Stochastic modeling of a serial killer
|
|
|
- Earl Gallagher
- 9 years ago
- Views:
Transcription
1 Stochastic modeling of a serial killer M.V. Simkin and V.P. Roychowdhury Department of Electrical Engineering, University of California, Los Angeles, CA We analyze the time pattern of the activity of a serial killer, who during twelve years had murdered 53 people. The plot of the cumulative number of murders as a function of time is of Devil s staircase type. The distribution of the intervals between murders (step length) follows a power law with the exponent of.4. We propose a model according to which the serial killer commits murders when neuronal excitation in his brain exceeds certain threshold. We model this neural activity as a branching process, which in turn is approximated by a random walk. As the distribution of the random walk return times is a power law with the exponent.5, the distribution of the inter-murder intervals is thus explained. We confirm analytical results by numerical simulation. Figure shows a time-plot of the cumulative number of murders committed by Andrei Chikatilo [] during his twelve-year long career. It is highly irregular with long time intervals without murder interrupted by jumps, when he murdered many people during a short period. Such a curve is known in mathematics as a Devil s staircase []. We can characterize the staircase by the distributions of step lengths. Figure shows such distributions for the staircase of Figure. The plots look linear in log-log coordinates, which suggest that the distributions follow a power law. The exponent of the power law of the probability density distribution (in the region of more than 6 days) is cumulative number of murders 4 3 //78 8/3/8 4/5/8 /6/83 7/8/85 3//87 /3/88 6//9 Figure. Chikatilo s staircase shows how the total number of his murders grew with time. The time span begins with his first murder on //978 and ends with his arrest on //99. The shortest interval between murders was three days and the longest 986 days.
2 number of days between murders simulation probability density number of days between murders. simulation.. rank (a).. Figure. Distribution of step length (intervals between murders) in Zipfian (a) and probability density (b) representations. Recently Osorio et al [3] reported a similar power-law distribution (with the exponent.5) of the intervals between epileptic seizures. We proposed a stochastic neural network model [4], which explained that finding. Here we apply a similar model to explain the distribution of intervals between murders. It may seem unreasonable to use the same model to describe an epileptic and a serial killer. However, Lombroso [5] long ago pointed out a link between epilepsy and criminality. A link between epilepsy and psychosis had been also established [6]. Thus, one may speculate that similar processes in the brain may lead to both epileptic seizures and serial killings. We make a hypothesis that, similar to epileptic seizures, the psychotic affects, causing a serial killer to commit murder, arise from simultaneous firing of large number of neurons in the brain. Our neural net model for epileptics [4] and serial killers is as follows. After a neuron has fired, it cannot fire again for a time interval known as refractory period. Therefore, the minimum interval between the two subsequent firings of a neuron is the sum of spike duration and refractory period. This interval is few milliseconds and we will use it as our time unit. Consider one particular firing neuron. Its axon connects to synapses of thousands of other neurons. Some of them are almost ready to fire: their membrane potential is close to the firing threshold and the impulse from our neuron will be sufficient to surpass this threshold. These neurons will be firing next time step and they are can be called children of our neuron in the language of the theory of branching processes [7]. There are thousands of neurons that can be induced to fire by our neuron and the probability for each of them to be induced is small. Thus, the number of induced firings is Poisson distributed. If at given time step N neurons are firing then the number of neurons firing the next time step will come from a Poisson distribution with mean λ N. In addition to induced firings, some neurons will fire spontaneously. We assume that the number of spontaneously firing neurons at each time step comes from a Poisson distribution with mean p. The change in the number of firing neurons is ( ) N + p N z N = λ + () (b)
3 where z is a normally distributed random number with zero mean and unit variance. The number of firing neurons, N, performs a random walk, with the size of the step proportional to N. We can simplify Eq.() by changing variable from N to x = N. We get [4]: x = ( λ ) x 8 p + x z () In the limit of large x, we can neglect the term, inversely proportional to x. When λ is very close to unity the first term can also be neglected. Equation () reduces to x = z which means that N performs a simple random walk. A well know result in random walk theory is that the distribution of first return times follows a power law with an exponent of 3/. We assume that the killer commits murder when the number of firing neurons reaches certain threshold. Then the distribution of first returns into murder zone (inter-murder intervals) is the same as the distribution of random walk s return times. The model needs to be a bit more complex. We cannot expect that the killer commits murder right at the moment when neural excitation reaches a certain threshold. He needs time to plan and prepare his crime. So we assume that he commits murder after the neural excitation was over threshold for certain period d. Another assumption that we make is that a murder exercises a sedative effect on the killer, causing neural excitation to fall below the threshold. If we do not make this last assumption, the neural excitation will be in the murder zone for half of the time. We made numerical simulations of the above model. We set λ = which corresponds to the critical branching process in neuron firing. This selection is not arbitrary since some experiments [8] suggest that neural circuits operate in critical regime. There are also theoretical reasons to believe that the brain functions in a critical state [9]. The system was simulated for time steps. Remember that time step is the sum of firing duration and refractory period. 6 5 cumulative number of murders time (in years) Figure 3. Results of numerical simulation of the stochastic serial killer model. The distribution of step length is shown in Figure.
4 A reasonable estimate for this is two milliseconds. Thus, our simulation run corresponds to about twelve years. The rate of spontaneous firing was set at p =.. The intensity threshold 9 was set at firing neurons. The time threshold, d, was set at 4 hours. Figures -3 show the results of these simulations. They decently agree with the experimental data. The major disagreement is probably that the actual minimum number of days between murders is three, while the simulation produces a dozen inter-murder periods of one day. One could enhance the model by introducing a murder success rate. That is with certain probability everything goes well for the killer and he is able to commit the murder as he planned. If not, he repeats his attempt the next day. And so on. One could surely obtain a better agreement with experimental data, but this would be achieved by the price of introducing an extra parameter into the model. An interesting question to ask is how the probability to commit a new murder depends on the time passed since the last murder. Suppose the killer committed his last murder n days ago. From the random-walk approximation, we immediately get that the probability to commit a murder dm today is equal to =. Figure 4 shows this curve together with the. 3 n n n m 3 There is at least qualitative agreement between theory and observation. In particular, the probability of a new murder is significantly higher than the average murder rate immediately after murder and is significantly lower than the average murder rate when long time has passed since the last murder murder probability theory average rate days since last murder Figure 4. Daily murder probability as a function of the number of days passed since the last murder. The actual murder probability on nth day after previous murder is computed the following way. First, we divide the number of murders, which happened exactly on nth day by the total number of murders that happened on nth or later day. Afterward we average this over corresponding bins. The average murder rate is the total number of murders committed by Chikatilo divided by the length of the period during which he committed those murders.
5 References. B. B. Mandelbrot The fractal geometry of nature (Freeman, New York, 983) 3. Osorio I., Frei M. G., Sornette D. and Milton J. Pharmaco-resistant seizures: selftriggering capacity, scale-free properties and predictability? European Journal of Neuroscience, 3 (9) M.V. Simkin and V.P. Roychowdhury An explanation of the distribution of inter-seizure intervals Europhysics Letters 9 () C. Lombroso, Criminal man (876). 6. E. Slater and A. W. Beard The Schizophrenia-like Psychoses of Epilepsy British Journal of Psychiatry 9 (963) M.V. Simkin and V.P. Roychowdhury Re-inventing Willis Physics Reports 5 () ; 8. Beggs, J.M. and Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci., 3 (3) P. Bak How nature works: the science of self-organized criticality (Copernicus, New York, 999)
Theory of Aces: Fame by chance or merit?
Theory of Aces: ame by chance or merit? MV Simkin and VP Roychowdhury Department of Electrical Engineering, University of California, Los Angeles, CA 995-594 Abstract We study empirically how fame of WWI
12.5: CHI-SQUARE GOODNESS OF FIT TESTS
125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
The problem with waiting time
The problem with waiting time Why the only way to real optimization of any process requires discrete event simulation Bill Nordgren, MS CIM, FlexSim Software Products Over the years there have been many
Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.
Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing
Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2
Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2 Due Date: Friday, March 11 at 5:00 PM This homework has 170 points plus 20 bonus points available but, as always, homeworks are graded
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression
RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS
Application Example 1 (Probability of combinations of events; binomial and Poisson distributions) RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS Note: Sections 1, 3 and 4 of this application
Jitter Measurements in Serial Data Signals
Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Biological Neurons and Neural Networks, Artificial Neurons
Biological Neurons and Neural Networks, Artificial Neurons Neural Computation : Lecture 2 John A. Bullinaria, 2015 1. Organization of the Nervous System and Brain 2. Brains versus Computers: Some Numbers
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
Bayesian probability theory
Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 2 The Neural Impulse Name Period Date MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The cell body is enclosed by the. A) cell membrane
People have thought about, and defined, probability in different ways. important to note the consequences of the definition:
PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models
CHI-SQUARE: TESTING FOR GOODNESS OF FIT
CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
CHAPTER 5 SIGNALLING IN NEURONS
5.1. SYNAPTIC TRANSMISSION CHAPTER 5 SIGNALLING IN NEURONS One of the main functions of neurons is to communicate with other neurons. An individual neuron may receive information from many different sources.
Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law 250560559. Medical Biophysics 3970
Simulation of an Action Potential using the Hodgkin-Huxley Model in Python Nathan Law 250560559 Medical Biophysics 3970 Instructor: Dr. Ian MacDonald TA: Nathaniel Hayward Project Supervisor: Dr. Andrea
8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes
Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us
The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy
BMI Paper The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy Faculty of Sciences VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam Netherlands Author: R.D.R.
Passive Conduction - Cable Theory
Passive Conduction - Cable Theory October 7, 2013 Biological Structure Theoretical models describing propagation of synaptic potentials have evolved significantly over the past century. Synaptic potentials
Wiring optimization in the brain
Wiring optimization in the brain Dmitri B. Chklovskii Sloan Center for Theoretical Neurobiology The Salk Institute La Jolla, CA 92037 [email protected] Charles F. Stevens Howard Hughes Medical Institute and
Military Reliability Modeling William P. Fox, Steven B. Horton
Military Reliability Modeling William P. Fox, Steven B. Horton Introduction You are an infantry rifle platoon leader. Your platoon is occupying a battle position and has been ordered to establish an observation
Tenth Problem Assignment
EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious
Introduction to time series analysis
Introduction to time series analysis Margherita Gerolimetto November 3, 2010 1 What is a time series? A time series is a collection of observations ordered following a parameter that for us is time. Examples
Solving simultaneous equations using the inverse matrix
Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix
The correlation coefficient
The correlation coefficient Clinical Biostatistics The correlation coefficient Martin Bland Correlation coefficients are used to measure the of the relationship or association between two quantitative
Betting on Volatility: A Delta Hedging Approach. Liang Zhong
Betting on Volatility: A Delta Hedging Approach Liang Zhong Department of Mathematics, KTH, Stockholm, Sweden April, 211 Abstract In the financial market, investors prefer to estimate the stock price
ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
Simulating Spiking Neurons by Hodgkin Huxley Model
Simulating Spiking Neurons by Hodgkin Huxley Model Terje Kristensen 1 and Donald MacNearney 2 1 Department of Computing, Bergen University College, Bergen, Norway, [email protected] 2 Electrical Systems Integration,
INTRUSION PREVENTION AND EXPERT SYSTEMS
INTRUSION PREVENTION AND EXPERT SYSTEMS By Avi Chesla [email protected] Introduction Over the past few years, the market has developed new expectations from the security industry, especially from the intrusion
Confidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
Analysis of a Production/Inventory System with Multiple Retailers
Analysis of a Production/Inventory System with Multiple Retailers Ann M. Noblesse 1, Robert N. Boute 1,2, Marc R. Lambrecht 1, Benny Van Houdt 3 1 Research Center for Operations Management, University
Hydrodynamic Limits of Randomized Load Balancing Networks
Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli
Lecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
Curve Fitting, Loglog Plots, and Semilog Plots 1
Curve Fitting, Loglog Plots, and Semilog Plots 1 In this MATLAB exercise, you will learn how to plot data and how to fit lines to your data. Suppose you are measuring the height h of a seedling as it grows.
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Confidence Intervals for Exponential Reliability
Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion
Trading activity as driven Poisson process: comparison with empirical data
Trading activity as driven Poisson process: comparison with empirical data V. Gontis, B. Kaulakys, J. Ruseckas Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 2, LT-008
Series and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
University of Michigan Dearborn Graduate Psychology Assessment Program
University of Michigan Dearborn Graduate Psychology Assessment Program Graduate Clinical Health Psychology Program Goals 1 Psychotherapy Skills Acquisition: To train students in the skills and knowledge
99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm
Error Analysis and the Gaussian Distribution In experimental science theory lives or dies based on the results of experimental evidence and thus the analysis of this evidence is a critical part of the
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
Lesson 7 - The Aggregate Expenditure Model
Lesson 7 - The Aggregate Expenditure Model Acknowledgement: Ed Sexton and Kerry Webb were the primary authors of the material contained in this lesson. Section : The Aggregate Expenditures Model Aggregate
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor
The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.
The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc) ** If this is not printed in color, it is suggested you
HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Statistical estimation using confidence intervals
0894PP_ch06 15/3/02 11:02 am Page 135 6 Statistical estimation using confidence intervals In Chapter 2, the concept of the central nature and variability of data and the methods by which these two phenomena
Lecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
SENSITIVITY ANALYSIS AND INFERENCE. Lecture 12
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart
Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart Overview Due Thursday, November 12th at 11:59pm Last updated
4 The M/M/1 queue. 4.1 Time-dependent behaviour
4 The M/M/1 queue In this chapter we will analyze the model with exponential interarrival times with mean 1/λ, exponential service times with mean 1/µ and a single server. Customers are served in order
Cumulative Diagrams: An Example
Cumulative Diagrams: An Example Consider Figure 1 in which the functions (t) and (t) denote, respectively, the demand rate and the service rate (or capacity ) over time at the runway system of an airport
A Non-Linear Schema Theorem for Genetic Algorithms
A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland
Brain Basics: A Brain in Sync
Brain Basics: A Brain in Sync By: Dr. Robert Melillo The idea of a functional relationship between the left and right sides of the brain is hardly new. In 1949, Canadian neuropsychologist Donald O. Hebb,
Premaster Statistics Tutorial 4 Full solutions
Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for
Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics
Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics
Computing the Fractal Dimension of Stock Market Indices
Computing the Fractal Dimension of Stock Market Indices Melina Kompella, COSMOS 2014 Chaos is an ancient idea that only recently was developed into a field of mathematics. Before the development of scientific
Measuring Exchange Rate Fluctuations Risk Using the Value-at-Risk
Journal of Applied Finance & Banking, vol.2, no.3, 2012, 65-79 ISSN: 1792-6580 (print version), 1792-6599 (online) International Scientific Press, 2012 Measuring Exchange Rate Fluctuations Risk Using the
Note on growth and growth accounting
CHAPTER 0 Note on growth and growth accounting 1. Growth and the growth rate In this section aspects of the mathematical concept of the rate of growth used in growth models and in the empirical analysis
Integrated maintenance scheduling for semiconductor manufacturing
Integrated maintenance scheduling for semiconductor manufacturing Andrew Davenport [email protected] Department of Business Analytics and Mathematical Science, IBM T. J. Watson Research Center, P.O.
arxiv:physics/0601033 v1 6 Jan 2006
Analysis of telephone network traffic based on a complex user network Yongxiang Xia, Chi K. Tse, Francis C. M. Lau, Wai Man Tam, Michael Small arxiv:physics/0601033 v1 6 Jan 2006 Department of Electronic
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
Prelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
The Leaky Integrate-and-Fire Neuron Model
The Leaky Integrate-and-Fire Neuron Model Emin Orhan [email protected] November 2, 2 In this note, I review the behavior of a leaky integrate-and-fire (LIF) neuron under different stimulation conditions.
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Week 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
Time Series and Forecasting
Chapter 22 Page 1 Time Series and Forecasting A time series is a sequence of observations of a random variable. Hence, it is a stochastic process. Examples include the monthly demand for a product, the
Measurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
An analysis of price impact function in order-driven markets
Available online at www.sciencedirect.com Physica A 324 (2003) 146 151 www.elsevier.com/locate/physa An analysis of price impact function in order-driven markets G. Iori a;, M.G. Daniels b, J.D. Farmer
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Pr(X = x) = f(x) = λe λx
Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error
Reliability. 26.1 Reliability Models. Chapter 26 Page 1
Chapter 26 Page 1 Reliability Although the technological achievements of the last 50 years can hardly be disputed, there is one weakness in all mankind's devices. That is the possibility of failure. What
Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
Action Potentials I Generation. Reading: BCP Chapter 4
Action Potentials I Generation Reading: BCP Chapter 4 Action Potentials Action potentials (AP s) aka Spikes (because of how they look in an electrical recording of Vm over time). Discharges (descriptive
Risk Analysis and Quantification
Risk Analysis and Quantification 1 What is Risk Analysis? 2. Risk Analysis Methods 3. The Monte Carlo Method 4. Risk Model 5. What steps must be taken for the development of a Risk Model? 1.What is Risk
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln. Log-Rank Test for More Than Two Groups
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln Log-Rank Test for More Than Two Groups Prepared by Harlan Sayles (SRAM) Revised by Julia Soulakova (Statistics)
Stats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
A linear algebraic method for pricing temporary life annuities
A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London Outline Introduction
