4. SOLAR & TERRESTRIAL RADIATION

Similar documents
Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

Radiation Transfer in Environmental Science

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing

CHAPTER 2 Energy and Earth

TOPIC 5 (cont.) RADIATION LAWS - Part 2

The Earth s Atmosphere

Chapter 2: Solar Radiation and Seasons

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

ATM S 111, Global Warming: Understanding the Forecast

Corso di Fisica Te T cnica Ambientale Solar Radiation

Principle of Thermal Imaging

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

Energy Pathways in Earth s Atmosphere

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

Waves Sound and Light

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

MAKING SENSE OF ENERGY Electromagnetic Waves

Clouds and the Energy Cycle

2 Absorbing Solar Energy

The Surface Energy Budget

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Cloud Radiation and the Law of Attraction

Chapter 2. The global energy balance. 2.1 Planetary emission temperature

The Electromagnetic Spectrum

Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy.

Remote Sensing. Vandaag. Voordelen Remote Sensing Wat is Remote Sensing? Vier elementen Remote Sensing systeem

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

After a wave passes through a medium, how does the position of that medium compare to its original position?

Greenhouse Glazing Effects on Heat Transfer for Winter Heating and Summer Cooling

Blackbody Radiation References INTRODUCTION

Blackbody radiation derivation of Planck s radiation low

ENERGY & ENVIRONMENT

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Energy. Mechanical Energy

Overview of the IR channels and their applications

Module 2.2. Heat transfer mechanisms

8.1 Radio Emission from Solar System objects

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR

CPI Links Content Guide & Five Items Resource

MCQ - ENERGY and CLIMATE

The Greenhouse Effect. Lan Ma Global Warming: Problems & Solutions 17 September, 2007

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

CHAPTER 3 ABSORPTION, EMISSION, REFLECTION, AND SCATTERING

Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint

Infrared Spectroscopy: Theory

Copyrighted Material. 1 Basics of Climate. The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.

RADIATION (SOLAR) Introduction. Solar Spectrum and Solar Constant. Distribution of Solar Insolation at the Top of the Atmosphere

CHAPTER 3 Heat and energy in the atmosphere

SOLAR ENERGY How much strikes the earth? How much can my building get? When is it too much?

Experiment #5: Qualitative Absorption Spectroscopy

FACTS ABOUT CLIMATE CHANGE

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program

POROUS BURNER - A New Approach to Infrared

INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson

The Three Heat Transfer Modes in Reflow Soldering

Light. What is light?

AOSC 621 Lesson 15 Radiative Heating/Cooling

Introduction to Chapter 27

HEAT AND MASS TRANSFER

Teaching Time: One-to-two 50-minute periods

Infrared Thermometry. Introduction, History, and Applications. Optical Pyrometry. Jason Mershon, Advanced Energy Industries, Inc

Chemistry 13: States of Matter

Integrating the Solar Spectrum

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida

Total radiative heating/cooling rates.

Solar Power Analysis Based On Light Intensity

Tech Bulletin. Understanding Solar Performance

Table of Contents. An Introduction to Hyperspectral Imaging Technology

where h = J s

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

THERMAL RADIATION (THERM)

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

1. Theoretical background

Energy - Heat, Light, and Sound

Multiple Choice Identify the choice that best completes the statement or answers the question.

Review Vocabulary spectrum: a range of values or properties

Science Tutorial TEK 6.9C: Energy Forms & Conversions

What is Solar Control?

Light Transmission and Reflectance

Science Standard 3 Energy and Its Effects Grade Level Expectations

Physics 1010: The Physics of Everyday Life. TODAY Black Body Radiation, Greenhouse Effect

How does snow melt? Principles of snow melt. Energy balance. GEO4430 snow hydrology Energy flux onto a unit surface:

Experimental Methods -Statistical Data Analysis - Assignment

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

- thus, the total number of atoms per second that absorb a photon is

Transcription:

G109: 4. Solar and Terrestrial Radiation 1 4. SOLAR & TERRESTRIAL RADIATION PART I: RADIATION Reading Assignment: A&B: Ch. 2 (p. 43-53) LM: Lab. 5 1. Introduction Radiation = Mode of Energy transfer by electromagnetic waves only mode to transfer energy without the presence of a substance (fluid or solid) works best in a vacuum (empty space) Radiation = the only way for Earth to receive energy from the Sun Weather systems are powered by radiation From Earth-Sun geometry we know: spatial and temporal variations of receipt of radiation at the top of the atmosphere From Atmospheric Composition: important for radiation at the surface O 3 UV radiation, shortwave H 2 O & CO 2 IR radiation, greenhouse, longwave need to consider different types of radiation

G109: 4. Solar and Terrestrial Radiation 2 2. Electromagnetic Radiation radiation waves exhibit characteristics of both electric fields and magnetic fields (from A&B, Figure 2-5 a) Electromagnetic radiation moves at speed of light radiation spreads in all directions and moves in straight lines (from A&B, Figure 2-9)

G109: 4. Solar and Terrestrial Radiation 3 Electromagnetic radiation is described by three interdependent variables: wavelength λ lambda [m, µm] frequency ν nu [s -1, Hz] velocity c [m s -1 ] (c = speed of light ~ 3 10 8 m s -1 ) λ ν = c 3. Radiation Spectrum Definition: The Radiation Spectrum is the distribution of radiative energy over different wavelengths, or frequencies. In meteorology: only small part of EM-spectrum of interest. three important ranges: ultraviolet radiation (UV) visible radiation infrared radiation (IR)

G109: 4. Solar and Terrestrial Radiation 4 Radiation in the Earth-Atmosphere System Ultraviolet Radiation UV Visible Radiation Infrared Radiation IR Wavelength 10-2 0.4 µm 0.4 0.7 µm 0.7 100 µm Effect Sunburn sunlight heat-radiation 0.4 µm violet near IR far IR 0.5 µm blue 0.7-1.5 1.5 100 green [µm] [µm] yellow 0.6 µm orange 0.7 µm red Class Shortwave radiation longwave radiation sun output 7 % 43 % 37 % 11 % Earth output 0 % 0 % ~0 % ~ 100 % shortwave radiation: longwave radiation: only solar radiation IR radiation emitted by the E/A-system

G109: 4. Solar and Terrestrial Radiation 5 4. Radiation Laws (i) Read: A&B Chapter 2, p 35-39 General Principles all things emit radiation o the amount and wavelengths depend primarily on the emission temperature o higher the T faster the electrons vibrate shorter wavelength λ more total radiation emitted when any radiation is absorbed by an object: increase in molecular motion increase in temperature (ii) Black Bodies and Gray Bodies an object or body that absorbs all radiation incident on it is termed a black body idealization: perfect black bodies do not exist often a good approximation for absorption in a given range of wavelengths many natural substances behave nearly like black bodies

G109: 4. Solar and Terrestrial Radiation 6 a black body is also an ideal emitter emission spectrum follows a general law (Planck s curve) describing the maximum possible emission for a given temperature is often used as comparison standard for emission spectrum a black body has an ideal emission efficiency, termed emissivity: ε = 1 an object or body with a less than ideal emission efficiency (same at all wavelengths) is termed a gray body: a gray body has a non-ideal emission efficiency: emissivity ε < 1 is often a good approximation for emission spectra of real objects or bodies (iii) Reflection Absorption Transmission only three things can happen, when radiation with a wavelength, λ, hits an object or substance: 1. part or all can be reflected: fraction reflected: reflectivity, α λ this part does not interact with the object, it is rejected 2. part or all can be absorbed: fraction absorbed: absorptivity, a λ this part raises the temperature of the object

G109: 4. Solar and Terrestrial Radiation 7 radiative energy is converted to heat 3. part or all can be transmitted: fraction transmitted: transmissivity, t λ this part does not interact with the object, it just goes through it. Since these are the only possibilities, it follows from the principle of conservation: α λ + a λ + t λ = 1 (iv) Stefan-Boltzmann Law: the total emitted energy flux All objects or substances emit radiation at a rate proportional to the 4th power of their absolute temperature Total energy flux emitted: F tot [W m -2 ] : F tot = ε σ T 4 ε emissivity (0 ~ 1); depends on quality of material (see Lab Manual #5 for list of values) σ Stefan-Boltzmann constant = 5.67 10-8 [W m -2 K -4 ] T absolute temperature of emitting object [K] T 4 fourth power: faster than linear increase with temperature.

G109: 4. Solar and Terrestrial Radiation 8 18000 16000 4th power 14000 F tot [W/m2] 12000 10000 8000 6000 4000 2000 16x(=2 4 ) linear 2x 0 200 300 400 500 600 700 800 T[K] Example Problem (see web under this topic for more exercise problems) If a cloud bottom has a temperature of 10 C, how much energy would it be emitting if the emmissivity were 1.0? Solution convert temperature to SI-unit: [ C] [K] T = (-10 C) + 273.15 = 263.15 K use Stefan-Boltzmann law for ε = 1 (black body): F cloud = ε σ T 4 = 1 x 5.67 10-8 x (263.15) 4 = 271.9 W m -2 Check units: units okay physics okay. [ε σ T 4 ] = [1] x [W m -2 K -4 ] x [K 4 ] = [W m -2 ]

G109: 4. Solar and Terrestrial Radiation 9 (v) Wien s Displacement Law: the wavelength of maximum emittance A rise of temperature in an object not only increases the total radiant output, but also shifts this energy output to shorter wavelengths, in inverse proportion to the absolute temperature Wavelength of maximum emmittance: λ max [m] : λ λ max = a T = a T 1 λ max wavelength [µm] a constant: 2898 [µm K] T absolute temperature [K] [W. m -2 ] Blackbody Irradiance x 10 40 10 38 10 36 10 34 Temperature 5800 K 4000 K 2000 K 1000 K 500 K 255 K 10 32 10-7 10-6 10-5 10-4 10-3 Wavelength [m]

G109: 4. Solar and Terrestrial Radiation 10 Example Problem (see web under this topic for more exercise problems) If a cloud bottom has a temperature of -10 C what is the wavelength of the peak energy emission? What part of the electromagnetic spectrum is this in? Solution convert temperature to SI-unit: T = (-10 C) + 273.15 = 263.15 K use Wien s law: [ C] [K] λ max = a T -1 = 2898 263.15 = 11.0 µm Check units: units okay physics okay. [a T -1 ] = [µm K] x [K -1 ] = [µm]

G109: 4. Solar and Terrestrial Radiation 11 PART II: ATMOSPHERIC INFLUENCES ON RADIATION Reading Assignment: A&B: Ch. 3 (p. 68-76) LM: Lab. 5 1. Introduction Global Shortwave Radiation Balance (overview) ~ 30 % of solar radiation is reflected by clouds, atmospheric gases and the surface ~ 25 % of solar radiation is absorbed by the atmosphere (clouds, atmospheric gases, aerosol) ~ 45 % of solar radiation is absorbed by the surface (oceans, land surface) Influence of Clouds on Shortwave Radiation Balance Clear conditions (no clouds): o ~ 70 % of solar radiation is absorbed by the surface (55% direct, 15% diffuse sky radiation) o only ~ 13 % of solar radiation is reflected Cloudy conditions (overcast): o ~ 25 % of solar radiation is absorbed by the surface (4% direct, sky radiation) o 51 % of solar radiation is reflected

G109: 4. Solar and Terrestrial Radiation 12 2. Reflection and Scattering of Radiation Reflection: redirection of radiation by a surface Specular Reflection (Mirror) Diffuse Reflection or Scattering Scattering by gas molecules or small particles/droplets (from A&B, Figures 3-2, and (Phys.Princ. 2-2) 1)

G109: 4. Solar and Terrestrial Radiation 13 Blue Sky and : Rayleigh and Scattering (from A&B, Figure (Spec. Int. 3-1) 1) o o o Air Molecules tend to scatter Short Wavelengths more, and in all directions the blue end of the visible range diffuse (sky) radiation appears as blue Particles (droplets, aerosol) tend to scatter All Wavelengths equally, and more forwards than backwards (backscatter ~ reflection) mixture of all wavelengths: white light clouds, fog, haze appear as white, gray or milky short-wave reflectance: the albedo (~ whiteness)

G109: 4. Solar and Terrestrial Radiation 14 3. Transmission of Radiation through the Atmosphere Transmission: the amount of radiation that is left, after going through the atmosphere (from A&B, Figure (Spec. Int. 3-1) 3) a) At the top of the atmosphere white (sun-) light is started to be scattered: mostly the blue portion b) As radiation proceeds through the atmosphere, more of the blue portion is scattered away from the direct beam (further transmitted as diffuse radiation) multiple scattering c) At the surface mostly the red light is left in the direct beam sun appears red at sunset/sunrise

G109: 4. Solar and Terrestrial Radiation 15 4. Absorption of Radiation in the Atmosphere Absorption: conversion of radiation to heat raises the temperature of the absorbing substance Kirchoff s law: if a substance is an efficient emitter in a given wavelength range, it is also an efficient absorber at the same wavelength range: ε λ = α λ Selective absorption: the absorptivities of atmospheric gases are highly specific to certain spectral bands or wavelength ranges solar radiation (shortwave) absorbers: o UV-absorbers: ozone (O 3 ), oxygen (O 2 ) o visible range (0.4-0.7 µm): almost none ( window) terrestrial radiation (longwave) absorbers: o IR absorbers: H 2 O, CO 2, N 2 O, O 3, O 2 o peak terrestrial radiation (8-12 µm):almost none ( window) The atmosphere is transparent for solar radiation, but nearly opaque for terrestrial radiation: greenhouse radiation trap

G109: 4. Solar and Terrestrial Radiation 16 Atmospheric Windows for Radiation Window: something that lets light (radiation) through Atmospheric Window: a spectral range where the atmosphere is nearly transparent There are two atmospheric windows: visible range window (0.4-0.7 µm): lets most solar radiation through to the surface enables solar radiation to deliver the bulk of its energy to the surface (for use in climate processes) longwave window (8-12 µm): lets some terrestrial radiation through to space enables Earth to vent off some of its energy back to space (from A&B, Figure 3-6a)

G109: 4. Solar and Terrestrial Radiation 17 What happens if the windows are closed? visible range window (0.4-0.7 µm): o increased cloud cover, and/or reflective aerosol o increase in global albedo o reduction of energy input into E/A system o cooling effect longwave window (8-12 µm): o increased H 2 O, CO 2 or other greenhouse gases o increased IR-absorption in atmosphere o warming effect The Greenhouse Effect (more accurately: the enhanced Greenhouse Effect) source: http://www.fe.doe.gov/issues/climatechange/globalclimate_whatis.html (Jan. 22, 2001)