The Working Cell MEMBRANE STRUCTURE AND FUNCTION. Chapter Membranes are a fluid mosaic of phospholipids and proteins

Similar documents
Six major functions of membrane proteins: Transport Enzymatic activity

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

Membrane Structure and Function

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

4. Biology of the Cell

Osmosis, Diffusion and Cell Transport

Chapter 8: An Introduction to Metabolism

Chapter 8: Energy and Metabolism

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

Chapter 7: Membrane Structure and Function

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Biological cell membranes

Cell Biology - Part 2 Membranes

CHAPTER : Plasma Membrane Structure

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

MULTIPLE CHOICE QUESTIONS

Chapter 8. Movement across the Cell Membrane. AP Biology

Ch. 8 - The Cell Membrane

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

BSC Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

Membrane Structure and Function

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

7. A selectively permeable membrane only allows certain molecules to pass through.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Modes of Membrane Transport

Cell Membrane Coloring Worksheet

Homeostasis and Transport Module A Anchor 4

The Lipid Bilayer Is a Two-Dimensional Fluid

Cell Membrane & Tonicity Worksheet

PART I: Neurons and the Nerve Impulse

Enzymes and Metabolic Pathways

Section 7-3 Cell Boundaries

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

Cell membranes and transport. Learning Objective:

Enzymes and Metabolism

Membrane Transport. Extracellular Concentration of X

Cell Transport and Plasma Membrane Structure

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

AP Biology-Chapter #6 & 7 Review

Chemical Basis of Life Module A Anchor 2

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

Cellular Structure and Function

Name: Hour: Elements & Macromolecules in Organisms

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells).

Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential

1. The diagram below represents a biological process

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction.

BCOR 011 Exam 2, 2004

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

pathway that involves taking in heat from the environment at each step. C.

The Molecules of Cells

Cell Membrane Structure (and How to Get Through One)

Cell Structure and Function

Summary of Metabolism. Mechanism of Enzyme Action

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

Cellular Respiration: Practice Questions #1

How To Understand The Chemistry Of Organic Molecules

Chemistry 20 Chapters 15 Enzymes

CHAPTER 4: Enzyme Structure ENZYMES

Biochemistry of Cells

Human Anatomy & Physiology I with Dr. Hubley. Practice Exam 1

Chapter 3. Cellular Structure and Function Worksheets. 39

IB104 - Lecture 9 - Membranes

8/20/2012 H C OH H R. Proteins

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

Chapter 2. The Chemistry of Life Worksheets

Review of the Cell and Its Organelles

CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

Elements & Macromolecules in Organisms

Figure 5. Energy of activation with and without an enzyme.

THE HISTORY OF CELL BIOLOGY

Energy Production In A Cell (Chapter 25 Metabolism)

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

BIOL 305L Laboratory Two

Multiple Choice Identify the choice that best completes the statement or answers the question.

Biological molecules:

10.1 The function of Digestion pg. 402

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

MEMBRANE STRUCTURE AND FUNCTION

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

Carbohydrates, proteins and lipids

Cellular Respiration and Fermentation

General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary

Chapter 3 Molecules of Cells

Lab 3 Organic Molecules of Biological Importance

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Transcription:

The Working Cell Chapter 5 MEMBRANE STRUCTURE AND FUNCTION 5.1 Membranes are a fluid mosaic of phospholipids and proteins Membranes are composed of phospholipids and proteins Membranes are commonly described as a fluid mosaic This means that the surface appears mosaic because of the proteins embedded in the phospholipids and fluid because the proteins can drift about in the phospholipids Phospholipid bilayer! Hydrophobic regions of protein! Hydrophilic regions of protein!

5.1 Membranes are a fluid mosaic of phospholipids and proteins Many phospholipids are made from unsaturated fatty acids that have kinks in their tails This prevents them from packing tightly together, which keeps them liquid This is aided by cholesterol wedged into the bilayer to help keep it liquid at lower temperatures WATER! Hydrophilic head! Hydrophobic tail! WATER! 5.1 Membranes are a fluid mosaic of phospholipids and proteins Carbohydrate of glycoprotein Membranes contain integrins, which give the membrane a stronger framework Integrins attach to the extracellular matrix on the outside of the cell as well as span the membrane to attach to the cytoskeleton Glycoprotein Glycolipid Integrin Phospholipid Microfilaments of cytoskeleton Cholesterol

5.1 Membranes are a fluid mosaic of phospholipids and proteins Some glycoproteins in the membrane serve as identification tags that are specifically recognized by membrane proteins of other cells For example, cell-cell recognition enables cells of the immune system to recognize and reject foreign cells, such as infectious bacteria Carbohydrates that are part of the extracellular matrix are significantly involved in cell-cell recognition 5.1 Membranes are a fluid mosaic of phospholipids and proteins Many membrane proteins function as enzymes, others in signal transduction, while others are important in transport Because membranes allow some substances to cross or be transported more easily than others, they exhibit selectively permeability Nonpolar molecules (carbon dioxide and oxygen) cross easily Polar molecules (glucose and other sugars) do not cross easily Enzymes Messenger molecule Receptor Activated molecule

5.3 Passive transport is diffusion across a membrane with no energy investment Diffusion is a process in which particles spread out evenly in an available space Particles move from an area of more concentrated particles to an area where they are less concentrated This means that particles diffuse down their concentration gradient Eventually, the particles reach equilibrium where the concentration of particles is the same throughout 5.3 Passive transport is diffusion across a membrane with no energy investment Diffusion across a cell membrane does not require energy, so it is called passive transport Molecules of dye Membrane Equilibrium The concentration gradient itself represents potential energy for diffusion

5.4 Osmosis is the diffusion of water across a membrane Two different substances Membrane Equilibrium It is crucial for cells that water moves across their membrane Water moves across membranes in response to solute concentration inside and outside of the cell by a process called osmosis Osmosis will move water across a membrane down its concentration gradient until the concentration of solute is equal on both sides of the membrane Lower concentration of solute Higher concentration of solute Equal concentration of solute 5.5 Water balance between cells and their surroundings is crucial to organisms Solute molecule Selectively permeable membrane Water molecule H 2 O Tonicity is a term that describes the ability of a solution to cause a cell to gain or lose water Tonicity is dependent on the concentration of a nonpenetrating solute on both sides of the membrane Isotonic indicates that the concentration of a solute is the same on both sides Hypertonic indicates that the concentration of solute is higher outside the cell Net flow of water Solute molecule with cluster of water molecules Hypotonic indicates a higher concentration of solute inside the cell

5.5 Water balance between cells and their surroundings is crucial to organisms Isotonic solution Hypotonic solution Hypertonic solution Many organisms are able to maintain water balance within their cells by a process called osmoregulation Animal cell This process prevents excessive uptake or excessive loss of water Plant, prokaryotic, and fungal cells have different issues with osmoregulation because of their cell walls Plant cell (A) Normal (B) Lysed (C) Shriveled Plasma membrane (D) Flaccid (E) Turgid (F) Shriveled (plasmolyzed) 5.6 Transport proteins may facilitate diffusion across membranes Many substances that are necessary for viability of the cell do not freely diffuse across the membrane They require the help of specific transport proteins These proteins assist in facilitated diffusion, a type of passive transport that does not require energy 5.6 Transport proteins may facilitate diffusion across membranes Some proteins function by becoming a hydrophilic tunnel for passage Other proteins bind their passenger, change shape, and release their passenger on the other side In both of these situations, the protein is specific for the substrate, which can be sugars, amino acids, ions, and even water

Solute molecule 5.8 Cells expend energy in the active transport of a solute against its concentration gradient Cells have a mechanism for moving a solute against its concentration gradient It requires the expenditure of energy in the form of ATP The mechanism alters the shape of the membrane protein through phosphorylation using ATP Transport protein 5.9 Exocytosis and endocytosis transport large molecules across membranes Transport protein Solute Protein changes shape 1 Solute binding 2 Phosphorylation 3 Transport Phosphate detaches 4 Protein reversion A cell uses two mechanisms for moving large molecules across membranes Exocytosis is used to export bulky molecules, such as proteins or polysaccharides Endocytosis is used to import substances useful to the livelihood of the cell In both cases, material to be transported is packaged within a vesicle

5.9 Exocytosis and endocytosis transport large molecules across membranes There are three kinds of endocytosis Phagocytosis Phagocytosis is engulfment of a particle by wrapping cell membrane around it, forming a vacuole EXTRACELLULAR FLUID CYTOPLASM Pseudopodium Food being ingested Pinocytosis is the same thing except that fluids are taken into small vesicles Receptor-mediated endocytosis is where receptors in a receptor-coated pit interact with a specific protein, initiating formation of a vesicle Food or other particle Food vacuole Pinocytosis Plasma membrane Receptor-mediated endocytosis Receptor Plasma membrane Coat protein Coated vesicle Coated pit Specific molecule Vesicle Plasma membrane Coated pit Material bound to receptor proteins

Requires no energy Passive transport Diffusion Facilitated diffusion Higher solute concentration Osmosis Higher water concentration Requires energy Active transport Higher solute concentration ENERGY AND THE CELL Solute Water Lower solute concentration Lower water concentration Lower solute concentration 5.10 Cells transform energy as they perform work 5.10 Cells transform energy as they perform work Cells are small units, a chemical factory, housing thousands of chemical reactions The result of reactions is maintenance of the cell, manufacture of cellular parts, and replication Energy is the capacity to do work and cause change Work is accomplished when an object is moved against an opposing force, such as friction There are two kinds of energy Kinetic energy is the energy of motion Potential energy is energy that an object possesses as a result of its location

5.10 Cells transform energy as they perform work 5.10 Cells transform energy as they perform work Kinetic energy performs work by transferring motion to other matter For example, water moving through a turbine generates electricity An example of potential energy is water behind a dam Chemical energy is potential energy because of its energy available for release in a chemical reaction Heat, or thermal energy, is kinetic energy associated with the random movement of atoms Fuel Gasoline Oxygen Heat energy Energy conversion Combustion Kinetic energy of movement Energy conversion in a car Waste products Carbon dioxide Water 5.12 Chemical reactions either release or store energy An exergonic reaction is a chemical reaction that releases energy This reaction releases the energy in covalent bonds of the reactants Heat Burning wood releases the energy in glucose, producing heat, light, carbon dioxide, and water Glucose Cellular respiration Carbon dioxide Cellular respiration also releases energy and heat and produces products but is able to use the released energy to perform work Oxygen Energy for cellular work Water Energy conversion in a cell

5.12 Chemical reactions either release or store energy Potential energy of molecules Reactants Energy released Products Amount of energy released An endergonic reaction requires an input of energy and yields products rich in potential energy The reactants contain little energy in the beginning, but energy is absorbed from the surroundings and stored in covalent bonds of the products Photosynthesis makes energy-rich sugar molecules using energy in sunlight 5.12 Chemical reactions either release or store energy Potential energy of molecules Reactants Energy required Products Amount of energy required A living organism produces thousands of endergonic and exergonic chemical reactions All of these combined is called metabolism A metabolic pathway is a series of chemical reactions that either break down a complex molecule or build up a complex molecule

5.12 Chemical reactions either release or store energy A cell does three main types of cellular work Chemical work driving endergonic reactions Transport work pumping substances across membranes Mechanical work beating of cilia To accomplish work, a cell must manage its energy resources, and it does so by energy coupling the use of exergonic processes to drive an endergonic one 5.13 ATP shuttles chemical energy and drives cellular work ATP, adenosine triphosphate, is the energy currency of cells. ATP is the immediate source of energy that powers most forms of cellular work. It is composed of adenine (a nitrogenous base), ribose (a five-carbon sugar), and three phosphate groups. 5.13 ATP shuttles chemical energy and drives cellular work Hydrolysis of ATP releases energy by transferring its third phosphate from ATP to some other molecule The transfer is called phosphorylation In the process, ATP energizes molecules Adenosine Adenine Ribose Hydrolysis Triphosphate (ATP) Phosphate group +! Adenosine Diphosphate (ADP)

5.13 ATP shuttles chemical energy and drives cellular work Chemical work Mechanical work Transport work Solute ATP is a renewable source of energy for the cell Reactants Motor protein Membrane protein When energy is released in an exergonic reaction, such as breakdown of glucose, the energy is used in an endergonic reaction to generate ATP Product Molecule formed Protein moved Solute transported HOW ENZYMES FUNCTION Energy from exergonic reactions Energy for endergonic reactions

5.14 Enzymes speed up the cell s chemical reactions by lowering energy barriers Although there is a lot of potential energy in biological molecules, such as carbohydrates and others, it is not released spontaneously Energy must be available to break bonds and form new ones This energy is called energy of activation (E A ) 5.14 Enzymes speed up the cell s chemical reactions by lowering energy barriers The cell uses catalysis to drive (speed up) biological reactions Catalysis is accomplished by enzymes, which are proteins that function as biological catalysts Enzymes speed up the rate of the reaction by lowering the E A, and they are not used up in the process Each enzyme has a particular target molecule called the substrate Animation: How Enzymes Work 5.15 A specific enzyme catalyzes each cellular reaction Energy Reaction without enzyme Reactants Reaction with enzyme E A without enzyme E A with enzyme Net change in energy (the same) Enzymes have unique three-dimensional shapes The shape is critical to their role as biological catalysts As a result of its shape, the enzyme has an active site where the enzyme interacts with the enzyme s substrate Consequently, the substrate s chemistry is altered to form the product of the enzyme reaction Progress of the reaction Products

1 Enzyme available with empty active site Active site Glucose Fructose Enzyme (sucrase) Substrate (sucrose) 2 Substrate binds to enzyme with induced fit 5.15 A specific enzyme catalyzes each cellular reaction For optimum activity, enzymes require certain environmental conditions Temperature is very important, and optimally, human enzymes function best at 37ºC, or body temperature High temperature will denature human enzymes Enzymes also require a ph around neutrality for best results 4 Products are released 3 Substrate is converted to products 5.15 A specific enzyme catalyzes each cellular reaction Some enzymes require nonprotein helpers Cofactors are inorganic, such as zinc, iron, or copper Coenzymes are organic molecules and are often vitamins 5.16 Enzyme inhibitors block enzyme action and can regulate enzyme activity in a cell Inhibitors are chemicals that inhibit an enzyme s activity One group inhibits because they compete for the enzyme s active site and thus block substrates from entering the active site These are called competitive inhibitors

5.16 Enzyme inhibitors block enzyme action and can regulate enzyme activity in a cell Other inhibitors do not act directly with the active site Substrate Enzyme Active site These bind somewhere else and change the shape of the enzyme so that the substrate will no longer fit the active site These are called noncompetitive inhibitors Competitive inhibitor Normal binding of substrate Noncompetitive inhibitor Enzyme inhibition 5.16 Enzyme inhibitors block enzyme action and can regulate enzyme activity in a cell Enzyme inhibitors are important in regulating cell metabolism Often the product of a metabolic pathway can serve as an inhibitor of one enzyme in the pathway, a mechanism called feedback inhibition The more product formed, the greater the inhibition, and in this way, regulation of the pathway is accomplished