GMO Investigator- Part 1

Similar documents
Objectives: Vocabulary:

RESTRICTION ENZYME ANALYSIS OF DNA

Lab 5: DNA Fingerprinting

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

HiPer RT-PCR Teaching Kit

RAINBOW ELECTROPHORESIS 1 An Introduction to Gel Electrophoresis

DNA Electrophoresis Lesson Plan

DNA: A Person s Ultimate Fingerprint

Bio 3A Lab: DNA Isolation and the Polymerase Chain Reaction

LAB 7 DNA RESTRICTION for CLONING

Agarose Gel Electrophoresis with Food Color- Teacher Guide

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Crime Scenes and Genes

Cloning GFP into Mammalian cells

Bacterial Transformation with Green Fluorescent Protein. Table of Contents Fall 2012

Transformation Protocol

Troubleshooting Guide for DNA Electrophoresis

Transformation of the bacterium E. coli. using a gene for Green Fluorescent Protein

LAB 11 PLASMID DNA MINIPREP

Module 3: Strawberry DNA Extraction

DNA and Forensic Science

Amazing DNA facts. Hands-on DNA: A Question of Taste Amazing facts and quiz questions

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION

STA DARD OPERATI G PROCEDURE FOR THE DETECTIO OF AFRICA SWI E FEVER VIRUS (ASFV) BY CO VE TIO AL POLYMERASE CHAI REACTIO (PCR)

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

DNA Fingerprinting. Biotechnology - Electrophoresis & DNA Fingerprinting Biology Concepts of Biology 8.1. Name Instructor Lab Section.

Troubleshooting Sequencing Data

A STUDY ON THE EFFECTIVENESS OF PEER TUTORING AS A TEACHING METHOD IN HIGH SCHOOL BIOTECHNOLOGY LABS. June Camerlengo. Santa Fe High School

Computer 6B. Forensic DNA Fingerprinting

Factors Affecting Enzyme Activity

Green Fluorescent Protein (GFP): Genetic Transformation, Synthesis and Purification of the Recombinant Protein

ABSTRACT. Promega Corporation, Updated September Campbell-Staton, S.

Plant Genomic DNA Extraction using CTAB

Enzymes: Amylase Activity in Starch-degrading Soil Isolates

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

LAB 14 DNA Restriction Analysis

Gel Electrophoresis: How Does It Work? Revised 5/11/96

Olympic B3 Summer Science Camp 2015 Weller, Smith, Putnam L3

DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS

DNA Separation Methods. Chapter 12

Activity Sheets Enzymes and Their Functions

CCR Biology - Chapter 9 Practice Test - Summer 2012

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Beginner s Guide to Real-Time PCR

BacReady TM Multiplex PCR System

THE ACTIVITY OF LACTASE

DNA Technology Mapping a plasmid digesting How do restriction enzymes work?

Laboratory 5: Properties of Enzymes

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination

Real-Time PCR Vs. Traditional PCR

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Genomic DNA Extraction Kit INSTRUCTION MANUAL

VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10

Gel Electrophoresis Teacher Instructions Suggested Grade Level: Grades 7-14 Class Time Required: 1 period (50 minutes)

Protocol v001 Page 1 of 1 AGENCOURT RNACLEAN XP IN VITRO PRODUCED RNA AND CDNA PURIFICATION

Hands-On Labs SM-1 Lab Manual

Sample Liver Enzyme Lab

ELUTION OF DNA FROM AGAROSE GELS

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation

This laboratory explores the affects ph has on a reaction rate. The reaction

Biotechnology Explorer

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

1/12 Dideoxy DNA Sequencing

Use of Micropipettes

Cell Cycle in Onion Root Tip Cells (IB)

Ice Cream Lab & Application Questions

SOLIDscript Solid Phase cdna Synthesis Kit Instruction Manual

Recombinant DNA and Biotechnology

Enzyme Action: Testing Catalase Activity

OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz

IMBB Genomic DNA purifica8on

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

Denaturing Gradient Gel Electrophoresis (DGGE)

Experiment 10 Enzymes

Catalytic Activity of Enzymes

HiPer Ion Exchange Chromatography Teaching Kit

How Does a Genetic Counselor Detect Mutant Genes? SECTION E. How Genes and the Environment Influence Our Health CHAPTER 3

Troubleshooting Polyacrylamide Gel Electrophoresis (PAGE)

Technical Manual No Update Date

GenScript BloodReady TM Multiplex PCR System

Physical Properties of a Pure Substance, Water

empcr Amplification Method Manual - Lib-A

Chemical reaction (slow): Enzyme-catalyzed reaction (much faster):

Application Guide... 2

Guide to using the Bio Rad CFX96 Real Time PCR Machine

Transformation Kit BACTERIAL TRANSFORMATION: GREEN FLUORESCENT PROTEIN. Partnership for Biotechnology and Genomics Education

UltraClean Soil DNA Isolation Kit

Protein expression in the life cycle of bean beetles (Callosobruchus maculatus)

Genetic Engineering and Biotechnology

AGAROSE GEL ELECTROPHORESIS:

1. Molecular computation uses molecules to represent information and molecular processes to implement information processing.

Separation of Amino Acids by Paper Chromatography

Lab # 12: DNA and RNA

BotanoTech: A Comparative Plant Genomics Module

Blood Collection and Processing SOP

Lab Exercise 3: Media, incubation, and aseptic technique

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity

First Strand cdna Synthesis

Transcription:

Bio 201 Name: GMO Investigator- Part 1 OBJECTIVES To review the structure and function of DNA. Understand and perform the polymerase chain reaction (PCR) To gain experience using the micropipettes, thermocycler, and gel electrophoresis To explore the benefits and potential risks of genetically modified organisms (GMOs) PREPARATION THIS IS A COMPLICATED EXPERIMENT. TO SUCCEED, YOU MUST CAREFULLY READ THIS HANDOUT BEFORE COMING TO LAB! Background: A genetically modified organism is one whose DNA has been modified, usually by the introduction of a foreign gene. Many people are opposed to genetically modified crop plants, citing the risk of creating super-weeds (through cross-pollination with herbicide-resistant crops) or super-bugs that are no longer resistant to the toxins in the pest-resistant GM crops. Another commonly cited concern is the potential production of allergic reactions to the new proteins used to develop the crops. Advocates for the technology, however, argue that these crops can be better for the environment, requiring fewer toxic chemicals. In addition, they point to the ability to preserve farmland and improve the nutritional content of food. Regardless of your perspective, genetically modified food is now available, with corn, soy, and papaya being some of the most common. In the US, such foods do not have to be labeled for consumers, and foods with less than 5% genetically modified content can be labeled GMO-free. Europe and Asia, in contrast, have required genetically modified foods to be labeled if they contain more than 1% GM content. How do you make a GM plant? The first step in this process is to identify a gene of interest. For example, many GM crops include a gene from a soil bacterium, Bacillus thuringiensis (Bt). This gene produces a protein that is toxic to corn borers, a common agricultural pest. Once the gene has been identified, scientists clone the gene, or make identical copies of it. This cloned gene is then inserted into the target plant through one of several methods including the use of a naturally occurring bacterium that inserts its DNA into a host plant s genome. Plant cells may also be induced to take up foreign DNA using an electrical current (electroporation) or by physically shooting gold particles covered in DNA into the cells (biobalistics). Once the foreign DNA is inserted, the plants are carefully bred to ensure that the desired traits are correctly passed on. (For more information, please see Chapter 20 in your textbook.) How do we know if a food has been genetically modified? In the absence of effective tracking and labeling, GM foods can be identified experimentally by one of two methods. The first, an ELISA, uses antibodies to detect the presence of specific proteins. This method, however, can only test fresh produce and must be individualized according to the type of crop. The second available test utilizes the polymerase chain reaction (PCR) to test for sequences of DNA that have been inserted into a GM plant. As DNA is a much more stable molecule, fragments can be isolated from highly processed foods. We will use this technique to screen for GM foods in lab this week. Your group may choose to work either with a sample provided in lab, or with one you ve brought from home. If you choose to bring your own sample, consider selecting fresh corn, papaya, corn bread mix, corn meal, soy flour, soy burgers, or other similar products. What is PCR? In 1983, Kary Mullis at Cetus Corporation developed the molecular biology technique known as the polymerase chain reaction (PCR). PCR revolutionized genetic research, allowing 1

Bio 201- GMO Investigator scientists to easily amplify short specific regions of DNA for a variety of purposes including gene mapping, cloning, DNA sequencing, and gene detection. The objective of any PCR is to produce a large amount of DNA in a test tube starting from only a trace amount. A researcher can take trace amounts of genomic DNA from a drop of blood, a single hair follicle, or a processed food sample and make enough to study. Prior to PCR, this would have been impossible! This dramatic amplification is possible because of the structure of DNA, and the way in which cells naturally copy their own DNA. DNA in our cells exists as a double-stranded molecule. These two strands, or sequences of bases, bind to one another in a very specific, predictable fashion. Specifically, A s will only pair with T s, and C s will only pair with G s. Thus if you know the sequence of one strand of DNA, you can accurately predict the sequence of the other. Both DNA replication and PCR take advantage of this predictability. In your cells, one strand of DNA is used as a template to copy the sequence of your DNA from every time a cell divides. PCR does essentially the same process, using one strand of your DNA as a template to produce copies of its sequence. PCR is conducted in three steps: 1) Denature the template DNA, 2) Allow the primers to anneal, and 3) Extend (copy) the template DNA. In the first step, the template DNA is heated up to break the hydrogen bonds holding the two strands together. This allows each strand to serve as a template for generating copies of the DNA. In the second step, the temperature is reduced to allow the primes to anneal, or bind, at their complimentary sequence on the template. (Primers are short, specific pieces of single-stranded DNA that provide a starting point for the enzyme that will do the copying.) In the third step, the temperature is raised again to allow the enzyme to bind at the primer and add bases to the growing DNA molecule. These three steps are repeated between 20 and 40 times in a special instrument called a thermocycler. The power of this process is that it results in exponential growth. After the first round of copying, a single DNA molecule will have produced two identical copies. These two copies will generate four molecules in the next round. Those four molecules will create eight, and so on. Thus in 30 cycles we generate literally millions of copies of DNA from each template molecule! We will be able to visualize these millions of copies using a process called DNA electrophoresis, and thus determine whether or not our sample contained genetic modifications. (The process of electrophoresis is discussed in Part 2 of this lab handout.) PROCEDURE Part A: Extraction of DNA From Food and Control Samples 1. Find your screwcap tubes containing Instagene Matrix and label one control and one test. These are the tubes you will place the DNA from your food samples in. (The Instagene matrix will bind any ions released from your sample as you boil it that might otherwise interfere with your PCR.) 2. Weigh out 0.5-2.0 grams of the GM- food sample provided and put it into the mortar. 2

Bio 201-GMO Investigator 3. Add 5 volumes of distilled water for every gram of food you weighed out. (Thus for 2 grams of sample, add 10 mls of water.) 4. Grind with the pestle for at least two minutes to form a slurry. 5. Add a second 5 volumes of water to your slurry and grind further until the mixture is smooth enough to pipette. 6. Use a disposable pipette to place 50 ul of ground slurry into the labeled screwcap tube labeled Control. 7. Clean out your mortar and pestle as indicated by your instructor. Repeat steps 2-7 using the food source you are testing. Place this sample in the screwcap tube you labeled test. 8. Shake or flick both tubes ( control and test ) to mix and place them in a 95 C waterbath for 5 minutes. 9. Place your tubes in a centrifuge in a balanced conformation (equal number of tubes on each side) and spin for 5 minutes at maximum speed. 10. When the centrifuge has stopped spinning, carefully remove your tubes and place them in a rack, taking care to avoid shaking. Your extracted DNA is ready! Part B: Setting up the PCR Reaction 1. Obtain 6 PCR tubes, and label them carefully with your group s letter and a number. Take care when handling these tubes as they are delicate and crush easily! The numbers on your tubes should correspond to the following tube contents: Tube Master Mix DNA Number 1 20 ul Plant MM (green) 20 ul Non-GMO food control DNA 2 20 ul GMO MM (red) 20 ul Non-GMO food control DNA 3 20 ul Plant MM (green) 20 ul Test food DNA 4 20 ul GMO MM (red) 20 ul Test food DNA 5 20 ul Plant MM (green) 20 ul GMO positive control DNA 6 20 ul GMO MM (red) 20 ul GMO positive control DNA 2. Obtain a Styrofoam cup with ice. Place each tube in an adaptor, and each adaptor into the ice to cool. 3. Referring to the table in Step 1, and using a fresh tip for each addition, add 20 ul of the indicated master mix to each PCR tube. Cap each tube to prevent contamination. 4. Again referring to the same table, and using a fresh tip for each tube, add 20 ul of the indicated DNA to each tube. Be sure to avoid the InstaGene pellet at the bottom of the sample tubes. As you add the DNA mixture to your reaction tube, pipette gently up and down to mix. 5. Be sure your tubes are tightly capped and place them in the thermocycler. Next Steps: The thermocycler will heat and cool your samples 40 times, making millions of copies of any regions of DNA that match the primers. This process will take several hours. When it has finished, your instructor will place the samples in the fridge for you to analyze during your next lab session. In the meantime, answer the questions on the following page and read Part 2 of this protocol carefully before coming to lab next time. 3

Bio 201- GMO Investigator Questions to Answer: 1. You added a PCR Master Mix to each sample. What sorts of ingredients must be in this mix to allow the PCR reaction to work? For each ingredient you identify, be sure to specify its function in the reaction. (For help with PCR, see page 391 in your text.) 2. In this week s lab, you set up two PCR reactions for each sample you tested. One of these reactions, labeled Plant, amplifies regions of DNA found in all plants. What is the purpose of this reaction? What does it tell you about your experiment? 3. You also performed PCR on two samples known to contain GMO s (tubes 5 and 6)! Why were these to samples included in our work today? What can they tell us about the results of our experiment? 4. It would be reasonable to expect that most of the DNA we recover from processed food samples will be at least partially degraded (broken). Can PCR still work on degraded samples? Why or why not? 4

Bio 201-GMO Investigator Name: GMO Investigator- Part 2 OBJECTIVES To review the structure and function of DNA. Understand and perform the polymerase chain reaction (PCR) To gain experience using the micropipettes, thermocycler, and gel electrophoresis To explore the benefits and potential risks of genetically modified organisms (GMOs) Background: Recall that last week in lab we ground up food samples, extracted their DNA, and used this DNA to do a Polymerase Chain Reaction (PCR). This PCR will copy specific sequences of DNA that are often used when a food crop is genetically modified. Thus if our sample contained modified food, we expect to see our reactions work; if the sample did not contain genetically modified food, no product should be formed. How can I tell if my PCR worked? Unfortunately, you cannot see individual DNA molecules with either your naked eye or our light microscopes. So we will need another technique to allow us to determine whether or not our PCR was successful. The technique we will use is known as DNA electrophoresis. How does DNA electrophoresis work? In DNA electrophoresis, a collection of DNA molecules is placed in wells at one end of a dense matrix called a gel. An electrical current is then conducted across the gel. As DNA is a negatively charged molecule, it will be drawn towards the positive pole. (Opposites attract!) Thus our DNA will move through the gel, and smaller fragments will travel faster, and therefore farther, than larger fragments. This allows us to sort the DNA fragments from each PCR based on its size. What will I see as my gel runs? We will mix our PCR products with a colored loading dye. This loading dye will make it easier to see and load our samples. In addition, the dye itself is also negatively charged; thus is will also migrate through our gel when the current is applied. You will see this dye moving. The DNA produced in the PCR reaction, however, is still not visible as it has no natural color. To see these DNA molecules, we will have to apply a DNA stain, FastBlast. This stain will bind to the DNA molecules produced by the PCR and allow us to see them. Depending on your lab schedule, your instructor may ask you to stain your gels overnight. Part 1: DNA Electrophoresis Note: We will work today in the same group of 4-5 students, with each group running their own PCR products on their gel. Make sure everyone has a chance to practice with the micropipettes and load a sample or two! 5

Bio 201- GMO Investigator Part A: Preparing your gel. 1. Obtain a tray from the electrophoresis supply box. CAREFULLY tape both ends of the tray as demonstrated by your instructor. Note that these gels are prone to leaking! A little extra time now will be worth your while! Insert a comb into one of the sets of notches at the end of your tray. 2. Obtain a flask of melted agarose from the water bath. Carefully pour the melted agarose into your tray, up to the line on the side. Return the melted agarose to the water bath so other groups may use it! 3. Leave your gel in a level spot until the agarose has solidified (~10-15 minutes). The agarose will turn slightly opaque and will be solid to the touch. 4. Gently remove the comb and the tape from both ends of your tray. 5. Place your gel in an electrophoresis box. Recall that DNA is negatively charged, thus it will migrate towards the positive pole (red). This means that the wells in your gel should be at the negative (black) end of the box! 6. Carefully pour 1X TBE buffer over the surface of your gel until you have filled the chambers at either end of your gel. Part B: Preparing your Samples. 1. Carefully retrieve your PCR samples from last week. (Remember that these tubes have thin walls and should be handled gently. 2. Using a fresh tip each time, carefully add 5 ul of Orange G loading dye to each sample and mix well. On these pipettes, the dial should read 0-5-0 if your pipette is set correctly. Remember to depress the plunger only to the first stopping point when drawing up liquids. Part C: Loading your Gel. When your group has reached this point, your instructor will demonstrate how to load a gel by loading a molecular size marker on your gel. This marker contains a set of DNA fragments of known size and can be used to determine the size of your PCR products. After your instructor has demonstrated the process, you may proceed. 1. Using a fresh tip each time, carefully remove 15 ul of the PCR/Loading dye mix. (Your pipette will read 1-5-0 this time.) Place the pipette tip at the top of the well, and slowly dispense the solution, allowing it to sink into the bottom of the well. Note that one of the most common errors is to push the tip too far down and poke a hole in the bottom of the gel! 2. Record which well you placed the sample in, and continue as above to load the remaining five samples. Part D: Running the Gel. 1. When your gel is loaded, carefully place the cover on your electrophoresis chamber, taking care to align red with red and black with black. 2. Plug the ends of the wires into a power supply. We will run our gels at 100V for approximately 30 minutes. At the end of 30 minutes, your instructor will turn of the power supply. Part E: Staining your gel. 1. Carefully remove your gel from the electrophoresis box by lifting it out on its tray. Note that these gels are warm, slippery, and fragile at this point! 2. Slide your gel of the tray and into a large weigh boat. Label this weigh boat with your group s name. 3. Pour enough 1X Fast Blast solution into the weigh boat to completely cover the surface of your gel. Your instructor will probably want you to stain your gel overnight for best results. 6

Bio 201-GMO Investigator 4. Clean-up: As you leave the lab today, make sure your electrophoresis chambers and gel trays have been rinsed with tap water, dried, and returned to their storage boxes. Place these boxes on the carts in the classroom. Micropipettes and unused pipette tips should also be returned to their boxes. Take care to wipe down your workspace if any solutions have been spilled. The empty plastic tubes may be thrown in the trash. Questions to Answer: 1. Explain why DNA fragments separate according to size in an electrophoresis gel. 2. In the table below, sketch the results you see AFTER your gel has been stained. Based on this sketch, fill in the right-hand column, indicating whether or not each reaction worked. Sketch of gel Tube # Sample Results: + or -? 1 GM- Control with Plant MM 2 GM- Control with GMO MM 3 Test with Plant MM 4 Test with GMO MM 5 GM+ Control with Plant MM 6 GM+ Control with GMO MM 3. Work through the trouble-shooting flow chart provided (or with your instructor). Do you think your reactions (PCR) worked as expected? Why or why not? 4. Poll your classmates to determine how many of the food samples we tested did contain genetically modified foods and record the results here. Do the results surprise you? Do you think genetic modification of food is a good idea or not? Explain. 7