Drives on submersible pumps? Yes you can

Similar documents
Specifying a Variable Frequency Drive s

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

The Company. QUALITY WHICH REDUCES PUMPING COSTS For over 45 years, PAPANTONATOS S.A. has focused on the customer s design,

Line Reactors and AC Drives

PI734D - Technical Data Sheet

PI734B - Technical Data Sheet

Solving VFD-sourced Bearing Current Problems in AC Motors.

Principles of Adjustable Frequency Drives

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

Drives and motors. A guide to using variable-speed drives and motors in car parks

vacon ac drives for mining & minerals

N-PUMP SERIES FOR MAXIMUM RELIABILITY AND EFFICIENCY IN WASTEWATER HANDLING. Flygt

understanding medium frequency induction melting furnace and its components

No compromise. Highest total efficiency wastewater pumping. grundfos se & sl ranges Submersible and dry-installed wastewater pumps

Power transformers. Special transformers Railway

Diesel Engine Driven Generators Page 1 of 6

SIRIUX. SINGLE AND DOUBLE HIGH EFFICIENCY CIRCULATORS Heating Air-conditioning OPERATING LIMITS APPLICATIONS. 28 m 3 /h* Heads up to: Flows up to:

ABB drives. Technical guide No. 4 Guide to variable speed drives

PART 1 - INTRODUCTION...

32:(5#5$7,1* 4833#USP283#+] 4;33#USP293#+] 3ULPH 113 kva, 90 kw 124 kva, 99 kw 6WDQGE\ 114 kva, 91 kw 125 kva, 100 kw

Flygt N-Pumps 3085, 3102 & For reliable and efficient wastewater handling

AC-Synchronous Generator

WIND TURBINE TECHNOLOGY

FREQUENCY CONTROLLED AC MOTOR DRIVE

CRN A-F-G-E-HQQE 3x400D 50 HZ

DLW 8. POWER RATING 1500 rpm/50 Hz 1800 rpm/60 Hz Prime 7.5 kva, 6 kw 9.1 kva, 7.3 kw Standby 8.5 kva, 6.8 kw 10.1 kva, 8.1 kw

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance

Series 6000 Torque measured metal bellow coupling

Pump Maintenance - Repair

PM734F - Technical Data Sheet Winding 28

NO-BREAK KS 7e. Concentrated Energy kva (50Hz) 3000 kva (60Hz) DIESEL ROTARY UNINTERRUPTIBLE POWER SUPPLY SYSTEM

Product Data Bulletin

1 WATERFLUX - Comparisonon COO Rectangular Magmeter in water applications

REVIEWED BY CAPITAL PROJECTS MANAGER (DAN REDDY) GENERAL MANAGER EQUIPMENT ENGINEERING & ASSET MANAGEMENT (HAMILTON NXUMALO)

Unit 24: Applications of Pneumatics and Hydraulics

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

Fundamentals of Inverter Fed Motors

HCM434F - Winding 311 APPROVED DOCUMENT. Technical Data Sheet

DC/DC power modules basics

Single-Phase AC Synchronous Generator

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Drives and motors. A guide to using variable-speed drives and motors in data centres

Type: EASY719 DC RC Article No.: Ordering information Relay outputs Quantity 6 Power supply V DC 24 V DC. Description

SAFETY PRECAUTIONS AND INSTRUCTIONS FOR USE OF TECHNICAL INFORMATION

Troubleshooting accelerometer installations

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

Mechanical shaft seal types and sealing systems

13 common causes of motor failure

Rotating Machinery Diagnostics & Instrumentation Solutions for Maintenance That Matters

4" SUBMERSIBLE PUMPS

Alternative Linear Motion Systems. Iron Core Linear Motors

ABB ! CAUTION. Type COQ Negative Sequence Generator Relay. (50/60 Hertz) J. Instruction Leaflet

Mounting Instructions. Torque Transducer. A en

Cable Solutions for Servo and Variable Frequency Drives (VFD)

PI144K - Winding 311 APPROVED DOCUMENT. Technical Data Sheet. Generator Solutions AS

AC Electric Motors best practice

PI044E - Winding 311 APPROVED DOCUMENT. Technical Data Sheet

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

Hydraulic Control Solutions

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

Yamaha Power Amplifier. White Paper

CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN

Trouble Shooting. Pump

Offshore Platform Powered With New Electrical Motor Drive System

GenTech Practice Questions

ATL Fuel Level Sender Probes

CAT AVR V2.3. Instruction Manual. Voltage regulator for generators. March 2008

Sigma Frequency Control

D.C. Motors. Products and specifications subject to change without notice.

Instruction manual of pumps WQ, WQF, SN, Furiatka, Furia, KRAKEN, BIG, IP, IPE, SWQ, CTR

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

UCI274C - Technical Data Sheet

HVAC Applications. VFD considerations for HVAC systems...

UCI274H - Technical Data Sheet

VITOSOL r 200-T SP2A. VITOSOL 200-T Type SP2A

Motor Fundamentals. DC Motor

BOWL ASSEMBLY SELECTION Select impeller in exactly the same manner as for lineshaft type pump. Note comments under WELL SIZE.

Introduction. Harmonics and IEEE 519 Page 1 of 19

SYNCHRONOUS MACHINES

IFC 070 Technical Datasheet

32/1/ /PVSE(Part-II) Ministry of New and Renewable Energy SPV Off Grid Division

DIRECT CURRENT GENERATORS

Type: DILM115(RAC240) Article No.: Sales text Contactor,55kW/400V,AC operated. Ordering information

Turbo generators Best quality for thermal power plants

Pump Specifications 250 Series Submersible Sump / Effluent Pump 2 Solids handling

White Paper Mervin Savostianik P. Eng. Littelfuse, Inc.

12. Inspection and Maintenance

Once you know the volume of air and the static pressure of the system to be cooled, you can determine the fan specifications for your product.

Pump Specifications 405 Series Commercial Drain Pump (High-Temp) 2 Solids handling

Stand Alone POTS Fiber Optic System. P31372 Station (Subscriber) Unit P31379 Remote (Exchanger) Unit. Description & Installation

BSM MOTOR DRIVEN CENTRIFUGAL PUMPS

Subminiature Load Cell Model 8417

32VFD Variable Frequency Drives for Centrifugal Chillers

Installation and instruction manual for Laing DDC pumps

32:(5#5$7,1* 4833#USP283#+] 4;33#USP293#+] 3ULPH 10.4 kva, 8.3 kw 12.9 kva, 10.3 kw 6WDQGE\ 11.3 kva, 9 kw 14.4 kva, 11.5 kw

..OR How To Protect your 3-Phase Equipment Investment with 3-Phase Monitors from Time Mark...

Maxi Pressurisation Units (Maxi, Maxi Plus & HP)

HIGH REPEATABILITY, BROADBAND TO-5 RELAYS DPDT

Transcription:

Drives on submersible pumps? Yes you can While variable-speed drives help save large amounts of energy in standard pump systems, they are less common in submersible pump applications, as it is more difficult to implement drives here. But with some advance planning, the difficulties can be overcome. It is well worth the effort, as many submersible pumps have long running hours of up to 8,000 hours per year. The potential energy savings and process improvements can be enormous. Variable-speed drives are common in standard pump applications these days and the installation rarely presents any problems. In submersible pump applications, however, the situation is a little different and users are often unsure about the measures necessary to achieve the longest lifetime of the system. There are many advantages of using drives in submersible pump applications. Variablespeed drives can offer great energy savings, often in the region of 30 to 50 percent, in applications where there is a need to vary the velocity, head or flow. This can be highly significant in applications with long running hours. Drives also offer improved process control. By matching pump output flow or pressure directly to the process requirements, small variations can be corrected more accurately than with other types of control. Drives can also help reduce stagnant water storage in pressurised systems. When using drives in submersible pump systems, there are however a few complications that users need to be aware of, but these can generally be overcome with some careful planning. For instance, motors in borehole pumps can have a motor cable as long as 100 metres and it is often necessary to fit output reactors or sine filters. These are quite effective at reducing the rate of voltage change (du/dt) and the peak motor voltage. Other potential problems include undesirable network distortion, which is possible if the drive uses a simple diode bridge. This can be avoided if low harmonic drives are used. High rates of voltage change can also lead to radio frequency interference, unless special care is taken at installation. The drive will generally require installation in a clean environment. Specialist advice should be sought on cable length, voltage spikes, motor insulation and other technical issues before installation. Reduced speed saves energy Using a variable-speed drive in systems running below maximum capacity saves energy, reduces maintenance and also avoids the problems associated with impeller trim. Impeller trim may seem equivalent to varying the speed and most pump manufacturers accept a 15 percent impeller trim, however excessive trims change the hydraulic condition within the pump. This can lead to reduction in efficiency and instability in operation. When using a drive and running the motor at low speed in systems with a high static head, users have to be careful not to move too close to the shut-off point, as this risks stopping the flow through the pump. This may typically happen to pumps that pump out of a tank which has a variable input. It may be tempting to implement the very simple control philosophy of maintaining a fixed level in the tank, but this will only work if the inflow meets the minimum flow requirements of the pump. If the inflow does not meet the minimum flow requirement, the pump could be severely damaged. The way around this problem is to determine the minimum acceptable running speed of the pump and to use this as the minimum speed setting for the drive. In some applications, reduced speed can also cause particles to come out of suspension and cause problems.

Smooth starting and stopping Drives are ideal for soft starting and stopping of pumps and because they are able to provide torque to and from zero speed, they can be used to control the fluid avoiding surges and run back. However, it is necessary to check the limits for both the pump and the motor. At speeds above the nominal speed, the torque available will drop as the drive cannot increase its output voltage beyond the input voltage. The motor then becomes progressively under-fluxed. This is known as field weakening and it does not necessarily restrict the ability to run at over-speed, but it needs to be considered. There will be a change in the noise from both the pump and the motor as the speed is changed. With higher speed, greater noise and potentially greater vibration will occur. If the pump is handling liquid containing abrasive particles, an increase in flow will result in increased abrasion and wear. With higher speed, it is necessary to ensure that the net positive suction head available at the pump is still sufficient to prevent cavitation. Control of fouling and solids Many submersible pumps are used for waste and a drive can be used to provide automatic de-ragging and solids deposition in the outgoing pipework. Avoiding critical speeds and vibration The risk of the pump or motor reaching a critical speed increases when using a variable speed drive. When running at fixed speed, the chance of the fixed speed coinciding with a critical speed is fairly small. But when the speed varies across a wide range, this likelihood increases dramatically. Lateral critical speeds occur when running speed excitation coincides with one of the rotor s lateral natural frequencies. This can be remedied by programming the drive to lock out certain speeds or speed ranges from the continuous operating speed range. It can also be achieved by detuning the excitation frequency, or by reducing excitation levels by improving balance and alignment. Submersible motors in installations without rigid fixing to a base plate or foundation (e.g. duck foot bend or pipe shaft) may have a higher vibration level. This is also the case for deep well motors, where the absence of a rigid fixing leads to a higher vibration level. Dimension according to motor plate data A variable-speed drive is a source of current and must always be selected on the basis of the motor name plate current. Where a catalogue gives kw ratings, these are always on the basis of typical values for conventional motors of four pole or six pole speed; these should be ignored for the purposes of submersible pumps. The kw rating of a motor is the power that is delivered at the motor shaft and not the power delivered to the motor terminals. The kw ratings allocated are based on conventional four or six pole TEFC motors, while submersible pumps often have motors with non-standard ratings. Drives need better motor insulation Using a variable-speed drive enables gentle starting of the pump system, potentially extending the life of the motor. However, it is important that the motor is suitable for variablespeed drive operation. Variable speed operation puts a higher voltage stress on the motor insulation system and it is recommended to have either reinforced insulation system or a filter between the motor and the drive. The rating of the motor insulation is of little help in this context. Motor insulation is generally only defined by the thermal capability, i.e. class B, Class F or Class H. These classes do not define the electrical capabilities of the insulation system. The manufacturer s advice has to be sought on whether the motor is suitable for variable speed drive operation.

Automatic EMC shield Good practice installation technique involves ensuring the lowest possible impedance path on the shield connection to ground. In submersible motors, this principle is implemented automatically as the water around the housing provides a perfect EMC shield and equalizes the electric potential of all metal construction elements. The drive is installed as a piece of wall or floor mounted equipment, with a continuous cable running to the motor, allowing the Faraday Cage to be readily completed. Generally, the cable length is greater than in conventional installations due to the distance between pump and cabinet. To reduce the distance, the drive should be installed as close to the well head as possible. Unscreened cable should be used as down-hole cable, although this can pose a problem in relation to sensors. However, this can normally be overcome by using a an appropriate filter and having the sensor cables moved as far from the drop cable as possible, putting these cables into steel pilot tubes and using a good screen on the sensors. Where long cable runs are involved, it is necessary to consider the drive s filtering capabilities. Manufacturers recommend specific conducted emissions filters, based on tests with maximum lengths of cables. Longer cables will reduce the performance of the filter. Two basic forms of output filtering can be utilised; du/dt filters will reduce the rate of change of the voltage pulses and this will reduce the effects of long cables, although there will still be a finite limit. Sinus (or sinusoidal) filters are designed to produce a completely sinusoidal waveform, which has no distance limitation. Remote monitoring It is difficult to get access to submersible pump motors once they have been installed and inspection may not be possible. The motors are often equipped with sensors to enable remote condition monitoring, which must operate without disturbance from the drive. Monitoring of motor winding temperatures is particularly important, as ageing and lifetime are closely related to temperature. Operating at 10 C above the thermal class temperature will halve the winding lifetime. Sensors that are robust in relation to electro-magnetic interference are PTC temperature sensors; thermal contact temperature sensors (bi-metal); and float switches with mechanical contacts. In general, these sensors do not need separate screened sensor cables. Even combined power and control cables are possible for small drive systems. Critical sensors which need some attention include all conductivity electrodes and Pt 100 RTD thermometers. These sensors always need a separate control cable. Special monitoring relays with electronic filters may be necessary to suppress nuisance tripping. Combined power and sensor cables are not possible. Vibration sensors can be problematic to use in a variable-speed drive installation. These sensors need a separate screened control cable for themselves, as well as screened power cables. Special digital filters may be needed to eliminate high harmonics from the drive. Generator supply in critical applications Many borehole pumps are used in rural areas or in applications where reliability of the supply is of high importance, and are fed by generators either permanently or as a backup. Special care must be taken in this case. Maximum allowable voltage dip at starting and continuous run must be specified by the drive manufacturer. It is also necessary to keep an eye on the harmonic content, as generators might be an additional source of, or be susceptible to, harmonics. The presence of harmonics must also be considered when dimensioning feeder cables.

Generator frequency may not be of great importance since the input voltage waveform is rectified to obtain an approximately constant DC voltage source. These are the main factors to take into consideration installing a submersible pump system with variable speed drives, but it is wise to always consult the drive and motor manufacturers when planning an installation. Considering the long running hours that many submersible pump systems have, installing a variable-speed drive is normally an effort that is well worth making. Geoff Brown, Consultant Drives & Motors, ABB Limited Tel: 01925 741 111; Fax: 01925 741 212 Email: energy@gb.abb.com; Web: www.abb.co.uk/energy Caption: Variable-speed drives are common in standard pump applications Caption: For automatic EMC shield good installation practice the drive is installed as close to the well head as possible

Caption: ABB drives installed in remote locations can be remotely accessed for monitoring early warning notification and easy reporting