COSMIC RAYS AT EARTH

Similar documents
Nuclear Physics. Nuclear Physics comprises the study of:

Ay Fall The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable

Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration

Masses in Atomic Units

Main properties of atoms and nucleus

Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron

Discovery of neutrino oscillations

Atomic and Nuclear Physics Laboratory (Physics 4780)

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

UNIVERSITA DEGLI STUDI DI MILANO FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI DOTTORATO DI RICERCA IN FISICA, ASTROFISICA E FISICA APPLICATA

Solar Ast ro p h y s ics

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Space Weather: An Introduction C. L. Waters. Centre for Space Physics University of Newcastle, Australia

CHEM 1411 Chapter 5 Homework Answers

SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview

ASTROPARTICLE PHYSICS WITH AMS-02: THE QUEST OF ANTIMATTER

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Solar Activity and Earth's Climate

R. Singh B. Veenadhari S. Alex Indian Institute of Geomagnetism, Navi Mumbai

[2] At the time of purchase of a Strontium-90 source, the activity is Bq.

Basics of Nuclear Physics and Fission

Unit 1 Practice Test. Matching

Basic Nuclear Concepts

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

Space Users: Status, Requirements and Open Issues

Cosmic Rays: A Century of Mysteries

Introduction to Nuclear Physics

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

The solar wind (in 90 minutes) Mathew Owens

Nuclear Physics and Radioactivity

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, Bologna, Italy

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

THE STOCKHOLM EDUCATIONAL AIR SHOWER ARRAY

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

AQA Level 1/2 Certificate in Physics PAPER 1 SPECIMEN MARK SCHEME. AQA Level 1/2 Certificate in Physics Paper 1 MS

8.1 Radio Emission from Solar System objects

Titan: The Solar System s Abiotic Petroleum Factory

CSSAR Space Science Cooperation

Particle Soup: Big Bang Nucleosynthesis

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

arxiv:hep-ex/ v1 8 Mar 2002

Astrophysical Techniques. C R Kitchin

The accurate calibration of all detectors is crucial for the subsequent data

hij Teacher Resource Bank GCE Physics A Other Guidance: Particle Physics By J Breithaupt

Search for supersymmetric Dark Matter with GLAST!!

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Cross section, Flux, Luminosity, Scattering Rates

Nuclear Fusion and Radiation

Topic 3. Evidence for the Big Bang

Objectives 404 CHAPTER 9 RADIATION

Information about the T9 beam line and experimental facilities

Establishing and Using the real-time Neutron Monitor Database (NMDB)

The Birth of the Universe Newcomer Academy High School Visualization One

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter 18: The Structure of the Atom

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

(3) Interaction of high energy photons with matter

3 Atomic Structure 15

The VHE future. A. Giuliani

Atoms, Ions and Molecules The Building Blocks of Matter

Computer Animation of Extensive Air Showers Interacting with the Milagro Water Cherenkov Detector

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris

Evaluation Tools for the Performance of a NESTOR Test Detector

Aviation Route Dose Calculation and its Numerical Basis

GCE Physics A. Mark Scheme for June Unit G485: Fields, Particles and Frontiers of Physics. Advanced GCE. Oxford Cambridge and RSA Examinations

Tutorial 4.6 Gamma Spectrum Analysis

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Muon Fluence Measurements for Homeland Security Applications

23. The Beginning of Time. Agenda. Agenda. ESA s Venus Express. Conditions in the Early Universe Running the Expansion Backward

Curriculum for Excellence. Higher Physics. Success Guide

Introduction to Geiger Counters

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

ABSORPTION OF BETA AND GAMMA RADIATION

Biasing. 7 th FLUKA Course NEA Paris, Sept.29-Oct.3, 2008

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

Solar wind - atmospheric electricity - cloud microphysics connections to weather

The energy spectrum of cosmic rays measured with the HEAT extension at the Pierre Auger Observatory

Coordinate generators

Corso di Fisica Te T cnica Ambientale Solar Radiation

Performance Studies for the KM3NeT Neutrino Telescope

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

Future Extensive Air Shower arrays: From Gamma-Ray Astronomy to Cosmic Rays

EASA Safety Information Bulletin

KE A = PE MAX 1/2M v 2 = k q1 q2 /R

Fundamental Physics at Extreme High Energies

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

NOTES ON The Structure of the Atom

SINP SPACE MONITORING DATA CENTER PORTAL

Solar neutrinos: from their production to their detection

Structure and Properties of Atoms

Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in Real Time

CHAPTER 2 Energy and Earth

Olga Botner, Uppsala. Photo: Sven Lidström. Inspirationsdagar,

Proposal of a Space Radiation Environment Generator interfaced to Geant4

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Hadro-Production Experiments: Impact on T2K and LBNE

Measuring Data Quality for Ongoing Improvement

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza

Transcription:

COSMIC RAYS AT EARTH Researcher's Reference Manual and Data Book Peter K.R Grieder Institute of Physics University of Bern Bern, Switzerland 2001 ELSEVIER Amsterdam - London - New York - Oxford - Paris - Shannon -Tokyo

Contents Preface Comments for Reader Acknowledgements v viii ix Cosmic Ray Properties, Relations and Definitions 1 1.1 Introduction 1 1.1.1 General Comments.. 1 1.1.2 Heliospheric Effects and Solar Modulation 2 1.2 Propagation of the Hadronic Component in the Atmosphere 2 1.2.1 Strong Interactions 2 1.2.2 Energy Transport 5 1.3 Secondary Particles 6 1.3.1 Production of Secondary Particles 6 1.3.2 Energy Spectra of Secondary Particles 9 1.3.3 Decay of Secondaries 10 1.3.4 Decay versus Interaction of Secondaries 13 1.4 Electromagnetic Processes and Energy Losses 16 1.4.1 Ionization and Excitation 16 1.4.2 Bremsstrahlung and Pair Production 17 1.5 Vertical Development in the Atmosphere 20 1.6 Definition of Common Observables 21 1.6.1 Directional Intensity 21 1.6.2 Flux 23 1.6.3 Omnidirectional or Integrated Intensity 23 1.6.4 Zenith Angle Dependence 25 1.6.5 Attenuation Length 25 1.6.6 Altitude Dependence 25 1.6.7 Differential Energy Spectrum 27 XI

xii CONTENTS 1.6.8 Integral Energy Spectrum 27 1.7 The Atmosphere 28 1.7.1 Characteristic Data and Relations 28 1.7.2 Zenith Angle Dependence of the Atmospheric Thickness or Column Density 31 1.8 Geomagnetic and Heliospheric Effects 36 1.8.1 East-West, Latitude and Longitude Effects 36 1.8.2 Time Variation and Modulation 38 1.8.3 Geomagnetic Cutoff 39 1.8.4 Cosmic Ray Cutoff Terminology 40 1.8.5 Definitions of Geomagnetic Terms 42 References 47 2 Cosmic Rays in the Atmosphere 55 2.1 Introduction 55 2.2 Charged Hadrons 56 2.2.1 Introduction 56 2.2.2 Flux Measurements and Intensities 56 2.2.3 Energy Spectra 59 2.2.4 Ratio of Neutral to Charged Hadrons 64 2.2.5 Pions and Pion to Proton Ratio 67 2.2.6 Theoretical Aspects and Calculations 68 References 69 Figures 76 2.3 Neutrons 100 2.3.1 Introduction 100 2.3.2 Altitude Dependence of Flux and Intensities.... 100 2.3.3 Energy Spectra 105 2.3.4 Theoretical Contributions 105 References 106 Figures 109 2.4 Gamma Rays 131 2.4.1 Introduction 131 2.4.2 Energy Spectra Below 1 TeV 132 2.4.3 Energy Spectra in the TeV-Range 136 2.4.4 Altitude Dependence of Flux and Intensities... 138 2.4.5 Zenith Angle Dependence 139 2.4.6 Monochromatic Gamma Lines 140 2.4.7 Theoretical Contributions 142 References 142 Figures 148

CONTENTS xiii 2.5 Electrons (Negatrons and Positrons) 198 2.5.1 Introduction 198 2.5.2 Altitude Dependence of Flux and Intensities... 198 2.5.3 Energy Spectra 199 2.5.4 Albedo Component 200 2.5.5 Positrons 202 2.5.6 Charge Ratio and Related Data 203 References 203 Figures 206 2.6 Muons 231 2.6.1 Introduction 231 2.6.2 Altitude Dependence of Integral Intensity 231 2.6.3 Momentum and Energy Spectra 233 2.6.4 Charge Ratio 237 2.6.5 Theoretical Contributions 241 References 241 Figures 247 2.7 Nuclei 275 2.7.1 Introduction 275 2.7.2 Altitude Dependence of Flux and Intensities... 275 2.7.3 Fragmentation Probabilities of Nuclei 278 2.7.4 Momentum Spectra 278 2.7.5 Theoretical Aspects 279 References 280 Figures 282 2.8 Antinucleons, Antinuclei 294 2.8.1 Introduction, 294 2.8.2 Experimental Data 294 2.8.3 Theoretical Studies and Expected Intensities... 295 References 297 Figures 300 3 Cosmic Rays at Sea Level 305 3.1 Introduction 305 References 306 3.2 Charged Hadrons 307 3.2.1 Flux Measurements and Intensities 307 3.2.2 Momentum and Energy Spectra 307 3.2.3 Zenith Angle Dependence 311 3.2.4 Charged Pions 311 3.2.5 Charge and Particle Ratios 313

xiv CONTENTS 3.2.6 Theoretical Contributions 315 References 316 Figures 320 3.3 Neutrons 335 3.3.1 Flux Measurements and Intensities 335 3.3.2 Energy Spectra 335 3.3.3 Zenith Angle Dependence 336 References 336 Figures 338 3.4 Gamma Rays 342 3.4.1 Experimental Aspects and Data 342 References 342 Figures 343 3.5 Electrons (Negatrons and Positrons) 345 3.5.1 Flux Measurements and Intensities 345 3.5.2 Energy Spectra 346 3.5.3 Charge Ratio... 346 3.5.4 Zenith Angle Dependence 347 References 347 Figures 349 3.6 Muons 354 3.6.1 Introduction 354 3.6.2 Absolute Flux Measurements and Intensities... 354 3.6.3 Momentum and Energy Spectra 358 3.6.4 Zenith and Azimuthal Angular Dependence 366 3.6.5 Charge Ratio : 374 3.6.6 Geomagnetic Latitude Dependence 376 3.6.7 Backscattered Muons at Ground Level 377 3.6.8 Theoretical Contributions 378 References 386 Figures 399 3.7 Nuclei 454 3.7.1 General Comments 454 References 454 Figures 455 3.8 Antinucleons, Antinuclei 457 3.8.1 General Comments 457 References 457

CONTENTS xv 4 Cosmic Rays Underground, Underwater and Under Ice 459 4.1 Introduction 459 4.2 Theoretical Aspects of Muon Physics 461 4.2.1 Introductory Comments 461 4.2.2 Energy Loss and Survival Probability of Muons in Dense Matter 461 4.2.3 Average Range-Energy Relation of Muons 467 4.2.4 Range Fluctuations of Muons Underground and in Water 469 4.2.5 Average Depth-Intensity Relation of Muons... 472 4.2.6 Indirect Determination of the Energy Spectrum Underground and Average Energy 474 References 477 4.3 Muons Underground 481 4.3.1 General Comments 481 4.3.2 Rock Composition, Standard Rock and Conversion Formula 482 4.3.3 Depth-Intensity Relations and Data 485 4.3.4 Zenith Angle Dependence and Relations 497 4.3.5 Stopping Muons 502 4.3.6 Prompt or Direct Muons 506 4.3.7 Energy Loss Data of Muons 508 4.3.8 Range-Energy Data of Muons Underground... 509 4.3.9 Momentum and Energy Spectra of Muons Underground and Derived Sea Level Spectrum... 511 4.3.10 Multi-Muon Events and Decoherence 514 References 520 Figures 533 4.4 Muons Under Water and Ice 592 4.4.1 General Comments 592 4.4.2 Intensity versus Depth in Water 592 4.4.3 Zenith Angle Dependence at Great Depth in Water 595 4.4.4 Intensity versus Depth in Ice 596 4.4.5 Theoretical Contributions 596 References 598 Figures 604 4.5 Neutrinos, General and Atmospheric 612 4.5.1 Introduction 612 4.5.2 Experimental Aspects and Detection Methods... 613 4.5.3 Atmospheric Neutrino Production, Properties... 615

xvi CONTENTS 4.5.4 Theoretical Neutrino Spectra and Data 620 4.5.5 Experimental Results, Early Work 623 4.5.6 Experimental Results, Modern Work 636 References 641 Figures 653 5 Primary Cosmic Radiation 669 5.1 Introduction 669 References 673 5.2 Hadrons, Spectra and Composition 677 5.2.1 Introduction 677 5.2.2 All-Particle Spectrum 678 5.2.3 Charge Resolved Energy Spectra and Chemical Composition 684 5.2.4 Isotopic Composition 690 5.2.5 Conclusions from Composition Observations... 691 References 705 Figures? 724 5.3 Electrons (Positrons and Negatrons) 760 5.3.1 Introduction 760 5.3.2 Energy Spectra 761 5.3.3 Positron Fraction 766 5.3.4 Atmospheric Secondary Electron Contamination.. 770 5.3.5 Theoretical Contributions 772 References 773 Figures. 781 5.4 X- and Gamma Rays. 793 5.4.1 Introduction 793 5.4.2 General Survey of Gamma Radiation 795 5.4.3 Diffuse Galactic Gamma Radiation 797 5.4.4 Diffuse Cosmic Gamma Radiation 799 5.4.5 Point Sources 800 5.4.6 Gamma Ray Line Spectra 804 5.4.7 Gamma Ray Fraction of Cosmic Radiation 806 References 806 Figures 819 5.5 Neutrinos and Antineutrinos 838 5.5.1 General Comments 838 5.5.2 Neutrinos from the Supernova SN-1987A 838 5.5.3 Energetic Neutrinos from Astrophysical Sources.. 843

CONTENTS xvii 5.5.4 Experimental Upper Limits of Neutrino Fluxes from Astrophysical Point Sources 845 References 848 Figures 855 5.6 Antiprotons and Antimatter 863 5.6.1 Discovery of Cosmic Ray Antiprotons 863 5.6.2 Detection Methods 864 5.6.3 Measured Antiproton Intensities and p/p Ratios.. 865 5.6.4 Antinuclei 870 5.6.5 Theoretical Studies 871 References 874 Figures 882 6 Heliospheric Phenomena 893 6.1 Introduction 893 References 894 6.2 Heliospheric, Magnetospheric and Terrestrial Magnetic Fields ^ 895 6.2.1 Introduction ' 895 6.2.2 Heliospheric Magnetic Field and Solar Wind... 895 6.2.3 Geomagnetic and Magnetospheric Fields 898 6.2.4 Interplanetary Magnetic Fields 900 References 900 Figures 903 6.3 Time Variation and Modulation Effects 906 6.3.1 Introduction 906 6.3.2 Atmospherically Induced Variations 907 6.3.3 Solar Diurnal Variations 909 6.3.4 Sidereal Variations and Anisotropies... 910 6.3.5 Compton-Getting Effect 910 6.3.6 Forbush Decreases 911 6.3.7 27-Day Variations 911 6.3.8 11-Year and 22-Year Variations 911 6.3.9 Long-Term Variations 913 References 916 Figures 920 6.4 Energetic Solar Particles and Photons 927 6.4.1 Introduction 927 6.4.2 Solar Flares 927 6.4.3 Photons and Particles from Solar Flares 928 6.4.4 Ionospheric Effects 931

xviii CONTENTS References 931 Figures 934 6.5 Anomalous Cosmic Rays 938 6.5.1 Introduction 938 6.5.2 Theoretical Aspects 938 6.5.3 Current Status of Anomalous Cosmic Rays 940 References 940 Figures 943 6.6 Solar Neutrinos 949 6.6.1 Introduction 949 6.6.2 The Solar Neutrino Unit (SNU) 951 6.6.3 The Solar Neutrino Problem and Recent Results.. 951 6.6.4 Homestake Chlorine Detector and Data 953 6.6.5 GALLEX Detector and Data 954 6.6.6 SAGE Detector and Data 955 6.6.7 Kamiokande Detector and Data 956 6.6.8 Super-Kamiokande (SK) Detector and Data... 957 6.6.9 New and Future Detectors 959 References 960 Figures 969 7 Miscellaneous Topics 975 7.1 General Comments 975 7.2 Cosmogenic Nuclides 975 7.2.1 Introductory Comments 975 7.2.2 Cosmogenic Nuclides in the Atmosphere 977 7.2.3 Cosmogenic Nuclides in Rock 981 References '. 982 Figures 984 7.3 Galactic and Intergalactic Magnetic Fields 989 7.3.1 Introduction 989 7.3.2 Galactic Magnetic Fields 989 7.3.3 Intergalactic Magnetic Fields 991 7.3.4 Magnetic Fields of Astrophysical Objects 991 References 992 Figures 994 7.4 Antarctic Atmosphere 995 7.4.1 General Comments 995 7.4.2 Determination of Atmospheric Profile and Data.. 995 References 996 7.5 Optical and Related Properties of Water and Ice 996

CONTENTS xix 7.5.1 General Comments 996 7.5.2 Definitions 997 7.5.3 Depth Profiles of Ocean Parameters 999 7.5.4 Optical Attenuation in Water and Ice 1000 7.5.5 Optical Background in Water and Ice 1005 7.5.6 Sedimentation in the Ocean 1008 References 1009 Figures 1014 A Miscellaneous Data: Tables 1029 A.I Comments to Tables 1029 A. 1.1 COSPAR Reference Atmosphere 1029 A. 1.2 Solar System Elemental Abundances 1029 A. 1.3 Radiation Lengths and Critical Energies of Materials 1029 A. 1.4 Elements and their Material Parameters 1029 A. 1.5 Muon Energy Losses in Elements and Compounds... p 1030 A. 1.6 Units, Conversion Factors, Constants and Parameters 1031 A.2 COSPAR Reference Atmosphere 1032 A.3 Solar System Elemental Abundances 1035 A.4 Radiation Lengths and Critical Energies 1039 A.5 Elements and their Material Parameters 1040 A.6 Muon Energy Loss in Various Elements 1041 A.7 Muon Energy Loss in Compounds 1043 A.8 Units and Conversion Factors 1045 A.9 Constants and Parameters 1046 References 1047 B Miscellaneous Data: Figures 1049 B.I Comments to Figures 1049 References 1049 B.2 Kinetic Energy - Rigidity Conversion 1051 B.3 Gyroradius versus Proton Energy 1052 B.4 Ionization versus Depth in Atmosphere 1053 B.5 Nucleon Lifetime Limits 1054 C Cosmic Ray Experiments of Past and Present 1055 C.I Cosmic Ray Ground Level Facilities 1055 C.I.I Comments to Tables 1055

xx CONTENTS C.1.2 EAS Array Sites of Past and Present 1056 C.I.3 Air Cherenkov Array /Telescope Sites 1058 References 1058 C.I.4 Emulsion Chamber Sites 1059 C.2 Balloon Experiments 1059 C.3 Underground, Underwater, Under Ice Experiments 1060 D Miscellany 1061 D.I Acronyms of some Experiments 1061 D.2 List of Symbols 1064 D.3 List of Abbreviations 1067 D.4 List of Cosmic Ray Conferences 1069 Index 1070