) hi(t), C V _ (t) + E(t) =V (t): (4) This form emphasizes that at each time point t, the unknown quantities R(t) and E(t) can be estimated from the known quantities I(t), C (estimated from the passive membrane time constant), V (t), and V _ (computed from V (t)) In matrix form, this means wehave to solve the following matrix equation at each point t in time, 2 4 (I 1 (t), C V1 _ (t)) 1 (I i (t), C Vi _ (t)) 1 (I N (t), C VN _ (t)) 1 3 7 5 {z } A(t) R(t) E(t) {z } x(t) = 2 4 V 1 (t) V i (t) V N (t) 3 7 5 {z } b(t) where the subscripts index over the N trials The least squares solution for x(t) is given by (5) x(t) =A + (t) b(t) () where A + (t) is the pseudoinverse of A(t) For the computed quantities to be meaningful, at least two measurements at dierent current stimulus intensities That is, there are two unknowns at each time point, so responses to at least two distinct stimuli I(t) must be available If N = 2 the pseudoinverse corresponds to the standard inverse Of course there can be more: N 2 Fig 3A shows R(t) and E(t) extracted from two distinct pairs of ISIs (N = 2) The top curves show that R(t) is essentially identical for the two pairs, indicating that R(t) does indeed show a stereotyped trajectory that is largely independent of the applied stimulus I(t) Immediately after the action potential R(t) is very small, reecting the large sodium and potassium conductances

Time varying stimulus 24 f I curves (3 11) 22 20 instantaneous firing rate (Hz) 18 1 14 12 model data 10 8 015 02 025 03 current (na) 031197 5 14 May 1998 Figure 4: The model matches the data A, left The model matches the f-i curve The measured (open circles) and predicted (solid line) ring rates are plotted as a function of input current The predicted ring frequency was computed using the measured values of R(t) and E(t); the only remaining free paramter, the ring threshold, was determined by inspection Error bars indicate standard deviation B, right The model predicts the response to a uctuating current (Top) The actual (dotted) voltage trace is compared with that predicted (solid) from the measured E(t) and R(t) function The two curves agree best in the middle, but diverge a bit at the edges because of spike frequency adaptation Spikes to 40 mv were pasted on the predicted curve when the voltage crossed threshold (Bottom) The injected current) still open The resistance then increases nearly linearly throughout the entire interspike interval We have t the resistance with the empirical function R(t) = 14=(0:05 + e,t=3 + e,t=12 ); while this function was motivated by the considering the exponential decay of two conductances, its real justication is just that it ts the data The bottom curves in Fig 3A show that the time-varying driving force E(t) also exhibits a stereotyped trajectory during the interspike interval Immediately following the action potential E(t) is only somewhat more negative than threshold (which in this cell as -22 mv) It then decreases very linearly over the next 30 msec or so to rest (-0 mv) 22 Time-varying time constant The time-varying resistance can also be thought of as producing a time-varying time constant Fig 3B shows the result of multiplying the time-varying resistance shown in Fig 3A by the membrane capacitance The result is an \instantaneous" time constant whose value follows the same stereotyped trajectory as R(t) It is interesting to note that this time constant starts a very short value only about 1 msec and then increases to only 10 msec The fact that this instantaneous time constant is so short implies that cortical neurons integrate their inputs over only a relatively short time 23 Fit to data How well does this revised integrate-and-re model t the data? We used the empirical spike threshold, along with the calculated R(t) and E(t) shown in Fig 3, to generate model spike trains We rst tested its response to constant inputs of the sort illustrtated in Fig 1A Fig 4A shows that, using the measured values of R(t) and E(t), the time-varying model matches the f-i curve quite well Recall that, by contrast, the standard integrate-and-re model does not (Fig 2) As a further test, we compared the predicted and actual responses to time-varying input The timevarying input used here can be thought ofas the synaptic current that would be expected at the soma if there neuron were driven by many independent synaptic inputs [Stevens and Zador, 1998] Fig 4B shows that the model matches the data very closely here as well (The failure of the model to match the rst and last few spikes is due to spike-frequency adaptation, which we have not considered here)

3 Conclusions We have presented a simple model of repetitive ring that can account for the responses of cortical neurons to both constant and time-varying inputs The model was derived from the Hodgkin-Huxley equations, and so is well grounded in the basic biophysics of repetitive ring The model is closely related to the standard integrate-and-re model, but instead of assuming time-invariant behavior the present model assumes that the membrane properties follow a stereotyped trajectory following each spike The parameters of this novel model can be extracted from measurement of two pairs of interspike intervals References [Hodgkin and Huxley, 1952] Hodgkin, A L and Huxley, A F (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve J Physiol, 117:500{544 [Stevens and Zador, 1998] Stevens, C F and Zador, A M (1998) Input synchrony and the irregular ring of cortical neurons Nature Neuroscience, page in press [Tuckwell, 1988] Tuckwell, H (1988) Introduction to theoretical neurobiology (2 vols) Cambridge