STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

Similar documents
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

4.2 Free Body Diagrams

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

Stresses in Beam (Basic Topics)

CHAPTER 15 FORCE, MASS AND ACCELERATION

Activity 2.3b Engineering Problem Solving Answer Key

Solid Mechanics. Stress. What you ll learn: Motivation

CE 201 (STATICS) DR. SHAMSHAD AHMAD CIVIL ENGINEERING ENGINEERING MECHANICS-STATICS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

MECHANICS OF MATERIALS

Structural Axial, Shear and Bending Moments

Shear Forces and Bending Moments

8.2 Elastic Strain Energy

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MATERIALS AND MECHANICS OF BENDING

Design Analysis and Review of Stresses at a Point

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

REVIEW PROBLEMS & SOLUTIONS JAMES M. GERE BARRY J. GOODNO

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Mechanical Properties - Stresses & Strains

Analysis of Stresses and Strains

Chapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics

ENGINEERING COUNCIL CERTIFICATE LEVEL

FOOTING DESIGN EXAMPLE

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

The elements used in commercial codes can be classified in two basic categories:

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

Technical Notes 3B - Brick Masonry Section Properties May 1993

Statics of Structural Supports

F. P. Beer et al., Meccanica dei solidi, Elementi di scienza delle costruzioni, 5e - isbn , 2014 McGraw-Hill Education (Italy) srl

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

Optimum proportions for the design of suspension bridge

Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Nonlinear analysis and form-finding in GSA Training Course

SOLUTION 6 6. Determine the force in each member of the truss, and state if the members are in tension or compression.

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

Detailing of Reinforcment in Concrete Structures

Chapter 4. Forces and Newton s Laws of Motion. continued

3 Work, Power and Energy

AP Physics C. Oscillations/SHM Review Packet

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig some of the trusses that are used in steel bridges

Acceleration due to Gravity

Chapter 5: Distributed Forces; Centroids and Centers of Gravity

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

AP Physics - Chapter 8 Practice Test

Highly flexible couplings

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

Copyright 2011 Casa Software Ltd. Centre of Mass

Chapter 11 Equilibrium

Mechanics of Materials. Chapter 4 Shear and Moment In Beams

EUROPEAN ORGANISATION FOR TECHNICAL APPROVALS

Linear modules Lifting units Rotary modules Grip modules Inductive proximity switches Plug connectors

Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Page 1 of Sven Alexander Last revised SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

TBG-25 OPTIONS X AXIS TRAVEL (MM) Z AXIS TRAVEL (MM) OPTIONS FOR: SPECIFICATIONS. Specifications. Configuration. Belt Type 25.

Solution Derivations for Capa #11

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

Chapter 18 Static Equilibrium

Modeling Mechanical Systems

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Multiaxial Fatigue. Professor Darrell Socie Darrell Socie, All Rights Reserved

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

Physics 201 Homework 8

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

Homework 9. Problems: 12.31, 12.32, 14.4, 14.21

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Angular acceleration α

Installation guide for the SafeLine type anchorage device. Tested in compliance with EN 795: No.: SE-...

LOAD-CARRYING CAPACITY OF AXIALLY LOADED RODS GLUED-IN PERPENDICULAR TO THE GRAIN

New approaches in Eurocode 3 efficient global structural design

Analysis of Stress CHAPTER INTRODUCTION

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

Module 5 Couplings. Version 2 ME, IIT Kharagpur

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

CEEN Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

Mechanics of Materials. Chapter 5 Stresses In Beams

CE591 Fall 2013 Lecture 26: Moment Connections

OPERE DI PROTEZIONE CONTRO LA CADUTA MASSI: ASPETTI PROGETTUALI. Reti in aderenza. Daniele PEILA. Daniele PEILA

Chapter 18: Brakes and Clutches

Pro-Lift Steel Pile Foundation Repair

Reaction Torque Sensor

Detailing of Reinforcement in Concrete Structures

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

DryLin ZLW Belt Drive

DIVISION: EARTHWORK SECTION: BORED PILES REPORT HOLDER: HUBBELL POWER SYSTEMS, INC.

BEAMS: SHEAR FLOW, THIN WALLED MEMBERS

PLQE. The base of the economy gearboxes with square output flange. Economy Line. Formerly PLE

Transcription:

STRESS! Stress! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1

Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support Reaction D y

Table 1 Supports for oplanar Structures Type of onnection Idealized Symbol Reaction Number of Unknowns (1) θ Light cable θ θ One unknown. The reaction is a force that acts in the direction of the cable or link. () Rollers and rockers F One unknown. The reaction is a force that acts perpendicular to the surface at the point of contact. (3) Smooth surface F One unknown. The reaction is a force that acts perpendicular to the surface at the point of contact. 3

Type of onnection Idealized Symbol Reaction Number of Unknowns (4) Smooth pin or hinge F y F x Two unknowns. The reactions are two force components. (5) F x F y Two unknowns. The reactions are a force and moment. Internal pin (6) Fixed support F x M F y Three unknowns. The reactions are the moment and the two force components. 4

Equation of Equilibrium Σ F 0 Σ M O 0 Σ F x 0 Σ F y 0 Σ F z 0 Σ M x 0 Σ M y 0 Σ M z 0 5

Internal Resultant Loadings F section F 3 F 1 F 4 y F N M O x M O N V F 3 F 1 V F 4 6

Example 1 Determine the resultant internal loadings acting on the cross section at of the beam shown. 70 N/m 3 m 6 m 7

Support Reactions 70 N/m (1/)(9)(70) 115 N M 3645 N m 3 m 6 m 540 N Internal Loading y 115 N 180 N/m 540 N V 135 N 70 N/m 90 N/m M 3645 N m 3 m y 115 N -540() -1080 N m M 540 N 0 180 N/m 0 540 N 1080 N m N m 4 m 8

Shear and bending moment diagram (1/)(9)(70) 115 N 70 N/m 3645 N m 115 N V (N) 3 m 6 m 115 540 + M (N m) - 3645 1080 b Side View 540 N 1080 N m flanges t w web 540 N Front View h 9

Example Determine the resultant internal loadings acting on the cross section at of the machine shaft shown. The shaft is supported by bearings at and, which exert only vertical forces on the shaft. 00 mm 5 N 800 N/m D 100 mm 100 mm 50 mm 50 mm 10

Support Reactions (800 N/m)(0.15 m) 10 N/m 5 N x D 0.75 m 0.15 0.1 m y y + Σ M 0: -(10)(0.75) + y (0.4) - (5)(0.5) 0, y 363.75 N + Σ F x 0: x 0 x 0, + Σ F y 0: y - 10 +363.75-5 0 y -18.75 N, Internal Loading 800(0.05) 40 N + ΣF x 0: N 0 0. m 18.75 N 0.05 m M V N + ΣF y 0: + ΣM 0: -18.75-40 - V 0, V -58.75 N 18.75(0.5) + 40(0.05) + M 0 M -5.69 N m 11

Internal Loading 800(0.05) 40 N 0. m M -5.69 N m N 0 V -58.75 N 18.75 N 0.05 m 800(0.05) 40 N 0. m 5.69 N m 58.75 N 0 18.75 N 0.05 m 1

Example 3 The hoist consists of the beam and attached pulleys, the cable, and the motor. Determine the resultant internal loadings acting on the cross section at if the motor is lifting the kn load W with constant velocity. Neglect the weight of the pulleys and beam. 0.15 m 1 m m 0.5 m 0.15 m D W 13

0.15 m 1 m m 0.5 m 0.15 m D W W kn 0.15 m 1 m T kn N M V + + Σ F x 0: Σ F y 0: + N 0 N - kn - - V 0, V - kn W kn + Σ M 0: M - (0.15) + (1.15) 0 M - kn m 14

Example 4 Determine the resultant internal loadings acting on the cross section at G of the wooden beam shown. ssume the joints at,,, D, and E are pin-connected. 6.5 kn G D E 1 m 4 kn/m 0.6 m 0.6 m m 15

Support Reactions F Two - force 6.5 kn G D E E y E x 1 m 4 kn/m (1/)()(4) 4 kn 0.6 m 0.6 m /3 m (/3)() 4/3 m + Σ M E 0: 4(4/3) + 6.5(3.) - F (1) 0, F 6.1 kn + Σ F x 0: 6.13 + E x 0 E x -6.1 kn, + Σ F y 0: -6.5-4 + E y 0 E y 10.5 kn 16

Internal loadings acting on the cross section at G F 6.13 kn 34.0 kn 6.5 kn G 0.6 m Member G F V F 39.81 o 50.19 o 34.0 kn M N F D -1.78 kn + ΣM G 0: M G -34.0 sin39.81 o (0.6) + 6.5(0.6) 0 M G 9.17 kn m + + Joint ΣF x 0: ΣF y 0: -F sin50.19 o + 6.13 0 F 34.0 kn, (T) -F cos50.19 o -F D 0 F D -1.8 kn, () + ΣF x 0: 34.0 cos39.81 o + N G 0 N G -6.1 kn + ΣF y 0: -6.5 + 34.0 sin39.81 o - V G 0 V G 15.3 kn 17

Example 5 Determine the resultant internal loadings acting on the cross section at of the pipe shown. The pipe has a mass of kg/m and is subjected to both a vertical force of 50 N and a couple moment of 70 N m at its end. It is fixed to the wall at. z x 50 N 70 N m 0.75 m 0.5 m D y 1.5 m 18

Free-ody Diagram z (M ) z (M ) y (M ) x x 50 N 70 N m (F ) x (F ) y 0.65 m (F ) z W D 9.81 N 0.5 m W D D 0.65 m y W D ( kg/m)(0.5 m)(9.81 N/kg) 9.81 N W D ( kg/m)(1.5 m)(9.81 N/kg) 4.5 N Equilibrium of Equilibrium Σ F x 0: (F ) x 0 Σ F y 0: (F ) y 0 Σ F z 0: (F ) z - 9.81-4.55-50 0, (F ) z 84.3 N Σ (M ) x 0: (M ) x + 70-50(0.5) - 4.55(0.5) - 9.81(0.5) 0, (M ) x -30.3 N m Σ (M ) y 0: (M ) y + 4.55(0.65) + 50(1.5) 0, (M ) y -77.8 N m Σ (M ) x 0: (M ) z 0 19

Free-ody Diagram (F ) x 0 (F ) y 0 (F ) z 84.3 N (M ) x -30.3 N m (M ) y -77.8 N m (M ) z 0 z 77.8 N m 84.3 N 9.81 N 0.5 m 30.3 N m 4.5 N D x 50 N 0.65 m y 70 N m 0.65 m 0

Stress z +z Face +y Face y x +x Face 1

z σ z y compatibility, τ zx τ zy σ' x -x Face σ x σ' x σ y σ' y τ' xy τ yz σ z σ z -y Face x σ' y τ' yz τ' yx τ xz σ x τ' zy -z Face τ' xz τ xy τ' zx σ' z σ' y x z τ yx τ' yx x z σ y y τ' xy y z Top View τ xy τ' xy τ yx τ' yx τ zx τ xz σ' x y z τ yx x z y σ y x z x σ x y z τ xy y z

σ' y x z τ' O yx x z τ' xy y z O σ' x y z τ yx x z y σ y x z x σ x y z τ xy y z + ΣF y 0: - σ' y x z + σ y x z 0 σ' y σ y + ΣF x 0: σ x y z - σ' x y z 0 σ x σ' x + ΣM O 0: (τ xy y z)( x) - (τ yx x z)( y) 0 τ xy τ yx 3

z σ τ x y z τ zy x y zx x y z σ z x y z τ xz y z τ xy y z σ x y z τ yz x z σ y x z τ yx x z y x σ' y x z σ x y z σ' x y z σ y x z y x y x σ' z x y τ' yz x z z τ zy x y τ yz x z y τ' yx x z z τ' xy y z τ yx x z y τ xz y z z τ zx x y τ' xz y z y x τ' zy x y x τ xy y z x τ' zx x y 4

verage Normal Stress in an xially Loaded ar ssumptions The material must be - Homogeneous material - Isotropic material Internal force ross-sectional area External force 5

σ z F σ σ x y σ σ x y + F Rz ΣF ; z df σd σ σ 6

Example 6 The bar shown has a constant width of 35 mm and a thickness of 10 mm. Determine the maximum average normal stress in the bar when it is subjected to the loading shown. 1 kn 9 kn 4 kn D kn 35 mm 9 kn 4 kn 7

1 kn 9 kn 4 kn D 9 kn 4 kn 35 mm (kn) kn 1 30 x 10 mm 30 kn 35 mm σ σ σ 30 kn (0.035 m)(0.01 max m) 85.7 Ma 8

1 kn 9 kn 4 kn D 9 kn 4 kn 35 mm σ (Ma) kn 34.3 85.7 6.9 x 10 mm 30 kn 35 mm σ σ σ 30 kn (0.035 m)(0.01 max m) 85.7 Ma 9

Example 7 The 80 kg lamp is supported b two rods and as shown. If has a diameter of 10 mm and has a diameter of 8 mm, determine which rod is subjected to the greater average normal stress. 60 o 5 4 3 30

Internal Loading y F 60 o 5 4 3 F x verage Normal Stress d 10 mm 5 3 4 60 o d 8 mm ΣF + + ΣF y x 80(9.81) 784.8 N 4 0 ; F ( ) cos 60 o F 0 5 3 o 0 ; F ( ) + F sin 60 784.8 0 5 F 395. N, F 63.4 N σ σ F 395. N π (0.004 m) F 63.4 π (0.005 N m) 7.86 8.05 Ma Ma The average normal stress distribution acting over a cross section of rod. 8.05 Ma 8.05 Ma 8.05 Ma 63.4 N 31

Example 8 Member shown is subjected to a vertical force of 3 kn. Determine the position x of this force so that the average compressive stress at is equal to the average tensile stress in the tie rod. The rod has a cross-sectional area of 400 mm and the contact area at is 650 mm. x 3 kn 00 mm 3

F x 3 kn 00 mm Internal Loading + ΣFy 0; F + F 3 0 (1) F + Σ M 0: -3(x) + F (00) 0 ------() verage Normal Stress σ F F 400 650 F 1.65F (3) Substituting (3) into (1), solving for F, the solving for F, we obtain F 1.143 kn F 1.857 kn The position of the applied load is determined from (); x 14 mm 33

onnections Simple Shear D τ avg V V V V τ avg 34

Single Shear Top View Side View Top View Side View V V 35

Double Shear / / / / Top View Top View Side View Side View V / V / V / V / 36

Normal Stress: ompression and Tension Load Tension Load a b a b d t b b bt t σ @ a a bt (b-d)t d σ @ b b ( b d) t Section a-a b t Section b-b 37

earing Stress b t d b b / / t d earing Stress bearing dt σ bearing dt 38

σ normal ( b d) t t θ dθ d b σ bearing 90 + ΣF x 0: d σ b( ) t cosθdθ 0 90 dt d 90 ( ) tσ b sinθdθ 90 σ bearing σ bearing td sin 90 td o * 39

xial Force Diagram for ompression Load on late b d t Tension - - ompression Normal Stress: σ, ( bd) t earing Stress σ bearing dt compression 40

xial Force Diagram for Tension Load on late a b d t Tension ompression Normal Stress: max + σ, ( b d) t earing Stress σ bearing dt Shearing Stress τ at tension t a τ / τ / 41

Shearing Stress on pin Single Shear τ 4

Double Shear / / / / / / / / / / / / / / τ τ / / 43

ure Shear z Section plane τ zy z τ yz y x y τ yzτzy x ure shear τ zy τ yz 44

Example 9 The bar shown a square cross section for which the depth and thickness are 40 mm. If an axial force of 800 N is applied along the centroidal axis of the bar s cross-sectional area, determine the average normal stress and average shear stress acting on the material along (a) section plane a-a and (b) section plane b-b. 800 N a a b b 0 mm 30 o 0 mm 45

40 mm a b 0 mm 800 N a b 30 o 0 mm (a) section plane a-a a 800 N N 800 N a σ N (0.04 800 N m)(0.04 m) 500 ka τ avg 0 500 ka 46

40 mm a b 0 mm 800 N (b) section plane b-b a b 30 o 0 mm 800 N x 30 o V 800 cos30 o 69.8 N b b 30 o 30 o 800 N N 800sin30 o 400 N 40 mm o 40 sin 30 ; x x 80 mm σ State of Stress @ b-b b τ avg σ b 16.51 ka 15 ka τ avg N 400 N 15 ka (0.04 m)(0.08 m) V 69.8 N 16.51 ka (0.04 m)(0.08 m) 47

Example 10 The wooden strut shown is suspended form a 10 mm diameter steel rod, which is fastened to the wall. If the strut supports a vertical load of 5 kn, compute the average shear stress in the rod at the wall and along the two shaded planes of the strut, one of which is indicated as abcd. b a c d 0 mm 40 mm 5 kn 48

b a c d 0 mm 40 mm verage shear stress in the rod at the wall 5 kn V 5 kn d 10 mm τ avg V 5 kn π (0.005 m) 5 kn 63.7 Ma 5 kn 63.7 Ma verage shear stress along the two shaded plane V.5 kn b a 5 kn V.5 kn c d τ avg V.5 kn (0.04 m)(0.0 m) 3.1 Ma 5 kn 3.1 Ma 49

Example 11 The inclined member show is subjected to a compressive force of 3 kn. Determine the average compressive stress along the areas of contact defined by and, and the average shear stress along the horizontal plane defined by ED. 5 3 3 kn 4 5 mm 40 mm 80 mm 50 mm 50

The average compressive stress along the areas of contact defined by and : 3 kn 5 4 3 5 mm 5 3 3 kn 4 40 mm 80 mm V 1.8 kn 50 mm F 3(3/5) 1.8 kn F 3(4/5).4 kn 5 3 3 kn 4 σ F 1.8 kn (0.05 m)(0.040 m) 1800 ka 1.8 Ma 1.8 Ma σ F.4 kn (0.050 m)(0.040 m) 100 ka 1. Ma 1. Ma 51

The average shear stress along the horizontal plane defined by ED : 3 kn 5 4 3 5 3 3 kn 4 5 mm 40 mm 80 mm 50 mm F 3(3/5) 1.8 kn V 1.8 kn F 3(4/5).4 kn τ avg V 1.8 kn (0.04 m)(0.08 0.56 Ma m) 56.5 ka 1.8 kn 0.56 Ma 5

llowable Stress F. S fail allow F. S σ σ fail allow F. S τ τ fail allow 6. Design of Simple onnections σ allow V τ allow ross-sectional rea of a Tension Member a τ allow a σ allow 53

ross-sectional rea of a onnector Subjected to Shear V τ allow σ allow Required rea to Resist earing (σ b ) allow (σ ) b allow 54

Required rea to Resist Shear by xial Load Uniform shear stress (τ allow ) d l τ allow πd 55

Example 1a The control arm is subjected to the loading shown. (a) Determine the shear stress for the steel at all pin (b) Determine normal stress in rod, plate D and E. The thickness of plate D and E is 10 mm. φ 10 mm φ 5 mm D E φ 5 mm 00 mm D E 50 mm 50 mm 13 kn 5 kn pin φ 0 mm 13 kn 75 mm 50 mm 3 4 5 5 kn 56

F 00 mm 00 mm 13 kn 75 mm 50 mm 3 4 5 5 kn x y 13 kn 75 mm 50 mm 36.87 o 5 kn y Reaction + ΣM 0: F ( 0.) + 13(0.075) 5sin 36.87(0.15) 0 F 4.5 kn, + ΣF x 0: -4.5 - x + 5cos36.87 o 0 x 15.5 kn, x ΣF y 0: + y + 13-5sin36.87 o 0 (15.5) + () 15.63 y kn, kn 57

φ 35 mm (a) Shear stress 4.5 kn 00 mm 00 mm φ 5 mm φ 5 mm D E 5 3 pin φ 0 mm 13 kn 4 5 kn 75 mm 50 mm 15.63 kn 13 kn 75 mm 50 mm 5 kn in (Double shear) in D and E (Single shear) 15.63 kn 7.815 kn τ D VD 13 kn 6.48 Ma ( π / 4)(0.05 ) D τ 7.815 kn V 7.815 kn 4.88 Ma ( π / 4)(0.0) τ E VE 5 kn 50.93 Ma ( π / 4)(0.05 ) E 58

φ rod 10 mm (b) Normal stress 4.5 kn φ 5 mm D E φ 5 mm 00 mm D E 50 mm 50 mm 13 kn 5 kn 15.63 kn 13 kn 75 mm 50 mm 5 kn σ ale σ 4.5 kn 56.7 Ma ( π / 4)(0.010) late D 13 kn 13 kn σ D 13 kn t 0.01 m 0.05 m σ D 13 kn (0.05)( 0.01) 6 Ma 59

φ rod 35 mm 4.5 kn φ 5 mm D E φ 5 mm 00 mm D E 50 mm 50 mm 13 kn 5 kn 15.63 kn 13 kn 75 mm 50 mm 5 kn late E 5 kn 50 mm σ E 50 mm 5 kn 5 kn 0.05 m t 0.01 m 0.05 m σ E 5 kn (0.05 0.05)(0.01) 100 Ma 60

Example 1b The control arm is subjected to the loading shown. Determine the required diameter of the steel pin at if the allowable shear stress for the steel is τ allow 55 Ma. Note in the figure that the pin is subjected to double shear. 00 mm 13 kn 75 mm 50 mm 3 4 5 kn 61

F 00 mm 00 mm 13 kn 75 mm 50 mm 3 4 5 kn x y 13 kn 75 mm 50 mm kn y Internal Shear Force + ΣM 0: F ( 0.) 13(0.075) sin 36.87(0.15) 0 F 13.15 kn + ΣF x 0: -13.15 - x + cos36.87 o 0 x 4.47 kn x ΣF y 0: + y - 13 - sin36.87 o 0 (4.47) + (6.) y 6. kn 6.58 kn 6

13.15 kn 00 mm 00 mm 13 kn 75 mm 50 mm 3 4 5 kn 6.58 kn 13 kn 75 mm 50 mm kn Required rea 6.58 kn τ V allow 13.9 10 6 55 10 3 41.6 10 6 m 4 mm 13.9 kn 13.9 kn π d ( ) 4 mm d 17.55 mm Use d 0 mm 63

Example 13a The two members are pinned together at as shown below. Top views of the pin connections at and are also given. If the pins have an allowable shear stress of τ allow 86 Ma, the allowable tensile stress of rod is (σ t ) allow 11 Ma and the allowable bearing stress is (σ b ) allow 150 Ma, determine to the smallest diameter of pins and,the diameter of rod and the thickness of necessary to support the load. Top view 13 kn 5 4 3 1 m 0.6 m 64

Internal Force y 13 kn F x 36.87 o 1 m 0.6 m + Σ M 0: 13 (1) + F sin 36.87(1.6) 0 F 13.54 kn + Σ F y 0: y 13 + 13.54 sin 36.87 0 y 4.88 kn + Σ F x 0: x +13.54 cos 36.87 0 x 10.83 kn 65

Diameter of the ins 11.88 kn y 4.88 kn 13 kn F 13.54 kn 36.87 o x 10.83 kn Top view 1 m 0.6 m in 11.88 kn in F 13.54 kn V 5.94 kn V 5.94 kn V 13.54 kn V τ π 4 allow ( d ) 5.94 kn 86 10 kn/ m 69.07 mm 69.07 mm 3 d 9.38 mm, Use d 10 mm π ( 4 V τ d allow ) 13.54 kn 86 10 kn / m 157.4 mm 157.4 mm 3 d 14.16 mm, Use d 15 mm 66

Diameter of Rod 11.88 kn y 4.88 kn 13 kn 36.87 o F 13.54 kn x 10.83 kn 1 m 0.6 m 13.54 kn 13.54 kn ( σ t ) allow 11 13.54 kn 10 kn/ m 10.9 mm 3 π 4 ( d ) 10.9 mm d 1.4 mm, Use d 15 mm 67

Thickness 11.88 kn y 4.88 kn 13 kn F 13.54 kn 36.87 o x 10.83 kn 1 m 0.6 m φ 10 mm t 0 kn φ 15 mm ( σ ) 150 10 t b allow 6 11.88 10 (0.010 ) t 0.0079 m 3 11.88 kn 13.54 kn t ( σ b ) allow 150 10 6 13.54 10 (0.015) t 3 (σ b ) (σ b ) t 0.0060 m y comparison use t 8 mm 68

Example 13b The two members are pinned together at as shown below. Top views of the pin connections at and are also given. If the pins have an allowable shear stress of τ allow 86 Ma, the allowable tensile stress of rod is (σ t ) allow 11 Ma and the allowable bearing stress is (σ b ) allow 150 Ma, determine to the maximum load that the beam can supported. Top view φ 10 mm t 8 mm φ 15 mm 5 3 4 1 m 0.6 m φ 15 mm t 8 mm 69

Internal Force y F x 36.87 o 1 m 0.6 m + Σ M 0: ( 1) + F sin 36.87(1.6) 0 + ΣF 0 ; + 1.04 sin 36.87 0 y y F 1.04 (T) y 0.375 + ΣF x 0 ; + 1.04 cos 36.87 0 x x 0.834 kn 70

0.914 0.834 Top view in (double shear) 0.914 y 0.375 F 1.04 36.87 o 1 m 0.6 m φ 15 mm φ 10 mm in (single shear) F 1.04 V 0.457 τ allow V 0.457 V 3 0.457 86 10 ka ( π / 4)(0.01) 14.78 kn V 1.04 τ allow V 3 1.04 86 10 ka ( π / 4)(0.015 ) 14.58 kn 71

0.914 y 0.375 36.87 o F 1.04 0.834 1 m 0.6 m φ rod 15 mm Rod 1.04 1.04 σ allow 3 1.04 11 10 ka ( π / 4)(0.015 ) 19 kn 7

0.914 y 0.375 F 1.04 36.87 o 0.834 Top view φ 10 mm t 10 mm ( σ b ) allow 0.914 6 0.914 150 10 (0.010 )(0.010 ) 16.41 kn φ 10 mm t 10 mm 1 m 0.6 m 0 kn F 1.04 (σ b ) (σ b ) φ 15 mm t 10 mm ( σ ) 150 10 b allow 6 1.60 1.04 (0.015 )( 0.01) kn t 10 mm φ 15 mm y comparison all 14.58 kn 73

Example 14 The suspender rod is supported at its end by a fixed-connected circular disk as shown. If the rod passes through a 40-mm diameter hole, determine the minimum required diameter of the rod and the minimum thickness of the disk needed to support the 0 kn load. The allowable normal stress for the rod is σ allow 60 Ma, and the allowable shear stress for the disk is τ allow 35 Ma. 40 mm t 40 mm τ allow d 0 kn 0 kn 74

40 mm t 40 mm τ allow d 0 kn 0 kn Diameter of Rod Thickness of Disk σ allow 60 0 10 3 kn kn/ m τ V allow 35 0 10 3 kn kn/ m π 0 d 4 60 10 3 kn kn/ m π (0.0 m) t 35 0 10 3 kn kn/ m d 0.006 m 0.6 mm t 4.55x10-3 m 4.55 mm 75

Example 15 n axial load on the shaft shown is resisted by the collar at, which is attached to the shaft and located on the right side of the bearing at. Determine the largest value of for the two axial forces at E and F so that the stress in the collar does not exceed an allowable bearing stress at of (σ b ) allow 75 Ma and allowable shearing stress of the adhesive at of τ allow 100 Ma, and the average normal stress in the shaft does not exceed an allowable tensile stress of (σ t ) allow 55 Ma. F E 60 mm 0 mm 80 mm 76

F E 60 mm 0 mm 3 80 mm Load 3 osition xial Stress earing Stress 55 10 3 (σ t ) allow kn/ m 3 π (0.03 1 51.8 kn m) 3 3 (σ b ) allow 3 3 75 10 kn/ m [ π (0.04 m) π (0.03 m) ] 55 kn 60 mm 80 mm 77

F E 60 mm 0 mm 3 80 mm Load 100 Shearing Stress 60 mm 3 τ 10 allow 3 kn/ m shear 3 osition 80 mm 0 mm 3 [π (0.04 m)(. 00 )] xial Stress 1 51.8 kn earing Stress 55 kn Shearing Stress 3 55 kn 3 55 kn The largest load that can be applied to the shaft is 51.8 kn. 78

Example 16 The rigid bar shown supported by a steel rod having a diameter of 0 mm and an aluminum block having a cross-sectional area of 1800 mm. The18-mmdiameter pins at and are subjected to single shear. If the failure stress for the steel and aluminum is (σ st ) fail 680 Mpa and (σ al ) fail 70 Ma, respectively, and the failure shear stress for each pin is τ fail 900 Ma, determine the largest load that can be applied to the bar. pply a factor of safety of F.S.0. Steel 0.75 m luminum m 79

Steel 0.75 m F luminum 0.75 m 1.5 m m F + ΣM 0: (1.5 m) - F ( m) 0 ---------> F 0.65 + ΣM 0: (0.75 m) - F ( m) 0 ----------> F 0.375 Rod ( σ st ) allow ( σ st ) F. S fail F 3 680 10 ka 0.65 π(0.01 1 171 kn m) lock 70 ( σ al ) allow ( σ al ) F. S fail 3 10 ka 0.375 1800 10 168 kn 6 F m 80

Steel 0.75 m F 0.65 luminum 0.75 m 1.5 m m F 0.375 in or τ allow τ fail F. S F pin 3 900 10 ka 0.65 π(0.009 m) 3 183 kn Summary Rod 1 171 kn lock 168 kn in or 3 183 kn Largest load 168 kn 81