Introduction to Ion-selective Measurement

Similar documents
Direct ISE Method Method to 1000 mg/l Na + Sodium ISE

Nitrogen, Ammonia. Known Addition ISE Method 1 Method Minimum of 0.8 mg/l NH 3 N. Ammonia ISE. Test preparation. Instrument-specific table

Measurement by Ion Selective Electrodes

A Potentiometric Analysis of Fluoride Ion in Toothpaste

ph: Measurement and Uses

Ion Selective Electrodes

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

ELECTROCHEMISTRY. Theory and Practice

USEPA Electrode Method Method 8156

ph Measurement and Control

Electrical Conductivity of Aqueous Solutions

Experiment 8 - Double Displacement Reactions

EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES

Chapter 16: Tests for ions and gases

5.0 EXPERIMENT ON DETERMINATION OF TOTAL HARDNESS

ph Alkalinity of Water

Experiment 4 (Future - Lab needs an unknown)

9. Analysis of an Acid-Base Titration Curve: The Gran Plot

Determining the Identity of an Unknown Weak Acid

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating)

ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan

Milwaukee USER MANUAL

USEPA 1 FerroVer Method 2 Method to 3.00 mg/l Fe Powder Pillows or AccuVac Ampuls

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

Direct Measurement Method Method to 20.0 mg/l (or 0 to 200% saturation) O 2 Clark-type Amperometric Sensor

Milwaukee USER MANUAL. Milwaukee. Smart DO Meter PORTABLE DISSOLVED OXYGEN METER MODEL: SM600. Authorized Dealer: ISMIL600 11/01

Properties of Acids and Bases

Solubility Product Constants

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Determination of the Mass Percentage of Copper in a Penny. Introduction

Hands-On Labs SM-1 Lab Manual

HEAT OF FORMATION OF AMMONIUM NITRATE

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

Acid Base Titrations

GA/7 Potentiometric Titration

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

FerroVer Method 1 Method to 3.0, 1.0 to 30.0 and 10.0 to mg/l Fe Powder Pillows

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls

Acid Dissociation Constants and the Titration of a Weak Acid

The Determination of an Equilibrium Constant

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

CONDUCTIVITY SENSOR. Description D0382. Figure 1. The Conductivity Sensor

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.

PROCEDURE COVERSHEET. Document Section: CHEMISTRY Author: JOANNE WONG Date Authored: JAN In Use Date: 2/1/2011 Discontinued Date:

Experiment 9 Electrochemistry I Galvanic Cell

SODIUM CARBOXYMETHYL CELLULOSE

Lead Testing and On Site Calibration for Water Testing Detection Range: 2 100ppb

Austin Peay State University Department of Chemistry Chem The Use of the Spectrophotometer and Beer's Law

Neutralizing an Acid and a Base

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES

This value, called the ionic product of water, Kw, is related to the equilibrium constant of water

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

18 Conductometric Titration

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

ph and Acidity in Wine and Fruit Juice

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

Net ionic equation: 2I (aq) + 2H (aq) + H O (aq) I (s) + 2H O(l)

Solubility Curve of Sugar in Water

The Empirical Formula of a Compound

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Science 20. Unit A: Chemical Change. Assignment Booklet A1

Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law.

Practical Lesson No 4 TITRATIONS

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

Measuring ph in Water or CaCl2 Using a ph Meter. Compiled by Darren Murray, June 30, 2011 TABLE OF CONTENTS OVERVIEW 3

Features, Limitations & Potential Errors

AIRMoN, ph and Conductivity Field Measurement

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

Chemistry B11 Chapter 6 Solutions and Colloids

Determination of sodium with the ion-selective

Lab 7 Soil ph and Salinity OBJECTIVE INTRODUCTION Soil ph active

Syllabus OC18 Use litmus or a universal indicator to test a variety of solutions, and classify these as acidic, basic or neutral

Phenolphthalein-NaOH Kinetics

Electrochemistry Revised 04/29/15

Lab #11: Determination of a Chemical Equilibrium Constant

Physical Properties of a Pure Substance, Water

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

Chemistry 151 Final Exam

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Determination of calcium by Standardized EDTA Solution

A Beer s Law Experiment

Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration.

Total Water Hardness

SenTix 950 SenTix 980

PHYSICAL SEPARATION TECHNIQUES. Introduction

Phosphorus, Reactive (Orthophosphate)

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

UltraBasic Benchtop ph Meter Operation Manual

Compact Water Quality Meter B-700 series

105 Adopted:

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.

Transcription:

Introduction to Ion-selective Measurement Dr. Axel W. Bier, Hach-Lange, Application Specialist Theory Ion-selective electrodes (ISE) consist of an ion-specific half-cell and a reference half-cell. The ion-specific cell gives a potential against the reference cell depending on the specific ion concentration. When the specific ion concentration (the sample or an ion standard) changes, the potential changes as well. The relationship between the potential measured with the ISE and the ion concentration in the measured solution is expressed using the Nernst equation: [1] E = measured potential (mv) between the ion selective and the reference electrode E o = measured potential (mv) between the ion selective and the reference electrode at a C = 1 concentration R = Universal gas constant (R = 8.314 J mol -1 K -1 ) T = Temperature in K (Kelvin), with T (K) = 273.15 + t C if t is the temperature of the measured solution ( C) F = Faraday constant (96485 C mol -1 ) n = electrical charge of the ion C = concentration of ion to be measured C 0 = detection limit Since R and F are constants, they will not change. The electrical charge of the ion to be measured is also known. As the sample or standard temperature is a variable of the Nernst equation, it is essential to continuously record and monitor the temperature while measuring. Therefore the equation [1] can be simplified to: [2] where S = is called the slope of the ISE. Example of ion n (electrical charge of the ion) S (t = 25 C) Copper (Cu 2+ ) +2-29.58 Sodium (Na + ), Potassium (K + ) +1-59.16 Fluoride (F - ), Chloride (Cl - ) -1 +59.16 Sulphide (S 2- ) -2 +29.58 As known from ph measurement and calibration, the slope S is an indicator of ISE performance. If the slope changes over time it may mean that it is necessary to implement a preventative maintenance cycle to clean the ion-selective part. This may mean refilling the specific inner solution, replacing the membrane, or in the worst case replacing the entire ISE because the electrode is too old. Typically, an ISE will last one to two years, depending on usage. In order to characterize ISE behavior, it is necessary to prepare standard solutions of the specific ion in terms of logarithmic concentration values, (e.g. 0.01 / 0.1 / 1.0 / 10 / 100 / 1000 mg/l standards). When all standard solutions are measured, the ISE characteristic can be displayed by plotting concentration vs. potential. However, it may also be useful to either plot the concentrations on a logarithmic axis or easier to calculate the log (C), which using the above example is a simple exercise (-2, -1, 0, +1, +2, +3).

Table 1: The absolute measured mv values of a sodium ISE for 7 Na + standard solutions (mg/l). Figure 1: Example of sodium ISE calibration curve (blue) and detection limit (red) The slope of the curve decreases with decreasing Na + concentrations. While the linear section (1.4mg/L up to 1000 mg/l) shows a slope of -58.2 mv/pc at 20 C, the lower concentrations, shown in the flat (left) part of the curve, show a slope (-0.2 mv/pc at 0.001 mg/l) of almost zero. That means the ISE calibration curve has a non-linear section of the curve. When measuring low Na + concentrations it must be considered that the differentiation of low Na + values from other values is more and more difficult to detect. A slope difference from one standard to another of less than 30 mv/pc (for a monovalent ion) leads to less reliable and reproducible measurements. Design of Ion-selective Electrodes Solid state electrodes: In this case, the ion selective part is a solid substance in direct contact with the solution to be measured. The main characteristic of a solid state electrode is that the sensing material is almost insoluble in water, meaning a very small solubility product. For instance, the most commonly used solid crystal is Lanthanium fluoride (LaF 3 ) to detect Fluoride ions. The equilibrium in aqueous solutions is: The solid crystal is in contact with the aqueous solution forming a small number of La 3+ ions and F - and producing a certain potential. If there are F - ions present in the sample solution, then the equilibrium changes and gives a different potential. So, it is possible to detect specific F - concentrations. PVC membrane electrodes: There are many different types of membrane electrodes. Usually the PVC material is polymerized with an organic solvent, including the specific organic substance, to react on the ions being detected by changing the potential against a reference electrode. Such membranes have to be maintained regularly, and may have a shorter useful life than solid state ISEs, depending on the usage. A common example is Calcium Ca 2+ or Nitrate NO - 3.

Gas-sensing electrodes: Although these ISEs are usually not categorized as ISE but as gas-detecting sensors, there are some gases which can also measure ions in solution. For instance ammonium can be measured by detecting the ammonia in solution since there is an equilibrium: It is a fact that ammonium dominates in acidic solutions and ammonia gas dominates in alkaline solutions. Adjusting the ph of a solution allows detection of the specific form, ammonium or ammonia. Preparation of Sodium Standard Solutions ` Weigh exactly 2.542 g NaCl. Transfer it into a 1000 ml glass flask and fill with Deionized (DI) water up to the mark (solution A: 1000 mg/l Na + ). Pipette 10 ml of solution A into a 100 ml glass flask. Fill with DI water up to the mark (solution B: 100 mg/l Na + ) and shake to mix the solutions. Pipette 10 ml of solution B into a 100 ml glass flask. Fill with DI water up to the mark (solution C: 10 mg/l Na + ). Pipette 10 ml of solution C into a 100 ml glass flask. Fill with DI water up to the mark (solution D: 1 mg/l Na + ). Pipette 10 ml of solution D into a 100 ml glass flask. Fill with DI water up to the mark (solution E: 0.1 mg/l Na + ). Calibration 2-points Out of such a calibration with two standards the slope is calculated for a specific concentration / potential area. As long as the ion concentration of the sample lies within this concentration range, a 2-point calibration is sufficient. Figure 2: Linear curve of two standard solutions (C 1 and C 2 ) and their resulting potential measured as E 1 and E 2. However, the difference of the concentrations of the standards used should be at least a factor of 10. For instance if the sample is expected to have 30-50 mg/l sodium, then a calibration with two standards of 10 mg/l and 100 mg/l is sufficient. Because of the temperature effect on the Nernst equation, a 2-point calibration and a sample measurement must be done close to the same temperature. A maximum deviation of 1 C is acceptable, although it affects the accuracy of the final result.

Calibration Multi-points Lastly, the multi-point calibration is used to determine where the ISE leaves the linear region of the curve and where the detection of low concentrations is limited. Figure 3: Non-linear curve of 7 standard solutions (Ci) and the resulting potential measured as E i. Especially for low concentrations, the use of several standards is required to cover the full non-linear range. By using the non-linear calibration curve technique, the reliability and accuracy of the result is much higher, especially if samples are examined with a broad range of sodium ions. Detection Limit After recording the calibration curve, extraction of the detection limit of that ISE is recommended. This can be done graphically by adding one tangent (red line) to the upper linear part of the curve and one tangent to the lower linear part (almost parallel to the X-axis). The detection limit of the ISE is the point at which both tangents cross. However, this detection limit applies to a concentration of a specific ion detected with a specific ISE. It depends on the characteristic of the sample and on the behavior of the ISE. The older the ISE, the less reliable the measurements of low concentrations will be. In addition, the temperature plays an important role. ISEs in samples at cold, hot or room temperature have different slopes. Measurement When performing ISE measurements for the first time with a new electrode it is normal for the stabilization time to be longer and the signal may be noisier than the user is accustomed to from previous measurements. If this is the case, the new ISE electrode should be conditioned in diluted standards for several hours before a fast and stable reading may be achieved. Always use a stirrer to ensure consistent mixing of the sample solution and of the standards. This also helps the mass transportation of ions to the ion-selective surface of the electrode. Especially for low concentrations, stirring may shorten the stabilization time. When using a magnetic stir plate, it may be necessary to insulate the sample beaker from the plate to isolate the heat generated from the stirrer. As mentioned above, changes in temperature can lead to result variations. The easiest way to insulate the beaker from the stirrer is to place a piece of cardboard or thin Styrofoam between the beaker and the stir plate.

Selectivity of the Specific-ion Measurement In the ISE introduction section of this paper, an assumption was made that an ISE electrode has a sensitive part specific to just one ion to be detected among other ions in the solution. This is not the case for most ISEs. Since the ion-selective part is sensitive to other ions which are similar in ion radius, charge and mobility, this sensitivity must be taken into account in the measurement of samples. It is possible that an excess of an interfering ion can lead to higher or lower concentrations of the measured ion. The sodium ISE electrode is selective for Na +, but also for potassium K + and lithium Li +. The selectivity constant for K + is 0.001 and for Li + is 0.01. What does that mean? A small selectivity constant of 0.001, for example, means that the interfering ion is adding 1/1000 of the potential measured in the solution compared to the main ion (Na + ). With sodium, potassium in the same solution can cause a 1/1000 potential value like that of sodium, if both ions are present in the same concentration. If potassium is 1000 times more highly concentrated than sodium, then the potential measured is almost 50/50 resulting from both ions, Na + and K +. This of course leads to false results, where Na+ is assumed to be of a higher concentration than what is truly there. In order to calculate the influence of an interfering ion against the final potential, an extended Nernst equation can be used. Nikolsky developed a specific equation, where all interfering ions can be considered. [3] n i = n s = electrical charge of the ion to be measured electrical charge of the interfering ion a i = a j = activity of ion to be measured activity of interfering ion K is = selectivity constant (ion to be measured // interfering ion) Ionic Strength All ions in a solution add to the total ionic strength. Ions are the only species to transport charge through the solution. If there are sufficient ions present, the ion transportation to the ion-selective surface is continuous. In the case of low ionic strength samples, like drinking water, boiler water, etc. the charge transportation through the solution is covered by only a few ions and the transportation of the measured ions is rare and random. [4] I = C i = Z i = ionic strength concentration of the ion i charge of the ion i To avoid such a random measurement, where diffusion potentials also create transport barriers, an Ionic Strength Adjustment (ISA) helps to reach sufficient ions in the solution without interfering with the searched-for ion. In the case of the Hach IntelliCAL Sodium ISE (ISENA381), the ISA is an ammonium salt like NH 4 Cl. Therefore, it is necessary to add an ISA to all standards and samples to create a minimum ionic strength in these solutions. In addition, some ISAs also contain a ph-buffer to create the optimal ph environment for the specific ion to be measured.

Measurement Mode The most common ISE measuring technique is Direct Measurement. Therefore a calibration curve is necessary based on 2- or multipoints. Once the calibration has been performed and saved, the sample can be measured directly and the ion concentration can be calculated by the meter. The Incremental Measurement mode must be used instead of Direct Measurement whenever the matrix of a sample changes the analytical sensitivity of the method. In other words, the slope of the working curve for standards made with distilled or DI water is different from the same working curve made up in a matrix that is close to the sample. Here several methods can be used, such as Standard addition Double standard addition Standard subtraction Sample addition Sample subtraction Standard Addition A commonly used method, the ISE is placed in the sample and the potential is recorded. Then a standard solution is added and again the potential is recorded. After entering the sample volume, standard volume, standard concentration into the ion meter, it calculates the sample concentration. This can also easily be done by spread sheet software such as Microsoft Excel by using the following equation: [5] C p = C s = V p = Vs = E 1 = E 2 = S = concentration of the sample concentration of the standard volume of the sample volume of the standard potential of the sample before addition potential of the sample after standard addition slope at the sample and standard temperature The optimal addition is to double the sample concentration or a ratio (sample: standard addition) of maximum 1:10 is possible. Therefore, it is recommended to work with highly concentrated standard solutions, where the standard volume added is rather small compared to the sample volume. Sample Addition This method is as easy to perform as the Standard Addition method. First take a standard solution and measure the potential. Then add a defined volume of your sample and measure the potential again. Add the sample volume so that the standard concentration is increased by 2 to 10 times. Then the ion meter can calculate the searched concentration. Again there is a formula to calculate manually: [6] C p = concentration of the sample C s = concentration of the standard V p = volume of the sample V s = volume of the standard E 1 = potential of the standard before addition E 2 = potential of the standard after sample addition S = slope at the sample and standard temperature

Maintenance Since the IntelliCAL Sodium ISE has a glass-sensing element, there is low risk of contamination inside the layer by other ions. However, the H + and Li + ions are small enough to enter the glass material and to exchange with Na +. Therefore, when not in use, keep the Na + ISE in the special storage solution. Prior to first use, the IntelliCAL Sodium ISE must be conditioned in a 0.1 mol/l Na + standard for several hours; refer to the manufacturer s recommendations in the User Manual. The IntelliCAL Sodium ISE arrives delivered in such specialized standard solution Treat the Sodium ISE glass bulb similarly to a ph probe, including cleaning. Any abrasive polishing or scratches must be avoided, because this irreversibly damages the sensing surface. For oil/fat deposits on the glass bulb, soak in a solution with mild detergent or the Hach cleaning solution. Afterwards rinse the probe with DI water and recondition. Use only soft tissues to wipe the probe or sensing element, and never store the ISE probe dry or directly in DI water. This will make it necessary to condition before measurement or may even damage the probe. Call 800-227-4224 or visit: www.hach.com/smartprobes Lit. No. 2071 J9 Printed in U.S.A. Hach Company, 2009. All rights reserved. Trademarks are the property of their respective owners.