I r o n ( a ), (y) Stainless Steel. Activated C h a r c o a l Ice SPECIFIC HEAT OF SOME SOLIDS CONTENTS. Copper. Indium D. Tantalum F. G.



Similar documents
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years


1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings


Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Campus Sustainability Assessment and Related Literature

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

R e t r o f i t o f t C i r u n i s g e C o n t r o l

DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES

Surface Parameters of Stannic Oxide in Powder, Ceramic and Gel Forms by Nitrogen Adsorption Techniques l

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator

SCO TT G LEA SO N D EM O Z G EB R E-

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change


Numerical Analysis of the Resin Transfer Molding Process via PAM- RTM Software

Notes on Polymer Rheology Outline

4 Thermomechanical Analysis (TMA)

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING

THERMODYNAMIC STUDY OF Ti-V AND Al-V SYSTEMS USING FACTSAGE

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Thermodynamic database of the phase diagrams in copper base alloy systems

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 1


COMPARISON BETWEEN GLASS AND FLAX NON-CRIMP STITCHED FABRICS

Effective Cooling Method for Spin Casting Process

Basic RTD Measurements. Basics of Resistance Temperature Detectors

Cl1'15 Charlotte-Mecklenburg Schools

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

3.3. Rheological Behavior of Vinyl Ester Resins

UNCLASSIFIED AD 404 5'18 DEFENSE DOCUMENIATION CENTER FO3 SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATIONH, ALEXANDRIA, V!RGINIA UNCLASSIF]HED

Finite Element Modeling of Heat Transfer in Salt Bath Furnaces

USI Master Policy Information

Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit Per diode V F forward voltage I F =10mA

Keeping ahead through Claisse expertise in sample preparation by fusion. Safe, simple, high performance


APPLICATION OF DUAL RESPONSE AND TOLERANCE ANALYSIS APPROACHES FOR ROBUST DESIGN OF SPOT WELDING PROCESS

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B

Appendix B Intervention Codes

Technology. Chapter 15 Processing Resources

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

SPACE CHARGE MEASUREMENTS IN XLPE INSULATED MID VOLTAGE CABLE: CORRELATION WITH CABLE PERFORMANCE

All answers must use the correct number of significant figures, and must show units!

X-RAY DETERMINATION OF THE STRUCTURE OF GLASS*

Estimation of Long-Term Change in Physical Property of Optical Fiber Coating Considering Effect of Humidity

molecular aggregates would then be present in the water: e.g., linear chains containing

The Myth of Vapor Permeation and Thermal Insulation

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger

MOLECULAR PROPERTIES OF POLYMERIC MATERIALS FOR SPACE APPLICATIONS

Parameter Identification for State of Discharge Estimation of Li-ion Batteries

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = m. Thus,

TECHNICAL DATA SHEET

Spectra of pyroelectric X-ray generator

SM Series 400W TVS Diode Array

An Introduction to Invar. Scott Gibb Graduate Student College of Optical Sciences University of Arizona December 5, 2006

PRODUCT / APPLICATION INFORMATION

Introduction. P. Budrugeac, E. Segal *

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

Kursus i Produktions- og materialeteknologi


TechCut 4 Precision Low Speed Saw

NAMA FILM Aleksinackih rudara 39A Beograd, Serbia Tel/Fax: Mobile: princip@eunet.rs

" {h k l } lop x odl. ORxOS. (2) Determine the interplanar angle between these two planes:

Density and Viscosity of Concentrated Aqueous Solutions of Polyethylene Glycol

Wake Technical Community College Huskins and Learn & Earn Online Courses Interest Form Due to Mrs. Canada by April 6th

REACTIONS IN THE SN CORNER OF THE CU-SN-ZN ALLOY SYSTEM

Introduction: Background of the OIT Test:

TA Instruments User Training

Recognized Educational Institutions Offering Early Childhood Education Programs

Lecture: 33. Solidification of Weld Metal

Applied Reliability Page 1 APPLIED RELIABILITY. Techniques for Reliability Analysis

Low-Level Contact Resistance Characterization

Chapter Outline. Diffusion - how do atoms move through solids?

The Heat Transfer Characteristics of an Insulated Circular Duct Considering and Neglecting the Influence of Heat Radiation

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

The Viscosity of Fluids

Put the human back in Human Resources.

Recognized Educational Institutions Offering Early Childhood Education Programs

Standard Wire & Cable Co.

Studies on Pore Systems in Catalysts

CABLE DESIGN AND RELATED ISSUES IN A FAST-CYCLING SUPERCONDUCTING MAGNETS

EXPERIMENT 4 The Periodic Table - Atoms and Elements

Depend-O-Lok FxE Expansion Coupling. System No. Submitted By Spec Sect Para Location Date Approved Date. DEPEND-O-LOK FxE EXPANSION COUPLING

Introduction to superconductivity

C relative to O being abc,, respectively, then b a c.

Composite Materials. Mary P. Shafer. Fabric Development, Inc. Quakertown, PA 18951

Microcontroller-based experiments for a control systems course in electrical engineering technology

PROPERTIES OF TYPICAL COMMERCIAL LIME PRODUCTS. Quicklimes High Calcium Dolomitic

THERMAL CONDUCTIVITY AND THERMAL EXPANSION COEFFICIENT OF GFRP COMPOSITE LAMINATES WITH FILLERS

Online Department Stores. What are we searching for?


LED Module SPECIFICATION. LED Module for Modular Platform Series. LED Platform Module with Fin

EM EA. D is trib u te d D e n ia l O f S e rv ic e

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ

PROCESS GUIDE LINES: LAYUP AND CURE OF EPOXY PREPREG. Easycure E-710 AND Easycure E-710FR MATERIALS F CURING OVEN/VACUUM PROCESS

Transcription:

VL SPECFC HEAT OF SOME SOLDS CONTENTS A A 1 um i num B Copper C ndium D r o n ( a ), (y) E Tantalum F G Activated C h a r c o a l ce Teflon J Rubber, Bunas, H K Polyethylene KelF Rubber, N a t u r a l L Quartz M V i t r e o u s S i l i c a ( S i l i c a Glass, Q u a r t z Glass) N Araldite, Epoxies Niobium, NiobiumTitanium, P Carbon Q Stainless Steel R Beryllium S T Titanium Tin Lead A d d i t i o n a l Reference to E n t i r e Chapter: V 1 NDEX P NBS M o n o g r a p h 2 1

8 SPECFC HEAT, Sources of Data: ENTHAlgY of ALUMTNUM, Giauque, W F and Meads, P F J Am Chem SOC 63, 1897191 (1941) Maier, C G and Anderson, C T, J Chem Phys 2,51327 (1934) P h i l l i p s, N E, Low Temperature Physics and C h e z s t r y, Univ Wisconsin press (1958) Other References: Behn, U, Ann Physik B e i b l h t t e r 25, 178 (191) Goodman, 3 B, Compt rend 244,2899 (1957) G r i f f i t h s E G and G r i f f i t h s, E, P h i l Trans Roy SOC London 9AqO 557 (1914j Kok, J A and Keesom, W H, Physica 4, 835 (1937) Koref F, AM Physik (4) 49 (19Ui Nernst, W, Ann Physik (4) 395 (1911) Nernst, W and Lindemann, F A, Z Elektrochem 17, 817 (1911) Nernat, W and Schwers F Sitzber kgl preuss Akad Wiss 355 (1914) Richards, T W and Jackson, F G, Z physik Chem 7, 414 (191) S c M t z, H E, Proc Roy SOC (London) 72, 177 (193 Tilden, W A Pmc Roy SOC (London) 7 K 22 (193) 36, 36,,,,, Table of Selected Values e Temp O K 1 1 2 3 4 6 8 1 15 2 25 3 35 4 5 * cp JgmOK QOO 1* ooo 51 ooo 18 ooo 176 ooo 261 OOO 5 88 1 4 oo4 8 g *17 5 *31 5 *51 5 77 5 142 H H j/gm 25, 15 OW 246 OOO 463 1 21 2 6,4 9 18 48 112 232 436 755 185 j/p 6 7 8 9 1 12 14 16 18 2 22 24 26 28 3 Superconducting R e p r i n t e d from WADD TECH REPORT 656 8 V11A1 214 287 357 422,481 58 654 * 713 76 797 826,849 869 886 g2 364 615 937 1325 17 76 284 47 544 692 848 11 1178 135 152 5 174

o oa D 6 1 1 SPECFC HEAT o f ALUMNUM (lo Oo K ) 2 3 TEMPERATURE, VA2 6 4 OK 8 1

L a a a a W z w SPECFC HEAT, BTU/lboR VLA3 u ) d 4 (u

TEMPERATURE, OR UL 2 3 4 6 O TEMPERATURE, OK VA4

3 ajy W a os) w a W Q z o w * 2 (\ VA5

SPECFC HEAT OF CPPE;R T 3K 1 2 3 4 5 6 7 8 9 1 2 3 4 3 6 7 6 9 1 15 2 3 4 6 7 8 9 1 2 T% 27 x lo' 53 795 15 x 16 132 159 1 68 215 246 275 659 126 X: 1 ~ 2 17 345 545 a 1141~ 14 156 25 663 176 x 13 653 142 x 236 345 41 435 55 66 855 3 4 5 6 7 8 9 1 11 12 13 (s) 1356 (1) 1356 14 15 16 17 1 aoo 19 2 21 22 23 24 25 26 27 2 8 29 3 923 x 946 971 995 12 x 11 14 17 19 111 114 116 118+ ( 118) ( 118) ( 118) (118), ( 118) ( 118) ( 118) ( 1 18) ( 118) ( 118) (1 18) ( 118) ( 118) ( 118) ( 118) ( 118) (118) ( 1 18) nvestigators: Avramescu, A ( 34) [ 3731273K ; Bell, P (35)[ 28871KJ; Booker, J, et a1 (36)(727121OKJ; Butler, CP, and nn, E C 1 ' (37)[ 337946K3; Dockerty, SM ( 38) [ 21389Kj ; Dockerty, S M (39)[28194K); E d e r, F X (4)[ 33KJ; Esterman,, et al (41)[ 2236K ; Eucken, A, and Werth, H (42)94219K ; Fieldhouse, B, et a1 (43)[ 811131lK); Fieldhouse, B, e t a1 (44)[ 13661922Kl ; Giauque, WF,* and hleads, P F (45)[ 153Kl ; Howse, PT, et a1 (46) [ 366544K; Jaeger, F M, et a1 ( 47)[ 5731173K ; 'Estimated (5) VB1

SPECFC BEAT, E T A L P Y of COPPER (1' t o 1 K ) Sources of Data: C o d, W S, G a r f u n k e l, M P, S a t t e r t h m i t e, C 3 end Wexler, A, Phya Rev 98, 1699177 (1955) Rsyne, J A,, A u s t r a l i a n J Phys 9, 18997 (1956) Other References: Ester, 87; 582 (1952j Friedberg, S A, end G a l k n, J E, Phys Rev Kok, J A m d Keesoa, W H, Physics 3, 13545 (1936) F h i l l i p s,? E, Lox T e q e r a t u r e Physics and Chemist=, Wisconsin P r e s s (1958) pp 4147 A Univ Ccment s : For the temperature &&e *the equation: cp " t o 1"K, t h e s p e c i f i c heat fol~lows = 18 x 16 T 3 + 36]&3[ j'/m"k Table of Selected V s l u e s Temp "K 1 2 3 4 6 1 * H = Jo CpdT R e p r i n t e d from WADD TECH REPORT 656 VB2

Temperature, F O _ 1 4i Y W W a WJ Y LL T e m c W 'c u W Q v) 4 1 O Temperature, K SPECFC HEAT VERSUS TEMPERATURE FOR COPPER VB21

l a W 2 3 4 6 O TEMPERATURE, s( VB3

Y of COPPER (loo to 3 K) SF'ECFC m T, EXTHAU' Sources of h t a : Bcker'Ly, S M, Otk r Referen=: Acyrrn, S u, CC~SO~, Resezrch _ and Kmda, E, J H L, Caisholm, 9 M E, 25233 (1933) Tucken, A a d Kerth, H Schfi't, 15272 (193), Giso_ue W F 2nd ieeds 5966 (1937) Chez SOC Japan 62, 31215 Ann Fnysiir u Chem ~S:~, Cen J Reseerch 1 5 A, (3) 66, 23744 (1898) ami Dockerty, S M, (1941) Cea J, Z morg ellgem Cflem 188,, P F, J Am Chem Soz 63, Schenck Fest 1&97191 (1941) Keesom, W H end Onnes, H K, Cnxiun~ Phys Lab Univ Leiden NO 147a, 3 (1915) Koref, F,, A ~ i y s i k 4973 ( 1 9 ~ ) 36, Tekst, W, Sitzber kgl preuss Plied Wiss 262 (191), Sitzber, 36 (1911) Nerast, W and Lindemmn, F A, Z Elektrochem 17, 817 (1911) Schinpr'f, H, Z physik kern 71,257 (191) Xemet, W kkgl preuss Akad Wiss Table of S e l e c t e d Values Temp sc 1 15 m cp ;/m "K 25 16 3 4 5 om 6 7 8 9 86 7 w 7 2 27 H* Temp* cp jl@ 9( ; / p o x 24 1q 34 9 1 12 14 254 288 313,332 195 61 16 18 2 999 137 14 258 24 73,25 232 413 62 22 26 28 3 22 X e p r i n t e c i from?:add TEC =PORT VB4 346 356 364 371 9 376 381 3% 656 H* J /m 16 161 221 285 353 424 496 569 644 72 796

X ;D m t m 3 m ;D D h) P N SPECFC HEAT,($), b S8A P b joules4m s) O K e

m rr) N N t n N VB6

T E M PE R ATUR E er 2 6 C ct n *r b * P 4 3 E Y >r 6 a Q z w 4 2 6 o 14 6 TEMPERATURE, " K

c ENTHALPY, BTU/b a ( u LW 2 Q) (u O rn Y W s a a a W z z 3 W a F! a U a W 2 W k V W V11B 8

m 2 1 3 4 5 1 6 1 7 1 8 1 9 1 O Temperature, K SPECFC HEAT VERSUS TEMPERATURE FOR COPPER ALLOY 9 CUON1 VB9

SWClTFC HEAT and E Sources of XilUM of kb: Clcrnt, J R m d Qijmell, E H, Phys Rev 92, 258 (1953) C l m i u s, K ard S c b m h i K z r, L, 2 &zturforsrh g,185 (1952) Cthr References : C l m s n t, J R and Qui=eN,E H, ::a% Bur S k h 2 6 Circ 519, (1952) p h p Rev 79, 128 (?9?o) _ a b l e of Selected Values T OK 1 1 2 2 3 3 34w3 34 4 6 8 1 15 2 25 3 4 5 1 j/s"( 6 o s, 19* ooo 138 OOO 141* OOO 41 *OOo 464* ooo 584 ooo 669" *OOo H CP CP 95 3 59 *om 55 *15 5 7 8 *a57 36 6 lo8 :141,162 J/gm Oh' J/m ooo 11 Ooo 6 176 OOO 73' 198 1138 211 17 53 Ooo 85 OOO 341 3573 *coo537 GQO 5813 *OOo 5 17 99 m o Ob 8 17 413 186 93 a 3,22 a7 223 225 227 223 23,232 778 233 1265 252 44 * Superccnducting Superconducting t r a n s i t i o n temperatuw R e p r i n t e d from W;LDD Tc"CHREPORT 656 Vc1 573 753 942 13 39 2181 2618 361 35 39 59 9 k414 4872 5334 58 o 89

TEMPERATURE, O K VLLc2

VJc 3

TEMPERATURE, "R 4 3 2 ENTH AL P Y of NDUM (lo Oo K ' ) O 6 4 3 2 O 6 4 3 2 6 Q4 3 2 Q D6 b TEMPERATURE, VC4 K

EMVHALPY, BTU/lb 8 (u a D o d C) z 3 x w 1 a t LS w a 5 k w

Source6 % D a t a : Duyckaerts, G, EPnysica 6, 418 (1939) 6, 633 (1939) Keesom, W B d KurreLmsyer, B, P~JBCS Kelley, K K, J chern Phys 11, 168 (1943) Other References : AUatin, J B, nd Eng Chem 24, 1225 (1932) r48, G, Mem 8oc soy acil Liege 6, 193 (1945) Eucken, A and Werth, E, Z anorg u a l l g e m Chem 188, 152 (193) Griffiths E C E R ~Griffiths, E FhiP Tram Roy Soc bndon A214 ' 319 (19lkj d Proc Roy Soc (London) Ago, 557 (1914) Gunther P, Ann Phyerfk (4) 51, 828 (1916) Richards, T W and Jackson, F G, 2 phyeik &m 7, 414 (191) Rodebueh, W E and Michalek, J C, J Am Cham SQC 47, 2117 (1925) Schmitz H $, Proc J@y Soc (Londlon) 72, Simon, F, 2 'angar Chem 41, l l l 3 (1928) S ~ Q AF, am3 ColmEnts : in, R C, 2 phyaik 177 (,l9o3) Chem B28, 189 (1935) a ron is the form that ie stable up t o the Curie point at 76'C b e E bodycentered cubic lattice T "tc 45 ooo a9 DO 412 246 3 8 4 555 m 615 OOO 742 173 3 23 756 124 1816 2 1 24 2 49 4 5 ow5 37 14 5 3i 6 2463 31 67 392 25 3 4 7 5 12 4 61 * 31 47 55 2 636 5 6,55 87 73 143 723 811 3 4 6 8 1 35 8 ogo om 181 1 2 ooo m 183 OOO 29 382 11 R e p r i n t e d from WADD TECH REPORT 65 6 VD1 e t

2 3 TEMPERATURE, VD2 4 O K 5 6 7 8 91

TEt?PERATURE, OR 8 Q Z n ENTHALPY of a RON 2 3 4 5 6 7 8 TEMPERATURE, OK 9 O VD4

4181 TEMPERATURE, OF? 2 3 4 5 6 7 8 9 1 TEMPERATURE, "K 2 3

SPecFC HEAT, ENTHAWY of 7 RON Sources of h t a : Eucken A and Uerth, R, 2 anorg u allgem Chem (193 1 188,15272 comments: The values of specific heat f o r pure y iron were calculated by Eucken and Werth by application of the KoppNeumann principle t o their specific heat measurements on a 3O$ MnFe alloy and 194% MnFk alloy n view of this procedure, the values tabulated below should be regarded as an approximation only T "K 2 3 4 5 7 16 Ob1 *ow 6 7 8 9 1 12 14 16 18 2 RJC/JJG ssued: 9259 VD6

Y EL E n \ 3 t u m c c a ll v Y t t a a r W W LL V W a v, TEMPERATURE, VLD7 OK

TEMPERATURE, OR 4 2 Y (u c 11 L E \ u) ) 7 1 6 4 2 6 4 2 3 4 6 8 TEMPERATURE, OK VD8

8 smcmc HEAT, ENTlALpy of l!amyum Sources of Data : X;eUey, K K, d White, D, 31622 (194) Johnstan, H,, Phya Rev "2 8 mqu, c Comments : For tempsatupes equation:, Cp 8s z, 79782 (1958) than 4%, the nornntl epecific k a t (3L7M9) x lo%! + 174 cp f o U m the j/gm?c Table of Selected Values 1 2 1 superaopmal conducting "K 6 832 68 so63 '45 558 788 3 4 439 6 8 1 15 2 25 3 4 5 6 14 16 18 ool a7 Os3 6 8 23 2 22 24Q 26 *On5 3 2b Oh3 28 3,6 4 75 4 1 Reprinted f r o m WADD TECHREPORT 656 8 125 128 VLLE 14 129 155 181 131 134 136 28 137 138 139 14 236 263 291 31=9

1 ' "'''" ''' 6 4 2 O8 R6 O4 2 o 8 6 TEMPERATURE, VE2 O K

(u Q) (D t m Y c W U 3 a e W a z W (u u) * 4 9 (u 9 VE3

S P E C F C REAT, ENTHALPY of A C m m D CHARCOAL Source of Data: Simon, F and R C, Z physik &ern, B28, 18998 (1935) Colirments : The values i n the t a b l e below do not represent precise measurements and were made on a s m p l e not f u l l y characterized The values are mch higher than those f o r graphlte Since activated charcoal v a r i e s ' i n structure and area, one may infer t h a t t h e specific heat might a l s o vary considerably from sample t o sample Table of Selected Values Temp OK 42 56 7 87 19 1 28 14 16 5 2 67 12 JJG/JRC ssued: Revised: 49 11?&$& V 11F1 39

TEMPERATURE, OR V1? 2

8 e TEMPERATURE, ' 3 8 7 6 4 9 1 5 TEMPERkTURE OR 6 OK VF3 7 8 9

Sources of Data: Giauque, W F and Stout, J W, J Am Chem SOC 58, 1144 ( 19361 Simon, F, unpublfshed (1923) Data reproduced i n Giauque and Stout (me above) e Other References : Barnes, W N a d WE, O, Can J Research 3, 2 5 (193) Duyckaerts, e, bkm soc soy E C ~ Liege 6, 325 (1945) Nernst, W, Ann physik, ser 4, 36, 395 (1911) Pollitzer, F, Z Elektrochem 2,513 (1913) Table ~f Selected V a l u e s Temp 9K 1 2 ~ 9 15 3 6 41 6 8 3 3 1 12 14 15 2 26 5 Ob3 4 Kq 98 8 535 627 716 13 97 19 e 7 8 346 4247 616 8W 98 4 9 15 6 9 1 12 81 882 13 Q 879 148 14 16 1% 116 129 143 38 16 18 2 65 oog 114 255 41 615 157 172 186 3 229 34 2 22 24 233 268 21 2 21 4 5 44 5 a8 9*w 27 273 15 Reprinted from WADD TECHREPORT 656 VLG1 2649 835 18o 135 92 1651 197*9 233 7 2724 2928 299 4

Y 2 3 4 TEMPERATURE, OK 6 8 O VG2

m VLG3

3ource of Data: Sochava, 1 V and Trapeznikova, N, 1646 (1957) Sov Phys Doklady Comments: Slince no specific heat measurements existed below values are given referenoad to this temperature &OK, Wble of Selected Values T % 6 7 843 9 1 12 14 16 18 2 22 24 26 H a J/m 418 496 561 619 676 47 872 971 17 1*17 128 143 163 Reprinted from WADD TECHREPORT 656 VH 1 457,g84 157 222 368 53 2 71a 7 92 114 139 166 196 2, enthalpy

Temperature, F 8 ooc 1 1 1 Temperature, K SPECFC HEAT VERSUS TEMPERATUREFOR CRYSTALLNE AND AMORPHOUS POLYETHYLENE VH2

VH21

SF'ECFC B A T and E ; T W Y of TEFL:i (MOLDED) Source of Data: F~rukS~*, G T, NcCoskey, R E andking, G, J, J ReseaYch rratl Bur Standards 49, 273 (1952) Other References: Noer, R J) Dempsey, C W and Gordon, J E, Bull Am lphys SOC, 4, lo8 (1959) Comments : The above reference (Furukawa, e t al), a l s o gives d a t a on molded and annealed, molded and quenched, and powdered t e f l o n The e f f e c t s of h e a t treatment do n o t exceed 3$ and are n o t s i g n i f i c a n t below 15 K The d a t a i n d i c a t e a secondorder t r a n s i t i o n a t about 1 6 K and two f i r s t o r d e r t r a n s i t i o n s between 2 8 K and 31 K Thermal h y s t e r e s i s occurs i n t h e s e regions Because of t h i s e f f e c t, d a t a a r e not presented f o r t h e region 28 K t o 3lO'K S p e c i f i c h e a t values a t 5'K and 1 K were obtained through computation involving t h e Debye temperature, 8 values e x t r a p o l a t e d from t h e 153"K range Noer, e t a l r e p o r t an a p p r o x i m t e formula for the s p e c i f i c h e a t of t e f l o n between 14"K and 42% which i s n o t i n good agreement with t h e e x t r a p o l a t e d value of l?uruka;;a, e t a l t a b u l a t e d below Their a p p r o x i m t e formula i s given as Temp "K oo24 Temp J/@ sc c) 3 47 1 12 18 48 21 52 14 16,12 97 18 2 76 125 165 a2 238 274 312 _ H 35 154 2 e99 483 223 24 26 28 72 959 1252 1583 31 ^,* cp j/gm% 386 457 525 598 677 741 *798 853 * 193 11 12 Reprinted from WADD TECH REPORT 656' VL11

1 1 1 1 1 1 ' 1 ' 1 ' "" 1 1 1 1! ' 1? f T 4 i * (hl 4

Source of Data: Rands, R D Jr, Ferguson, W T and Pqather, J L, J Research Natl BUT Stds 33, 637 (1944) Comments : A secondorder transition which indicates a change of slope occurs at about 212 % Hysteresis occurs in the region immediately belaw this transition Table of Selected Values Temp "K 1 5 4 28 2 25 3 113 155 196 15 4 5 6 7 8 9 1 *WO 9272 338 399 4455 59 562 612 H Temp j/gm " K ' 5 7 931 12 14 16 H J/m 711 811 g11 45 o 62 774 967 144 232 2 21 1Ol 112 134 118o 13O 114 212 22 24 166 168 173 133 *3 1461 181 77 466 7e72 1568 25 2586 31 *74 18 26 28 3 178 184 1=9 R e p r i n t e d froi WADD TECHREPORT 656 V31 zt52 2514 2887

2 HEAT SPECFC of GRS(BUNAS) Y 4 E m \ n _ 3 2 Q) 1! 1 1 1 1 1 1 laml! Pri! / 1 1 1 1 1 1 6 BO ' l 1 114 2 3 l c CL 3 U 4 W H H h,! 1 l a 2 4 $ 2 L W o 4 5 O 2 3 4 TEMPERATURE, OK 1

Temperature, F O Temperature, K O SPECFC HEAT VERSUS TEMPERATURE FOR POLYCHLOROTRFLUOROETHYLENE (KELF) VJ3 3

SPECFC FEAT and ENTHALFY of NATURAL RUBBER HYDROCARBON (Amorphous) Source of Data: Bekkedahl, N, and Matheson, H J, Research Nat Bur Standards 15, 53 ( 1934) Camments : These data apply to pure hydrocarbon polymer extracted from latex Commerical natural rubber dsffers from this by containing various additives and having been vulcanized 1 lowtemperature data for vulcanized rubber have been found, and the &ita on this sheet are presented as being the closest available approximation thereto A secondorder transformation (glass transformtion) OCCUTB at about 2% The data in this region are the least applicable to other f o m OP rubber since the temperature and shape of the transition in Cp will be ra$her strongly affected by vulcanization and additives Table of Selected Values H CP j /gm "K j/m 73 117 24 32 282 352 418 48 * 537 9 596 646 75 84 9 94 * Secondorder 8 241 484 81 1187 1636 2145 2712 3334 473 632 b1 transition H T OK 18 19 195 2* 25 21 22 24 26 28 29 3 R e p r i n t e d from WADD TECHREPORT 6G56 VK1 13 18 11 j/m 17 144 16 161 164 17 175 181 184 189 155 1884 2229 2584 2766 2953

2 6 5 4 3 2 i 8 15 2 3 4 6 8 TEMPERATURE, O K 5 O 2 3

SPECFC HEAT and ENTAALPY of QUARTZ Sources of Data: Anderson, C T, J Am Chem SOC 58, 568 (1936) Westrum, E F data reproduced in Lord, RC and Morrow, J C, J Chem P~Ys 23 (1957) 26, ; O t h e r References: Gunther, P, 2 anorg u allgem Chem 116, 71 (1921) Nernst, W, Ann F'hysik (4) 36, 395(1911) Table of Selected Values T?K H T j/gm s( 151 325 16 37 14 385 2348 131 16 441 3175 353 273 18 494 411 of353 773 m3 543 515 969 1583 22 5ag 628 271 24 631 75 7 1 13 15 4 12 12 2 on3 Ob9 25,221 3 5 6, j /gm OK 251 1 4 CP 1 3 9 7 162 417 25 671 88 3 195 5 95 28 73 118 9 223 97 3 745 1164 R e p r i n t e d from WADD TECH REPORT 656 VL1

ll1 ' l l 1 1 ' ll '

~ Accelerator Department BROOKHAVEN NATONAL LABORATORY Associated Universities, nc Upton, New York 11973 SABELLE Project Technical Note No 327 THERMA, CONDUCTVTY NTEGRALS FOR FBERGLASSRENFORCED EPOXY AND AS 34 STANLESS STEEL SR Plate November 1, 1981 NTRODUCTON G1, a glassfilled epoxy composite, and AS 34 stainless steel, are materials which are used extensively in the SABELLE cryogenic transfer system To calculate reasonably accurate heat leaks at G1 spacers and stainless steel vacuum breaks where large temperacure gradients occur, the integrated thermal conductivities for the materials in question, over various temperature ranges, were required Since the desired values were not readily available, the integrated conductivities were calculated These are shown in Tables 1 and 2 G1 is a woven cloth/epoxy composite; however, thermal conductivity data could not be obtained for this particular material construction Conductivity data was found for uniaxial glassfilled epoxy resin material, both parallel to the glass fibers and perpendicular (through material thickness) Refer to Figs la and lb The parallel direction is a reasonably accurate analog of G1 conductivity longitudinally and transversely; the perpendicular direction probably gives somewhat lower heat leak values than would actually be realized through the thickness of a G1 sheet These differences must be kept in mind when ushg the thermal conductivity values to approximate 121 behavior 11 METHOD The computer was programmed to perform an integral approximation by summation of areas under the curves of conductivity for the respective materials A trapezoid approximation method was considered adequate Data fed to the computer were obtained by visual inspection of the graphs of thermal conductivity taken from the references',2 The glassreinforced epoxy resin material was chosen as representative of G1 Concerning those original conductivity plots cited, the glassepoxy curve required extrapolation from 277 K to 3 K and from 5 K down to 4 K For the 34 stainless steel curve, extrapolation was necessary only from 277 K to 3"K, the lower limit remaining at 4 K The information is presented in a form compatible with that presented in tb:e Cryogenic Data Notebook, Vol, Section V

2, ',, i, ' Fig; la Uniaxial glass/epoxy matrix i < * fibgs,'" glass cloth c Fig lb Glass cloth/epoxy matrix Longitudinal f i b e r comprising glass cloth *

389 444 5 611 722 833 944 1 1222 1444 1611 1833 2 227 8 25 277 8 3,?, 161 1 7' 173 196 29 225 239 2,44 266 287 2' 99 317 325 341 351 363 3?,17 a e? '5; : : _z &rs:; *,d,24k,* 266; j 275' 294 i 311i i 329 3tA6 355 384 41 431 455 472 21 ::si oo "!, 5 ' T?5 76'; * " C 519 538 55,l,/' d,*e *, * *' ~ 4 438 53 625 829 15 13 155 169 226 287 336 44 458 551 62 8 72 7 89 773 918 17 139 172 28 245 265 347 435 55 63 68 816 92 9 176 1197

4 t Temp OK 4 6 8 1 13 2 24 27 3 35 4 45 5 6 7 8 1 12 14 16 18 2 23 26 3 485 675 875 122 2 24 28 * 33 39 465 535 592 7 8 86 95 13 11 117 124 13 141 152 168 798 196 351 665 179 267 345 43 7 61 7 83 18 136 21 276 358 54 737 94 9 1175 142 167 28 252 316

, 5 Conduct i v i t y of 'Fiberglass Laqinates as a Funct;ion of Temperature", curves E(T) and E(J : * ", _, f 2 11 e <* ~ ri, i Standards,, N3S 8 _1 _U 1 ~ */* i Natiohal Bureau;of Vonograph 131, Sept 1923, Gi Childs, L Ericks, and,:r Podell;?Whmal Cdnd&&E&;ty 2 Solids 25 7, Fig a t Robm Tempeq@& low'!, 'and,:be 3" *) ~ '?,, _ a ' *: 1, : _ 1 **, ~ 1, 'r ",, ;!, ~ _

Bldg 911 G Danb'jii & Faderid :S Ghqshtoy 3W Glenn C Goodzeit D, Gough _ 'Bld,g, 725 \, * : K"'Batchelor: ' J G r i s o l i J Jackson A,Kaam zoki Ckerrroa Galayda 'Krinoky 'Sheehan Luccio J S J A, * ' '', ' J Keohane D Lazarua Y, Lee D Lowenstein Y Makdisi P Mont emut i3 R Nawrocky M Smith (1) p l u s one for each au%hor(s) file R Them 'J' T U O Z Z O l 6 WT Weng P B Zuhoski K Kohlet /dv _, :,_ ~ a,,?,: ", : ' ', ' ' ' ' ' ' Bldg 51 ': N, Samios R,P:Shutt ' Ho Gordon TF Kycia,* b i p u n c c S Lindenbaum S, Qeaki RB Palmer S Protopopeacu D, Rahm M S a k i t t * R' Fernow SleC, t, Stumer s:tl Trueman ' '

SPECFC HEAT and ENTHALPY of VTREOUS SLCA (Silica Class, Quartz Class) Sources of Data: Simon, F, Ann mysik (4) 68, 2418 (1922) Simon, F and Lange, F, Z physik 38, 22736 (1926) Westnun,E F, data reproduced in Lord, R C and Morrow, J C, J Chem Phys 26, 23 (1957) Other References : Nernst, W, Sitzber kgl preuss &ad Wiss, 36 (1911) Table of Selected Values H j/m 1 15 2 45 126 244 =379 519 om8 *ly 141 172,24 236 oll o 52 143 299 524 1186 215 341 4997 685 95 1 12 14 16 18 2 22 24 26 28 3 '268 331 391,446 497 544,588 629 668,74 738 1147 1756 24 77 33 14 426 53 9 643 76 5 895 132 1176 Reprinted from WAD) TECH REPORT 656 VM1

1 o 6 4 Y g 2 \ a3 u) = 7 1 h n t a W LL $ a 6 4 2 u) o OW O 2 3 4 8 6 TEMPERATURE, O K 1 2 3

3 O2 L c a, u C 8 t a v) 1 oo o' O' Temperature, OK SPEC'FC HEAT OF UNFLLED EPOXY RESNS VN1

d * 3 : EPON 828 GLASSFBER 55991, H T S FNSH NOM DENSTY =183gem'P GLASSFLL 636 VOL f 2 345 O 1 1 1 1 1 1 1 1 1 2 Temperature, K l l 4 1 23 SPECFC HEAT VERSUS TEMPERATURE GLASSFBER RENFORCED EPOXES VN 2 FOR

Source of Data: WbPmpared according to manufacturer's directions!fable of Selectd Value8 L E J/ sjl 15 2 3 4 6 8 1 15 2 RJC/JJQ ssued: 6 Ooo 24 Ooo 89 ' m 1 oo8 O O O O 6 2 25 8 2 16 g 36 7 54 2 284 27 2 81 1 121659 VN31 2 1 OOU 7 623 7

TEMPERATURE, O R 2 3 4 6 8 1 2 TEMPERATURE, OK VN32

\ 2 2 VN33

s m m c BEAT, Source of Data: Chou, C, White, (1958) P and E?prBAtpy of KTOBUM Johmton, E L, Phys Rev =, 788796 Other Feferences: M W and Boorse, H A, Phys k v 86, 134 (1952) Richards, T W and Jackeon, F G, 2 physlk &em 7, 414 (191) Bmm, A, Zemnsky, The data of Chou, White and Johnston cover t h e range, 15" t o 3 K while t h e compilation of Kelley (1949) gives b e s t values f o r mom temperature and above Between 3" and mom temperature no modern experimental data are t o be found The values i n this region given here are estimates While the accuracy a t 2 t o 3" and st 3 K i s of order 15, the estimated values between 3" and 3 W K a r e more unc e r t a i n and may be i n e r r o r by as much a6 1 6 n the region 4" t o 1 K Temp "K 1 2 3 4 5 6 7 8 9 1 15 2 25 3 4 5 RJC/JJG 5 joules/gram"k No m a l 9 a o 3 18 28 4 56 77 12 14 17 22 55 t Supercond,15 fio: 88 27 ' 98 15 23 32 1 ou3 ogg Normal 17 4 * 73 " ' (1 12 1 t 1 186 275 393 55 74 n 26 66 145 Supercond 49 t 62 t 22 138 26 45 72 8 5 XLO' 28 21 a35 68 t 56' ' H jodes/grim 163 173 1 (1 127 152 189 ' 1 H 22 234 221 243 2k9 25b 258 261 264 266 2a J/m Normel 276 42 58 76 96 138 183 231 28 33 362 434 486 539 592 9 1 1 ssuedr 1214$ V1 1

2 3 4 6 8 1 TEMPERATURE, OK V12

TEMPERATURE,OR 2 1 Y 5H H L w " Y a 2 W T o 1 k X 4 R2 TEMPERATURE, OK

TEMPERATURE,OR 4 2 4 2 1 O 4 O 2 TEMPERATURE, OK V14

N e o (u d ENTHALPY BTUL b N UJ6/sVo! 'Ad '1W HlN 3 V15 d O 4 N 9 H ad o W Y W K 3 tu : W Q : 5t m (v

' 3 r Temperature,OK SPECFC HEAT VERSUS TEMPERATURE FOR NB 51 T 49 V 11 2

sources or mta: Arcn, H H, Craig, R S, Walte, T R and WaUace, W E, M 1263 (1956) ~ e v 12, Kotkn, C W sn8 Johnston, E L, J Am Ghtm Soc 75, 311 (1953) Wolcott, R M, Coni bc P h p l q w des Bassee!!experatures, Paris (19551 Other References: Estermkson, R i e d k r g, 6 A and G o l k, J E, Phy3 Rev 87, 582 (19521 L Kelhy, K K, d Eng Chm 36, 865 (l9hb) Table of Selected V e l u e s Temp OK 1 cp J/m "K 71 j 4 6 8 om 54 Ooo 84 OOo 599 145 2 1 126 4 89 1 15 OOo 317 2 3 3,7 25 3 4,24 5 5 6 13 4 H "K j/m "rc 7 9 1@ 23 Jb 1 12 14 3 352 391 16 18 U6 OOO 35 3,OOO cp b 146 ooo 226 2 Temp OOO *OOO 143 329 oi5 6 4 *ago 9 422 465 49 22,57 1 581 99 2 46 7 1358 2 592 3 267 XK, 24 26 182 1824 2569 33 4 4254 5166 6111 7!A 882,514,522 1139 5& 1169 493 9 28 V31 427 637 86 lll 911 <l

TEMPERATURE, O R VZ32

TEMPERATURE, OR 5H H W W O 2 3 4 6 TEMPERATURE, "R RO 2GO 3

V34

8 SPEZD'C HEAT, E3THADY of CAwOr; (GRAPBTE) Sources of DBta: Keesom, P H and Pearlman, N; Phys, Rev 99, U1924 (1955) De Sorbo, W end Tyler, W, J Chem Phys Other References: Bergenlid, V, 45, 21, 1663 (1953) Bill, R W, Webb, F J and W i l h s, J, P h i l Mag 8514 (1954) Dewar, J, Proc Roy Sac (London) A76, 325 Ewald, R, Ann phys (4) 1213 (1914) Jacobs, C J and Parks, G S, Koref, F, Ann P h p J Am &em SOC 56, 1513 (1934) Z physik Chem 7, 414 (191) Comments : <T Temp CP 3/@"K 1 2 ooo 5 6 8 1 15 2 25 3 4 5 6 2 K "K 3 4 (4) &, 49 (19ll) Richards, T W and Jackson, F G, For (194) ooo 27 ooo 7 OOO 144 9 33 ooo 64 1 14 *3 3 6 3 1 3 15 5 27 oh2 58 7 Temp a 2 ooo 16 om 62 ooo 168 ooo 61 mi 56 *oo3 3 14 2 38 979 143 36 7 123 VP1 1 7 8 9 1 12 14 16 18 m 22 243 263 28 3 cp 3/m OK 77 97 118 14 188 2b 296 355 414 474 535 595 656 716 1 _ H J/m 187 274 381 51 837 1265 18 245 322 411 512 625 75 887 '

e 2 3 4 6 TEMPERATURE, OK 8 O V 11P 2

VP3 9 31dl33dS * N 4 9

' 2 TEMPERATURE,OR 3 4 6 e 1 m ' n ) 3 > ) ) n Q 3 > v E C, \ m Q L 3 L c > a J a z W V E! 3 m L > a J 4 z W 2 3 4 6 8 1 TEMPERATURE, OK VP4

( u V?5 N Ei a, Y W qa fk W a 5 w ol e m

425 4 v 31 LL f! 3 m, + al YO O, Q v) 1 O Temperature, K 4 SPECFC HEAT VERSUS TEMPERATURE FOR TYPE 31s STANLESS STEEL VQ5

Temperature, F 1, 1, 2 rn 1 O Temperature, K 1 3 SPECFC HEAT VERSUSTEMPERATURE FOR TYPE 31s STANLESS STEEL VQ7

Source of De+&: SPECFC HEAT, ENTHUPY of ERYLLUM Rill, R W and Smith, P L, Phil Rig 44, 63644 (1953) Other References : Crisbscu, S and Simon, F, 2 physik Chem ' B25 273 (1934) Kelley, K K, US Bur Mines B u l l 15 476 (1949) E J, Rys Rev (2) &, 1575 (1929) Simon, F and R u h e m a ~, M, 2 physik Chem w s, x,321 (1921) Cements : For the t e m p r a t w e range f'rom to 2%, % follows the equation: the specific heat Table of S e k c t e d V a l u e s Temp % 1 2 3 4 6 8 1 CE) J/W "K Ooo log *w 96 19 2 5 RJC/JJG j/@ "K ogo6 139 199 345 Ooo 271 OOo 389 a 2 2 cp 562 ooo 18 3 6 % 79 ooo mi 61 4 5/g Temp m 25 OOO 51 15 2 25 H 525 *723 921 111 79 129 4 5 147 164 181 34 1 197 ssued: 11359 VR1 H J/gm g1 169 282 451 9 87 185 31O 474 678 918 12 151 185 223

VR2

m D 4 TEMPERATURE, OK

TEMPERATURE OR i 2 4 6 a O TEMPERATURE, O K VR4

8 N UJB / SQlno! ' A d l V H 1N3 V 11R 5

S o u r c e s of a t e : Corak, W S and S s t t e r w a i t e, C B, Pnys Rev 12, 662 (195s) Goohan, B Be, Coapt rend 2k4, 2899 (1957) Keesoffi, W H and Ten den Ebde, J N Proc Aced Sci k s t e r d m 143 (1932) Lance, F, 2 physik C h e m 11, 343 (1924) Fadebush, W H, J 4s Cfrem S s c 45, 1413 (1923) Ot'ner References : 35, B A n s t e 6, J N, Z physik: Chem 88, 479 (1914) Keeson, W E m d Kok, J A, ProcTAead S e i h t e r d m 35, 743 (1912) Keesom, W H and V a n Laer, P E, Physica 3 r 371 (1936) Keeson, W E and Van Laer, P E, Physics h, 487 (1937) Keesom, W E and Van Leer, P E, Physica 193 (1933) Ramnesthen, K G and Srinivasen, T M, P h i l bfaz 46, 335 (1955) Richards, T W and Jackson, R G, Z physik G h e m 7, 4114 (191) Schnitz, H E, Psoc Roy Soc (London) 72, 177 (193 5, Table of S e l e k e d Values Temp K _ 1 2 3 %Kip Superconduct ins _lll ' ookl 79 ooo 48, 151 om 285 221 5 6 oo1 51 15 a 25 3 4 5 SUE r c onduc t i n 6 6 7 ooo 113 om 8 1 s( NOnrEl L "_ coo 283 ooo 65 "3 72 4 *, a168 19 o ow3 8 9 Eo 128 14 16 1 2 251 498 22 834 26 23 3(33 _, 175 293 r a n s i t i o n tenp2ratwe Vs1 24 *

Vs2

TEMPERATURE, O R 3 2 Y E," n 3 OO (u 3 5 w Y VJ os Q H H a W 4 u LL V w a v) 2 o 68 TEMPERATURE 8 ' O K 1 3Q

3 4 6 8 O T E Fvl PE RATU R E, OK VS4

ENTHALPY, BTU 1 Ob VLs5

TEMPERATURE, OR 2 3 4 6 8 TEMPERATURE, OK VT1

SPECFC HEAT (L) BTUllbOR VT2

TEMPERATURE, OR 2 3 4 6 1 2 3 4 6 1 TEMPERATURE, OK VT 3

ENTHALPY, BTU/b ' al,g c Y W u 3 a t : W a rw * O O rr) (u