1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude

Similar documents
MODERN ATOMIC THEORY AND THE PERIODIC TABLE

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

UNIT (2) ATOMS AND ELEMENTS

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

Name period AP chemistry Unit 2 worksheet Practice problems

WAVES AND ELECTROMAGNETIC RADIATION

Chemistry: The Periodic Table and Periodicity

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

47374_04_p25-32.qxd 2/9/07 7:50 AM Page Atoms and Elements

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

CHEM 1411 Chapter 5 Homework Answers

Electron Configuration Worksheet (and Lots More!!)

Unit 3 Study Guide: Electron Configuration & The Periodic Table

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Periodic Table Questions

Arrangement of Electrons in Atoms

Atomic Structure: Chapter Problems

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.

5.4 Trends in the Periodic Table

Models of the Atom and periodic Trends Exam Study Guide

Chapter 3, Elements, Atoms, Ions, and the Periodic Table

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

Atomic Structure Ron Robertson

Chapter 2 Atoms, Ions, and the Periodic Table

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

Unit 3.2: The Periodic Table and Periodic Trends Notes

Part I: Principal Energy Levels and Sublevels

Trends of the Periodic Table Diary

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11

CHEMSITRY NOTES Chapter 13. Electrons in Atoms

Chapter 5 TEST: The Periodic Table name

P. Table & E Configuration Practice TEST

EXPERIMENT 4 The Periodic Table - Atoms and Elements

Unit 2 Periodic Behavior and Ionic Bonding

Section 11.3 Atomic Orbitals Objectives

6.5 Periodic Variations in Element Properties

TRENDS IN THE PERIODIC TABLE

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

Electron Arrangements

Ions & Their Charges Worksheet

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

REVIEW QUESTIONS Chapter 8

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number

Chapter 8 Atomic Electronic Configurations and Periodicity

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Unit 2: Chemical Bonding and Organic Chemistry

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Chapter 7 Periodic Properties of the Elements

Chem 1A Exam 2 Review Problems

ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( an atom )

Student Exploration: Electron Configuration

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Daytona State College (Science 120, Page 1 of 39)

Trends of the Periodic Table Basics

KEY. Honors Chemistry Assignment Sheet- Unit 3

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

neutrons are present?

THE PERIODIC TABLE O F T H E E L E M E N T S. The Academic Support Daytona State College (Science 117, Page 1 of 27)

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.

Flame Tests & Electron Configuration

Department of Physics and Geology The Elements and the Periodic Table

Look at a periodic table to answer the following questions:

Chapter 8 Basic Concepts of the Chemical Bonding

Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7]

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

CHAPTER 11: MODERN ATOMIC THEORY

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

All answers must use the correct number of significant figures, and must show units!

Ionic and Metallic Bonding

Chapter 2 Atoms, Molecules, and Ions

******* KEY ******* Atomic Structure & Periodic Table Test Study Guide

Name: Worksheet: Electron Configurations. I Heart Chemistry!

Periodic Table Trends in Element Properties Ron Robertson

APS Science Curriculum Unit Planner

CHAPTER REVIEW. 3. What category do most of the elements of the periodic table fall under?

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

Periodic Table, Valency and Formula

SAMPLE EXAM 2 FALL 2012 SOLUTIONS Chemistry 11, Fall 2007 Exam II November 15, :30 PM 9:30 PM

electron configuration

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus

Molecular Models & Lewis Dot Structures

Atomic Theory: History of the Atom

IONISATION ENERGY CONTENTS

Bonding Practice Problems

Elements, Atoms & Ions

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Transcription:

Wave Nature of Light 1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude 2. Draw two waves with different frequencies and circle the wave that has a higher frequency. 3. What is electromagnetic radiation? At what speed does electromagnetic radiation travel? 4. How are different types of electromagnetic radiation similar? How do they differ? 5. What does the wavelength of electromagnetic radiation represent? How is the wavelength of radiation related to the frequency of the radiation? 6. What do we mean by frequency of electromagnetic radiation? Is the frequency the same as the speed of electromagnetic radiation? 7. What are the basic SI units for (a) the wavelength of light, (b) the frequency of light, (c) the speed of light? 8. Arrange the following kinds of electromagnetic radiation in order of increasing wavelength: infrared, green light, red light, radiowaves, X-rays, ultraviolet light. 9. Why is the study of electromagnetic radiation important in Chemistry? 1

Light Waves Chem Worksheet 5-1 Name The behavior of light indicates that it is comprised of waves. The distance between successive waves is called the wavelength () and the wavelength determines the type of light. The size of the waves determines the type of light. All of the various light waves move with the same speed, a value abbreviated (c) equal to 3.00 10 8 m/s. The frequency () that light waves pass a given point is measured in waves/second or simply per second (1/s). The unit 1/s is also given the name hertz (Hz). c = 3.00 10 8 m/s 10-11 Violet Light Shorter wavelength () and higher frequency () c = 1 m = 1 10 3 mm 1 m = 1 10 6 µm useful equations c = 3.00 10 8 m/s 1 m = 1 10 9 nm 1 m = 1 10 10 Å Red Light Longer wavelength () and lower frequency () 1 MHz = 1 10 6 Hz 1 GHz = 1 10 9 wavelength (m) 10-9 10-7 10-5 10-3 10-1 10 1 10 3 gamma rays x-rays ultraviolet visible infrared microwaves radio/tv waves 10 20 10 18 10 16 10 14 10 12 10 10 10 8 10 6 10 4 V I B G Y O R frequency (1/s) 400 500 600 700 750 nm Answer the following questions about light waves. Show all work 1. What type of light has a wavelength of: a) 5.0 10-4 m? b) 2.4 10-8 m? c)12 mm? 2. An ultraviolet light wave is used to kill bacterial. It has a frequency of 1.2 10 15 1/s. Find the wavelength. 3. An x-ray has a wavelength of 1.54 10-10 m. Find the frequency of this light. 4. A visible light wave has a frequency of 7.5 10 14 1/s. Find the wavelength in nanometers (nm) and determine the color of the light. 5. One of the light waves produced when hydrogen is energized has a wavelength of 410.5 nm. What is the frequency of this light? 6. The frequency of light used to heat food in a microwave oven is 2.45 GHz (2.45 10 9 1/s). What is the wavelength of this light? 7. A radio wave broadcast on the AM dial has a wavelength of 280.4 m. Find the frequency of this radio wave in hertz. Convert the frequency to kilohertz. 8. What is the wavelength of a radio wave broadcast with a frequency of 99.5 MHz (FM 99.5)? 9. Pilots often use waves of about 2.340 m to communicate. What is the frequency of this wave? 10. The light used in night vision devices has a wavelength of about 25 micrometers (µm). What is the frequency of this light? In what part of the electromagnetic spectrum are these waves? John Erickson, 2005 WS5-1LightWaves 2

Particle Nature of Light 1. What did Max Planck propose about the nature of energy? 2. If human height were quantized in one-foot increments what would happen to the height of a child as she grows up? 3. How is the frequency of electromagnetic radiation related to its energy according to Planck s equation? 4. What is a photon? 5. How is the energy carried per photon of light related to the wavelength of light according to Planck s equation? Does short-wavelength light carry more energy or less energy than longwavelength light? 6. Explain the photoelectric effect. How does it demonstrate that light has particulate properties? 7. Does energy have mass? Explain your answer. 8. Does matter exhibit wave like properties? Explain your answer. 3

Planck s Equation Chem Worksheet 5-2 Max Planck theorized that energy was transferred in chunks known as quanta, equal to h. The variable h is a constant equal to 6.63 10-34 J s and the variable represents the frequency in 1/s. This equation allows us to calculate the energy of photons, given their frequency. If the wavelength is given, the energy can be determined by first using the wave equation (c = ) to find the frequency, then using Planck s equation to calculate energy. Name useful equations c = c = 3.00 10 8 m/s E = h h = 6.63 10-34 J s 1 m = 1 10 9 nm 1 kj = 1000 J Problem-Solving Strategy Known Unknown Frequency () E = hν Energy (E) c Wavelength () ν = Frequency () E = hν Energy (E) λ E c Energy (E) ν = Frequency () ν = Wavelength () h λ example Light with a wavelength of 525 nm is green. Calculate the energy in joules for a green light photon. - find the frequency: c = λ υ c v = λ 8 3.00 10 m / s 14 v = v = 5.71 10 1/ s 1 m 525 nm 9 1 10 nm 34 14 - find the energy: E = h υ E = (6.626 10 J s)(5.71 10 1/ s) 19 E = 3.78 10 J / photon Use the equations above to answer the following questions. 1. Ultraviolet radiation has a frequency of 6.8 10 15 1/s. Calculate the energy, in joules, of the photon. 2. Find the energy, in joules per photon, of microwave radiation with a frequency of 7.91 10 10 1/s. 3. A sodium vapor lamp emits light photons with a wavelength of 5.89 10-7 m. What is the energy of these photons? 4. One of the electron transitions in a hydrogen atom produces infrared light with a wavelength of 7.464 10-6 m. What amount of energy causes this transition? 5. Find the energy in kj for an x-ray photon with a frequency of 2.4 10 18 1/s. 6. A ruby laser produces red light that has a wavelength of 500 nm. Calculate its energy in joules. 7. What is the frequency of UV light that has an energy of 2.39 10-18 J? 8. What is the wavelength and frequency of photons with an energy of 1.4 10-21 J? John Erickson, 2005 WS5-2PlancksEq 4

Line Spectrum of Hydrogen and the Bohr Model 1. What does the ground state of an atom represent? 2. What happens to the electron in a hydrogen atom when it absorbs energy and enters an excited state? 3. When an atom in an excited state returns to its ground state, what happens to the excess energy of the atom? 4. What is the continuous spectrum? How is it produced? 5. How is the emission spectrum of hydrogen different than the continuous spectrum of white light? Why is this significant? 6. How does the Bohr model of a hydrogen atom fit with the idea that energy is quantized? 7. Why is the Bohr model of the atom considered to be fundamentally incorrect? 5

Quantum Mechanical Model and Atomic Orbitals 1. What information does a wave function give us about an electron outside the nucleus of an atom? Can we know how an electron moves given a wave function? 2. What does Heisenberg s Uncertainty Principle state? 3. Describe the difference between an orbit (as described by the Bohr Model) and an orbital (as described by the wave mechanical model). 4. Describe the significance of quantum numbers. 5. What does the principal quantum number (n) tell us about an orbital? 6. What are sublevels? 7. Draw a picture of an s-orbital and a p-orbital. 8. Which orbital is the first to be filled in any atom? Why? 6

Orbital Diagrams Chem Worksheet 5-5 Name An orbital diagram uses boxes with arrows to represent the electrons in an atom. Each box in an orbital diagram represents an orbital. Orbitals have a capacity of two electrons. Arrows are drawn inside the boxes to represent electrons. Two electrons in the same orbital must have opposite spin so the arrows are drawn pointing in opposite directions. The following is an orbital diagram for selenium. Se: 1s Electrons fill the lowest 2s 2p available energy levels first. 3s 3p 4s 3d Two electrons in the same orbital must have opposite spin. Each orbital is half-filled before being completely filled. In writing an orbital diagram the first step is to determine the number of electrons. Normally this is the same as the number of protons, which is known as the atomic number. Next the boxes are drawn for the orbitals. Arrows are drawn in the boxes starting from the lowest energy sublevel and working up. This is known as the Aufbau rule. The Pauli exclusion principle requires that electrons in the same orbital have opposite spin. Hund s rule states that orbitals in a given sublevel are half-filled before they are completely filled. Boxes drawn for various sublevels s sublevel: p sublevel: d sublevel: f sublevel: 1 orbital 3 orbitals 5 orbitals 7 orbitals 1s 2s 2p 3s 3p This violates Hund s rule. One electron should be distributed to each of the 3p orbitals before doubly filling any. Write the name and symbol for the elements with the following orbital diagrams. 1. 4. 1s 2s 2p 3s 3p 4s 1s 2s 2p 3s 3p 4s 3d 2. 5. 1s 2s 2p [Kr] 5s 4d 5p 3. 6. 1s 2s 2p 3s 3p [Rn] 7s 5f There is an error with each of the following orbital diagrams. Explain the error. 7. [Ar] 8. 4s 3d 4p 1s 2s 2p 3s 3p Write orbital diagrams for the following. You may abbreviate using a noble gas. 9. hydrogen 15. carbon 10. boron 16. cobalt 11. sodium 17. platinum 12. krypton 18. plutonium 13. chromium 19. oxygen 14. phosphorus 20. potassium Chemistry WS5-5OrbitalDiagrams 7

Electron Configuration Chem Worksheet 5-6 Name An electron configuration is simply a list of the orbitals that contain electrons for a given element. The orbital designation is followed by a superscript number that tells how many electrons are found in that orbital. The following designation represents an atom with electrons found in the 1s, the 2s, the 2p, and the 3s orbitals. There are a total of 11 electrons in the atom. This represents the element sodium. Ex. Orbital name 1s 2 2s 2 2p 6 3s 1 Number of electrons s block 1s 2s 3s 4s 3d 5s 4d 6s 5d 7s 6d 4f 5f d block f block p block 2p 3p 4p 5p 6p The orbitals of an atom fill in a specific sequence. The pattern fits very nicely with various regions of the periodic table. The table is been sectioned into blocks which are labeled: s block, p block, d block, and f block. The rows of each block are labeled as well. Using this shortcut, electron configurations can be determined easily. The element manganese is the fifth element in the 3d row. The orbitals before the 3d orbital are all filled so it has full 1s, 2s, 2p, 3s, 3p, and 4s orbitals. Since manganese is the fifth element in the 3d row we designate the 3d orbital with 5 electrons. Electron configurations can be abbreviated by writing the element symbol for the previous noble gas in brackets, followed by the remaining electrons. For example, rather than writing all of the Sb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 3 electrons in antimony (element 51), the first 36 Kr 1s electrons are represented by [Kr]. The remaining 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 electrons are notated using orbital names and Sb [Kr] 5s 2 4d 10 5p 3 superscript numbers. Complete configuration Abbreviated configuration Write the name and symbol for the atoms with the following electron configurations. 1. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4 4. 1s 2 2s 2 2p 6 3s 2 3p 1 2. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 1 5. [Rn]7s 2 5f 9 3. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 7 6. [Xe] 6s 2 4f 14 5d 10 6p 2 Write complete electron configurations for the following substances. 7. nitrogen 10. nickel 8. magnesium 11. tin 9. niobium 12. chlorine Write abbreviated electron configurations for the following elements. 13. arsenic 19. sulfur 14. thulium 20. zirconium 15. rubidium 21. argon 16. einsteinium 22. iron 17. platinum 23. polonium 18. molybdenum 24. bohrium John Erickson, 2005 WS5-6ElectronConfig 8

CHEMISTRY Matching: Electron Configurations a) orbital b) principal quantum number c) valence shell d) kernel e) orbital diagram 1. One of these is assigned to each energy level in the Bohr model of the atom. 2. Used to describe the placement of electrons in energy levels and sublevels. 3. Part of the atom exclusive of the outer shell of electrons 4. Electrons with the same energy and opposite spin 5. The outermost principal energy level a) d b) p c) f d) n e) s 6. Symbol for the principal quantum number of an energy level 7. Symbol for the fourth energy sublevel 8. Symbol for the third energy sublevel 9. Symbol for the first energy sublevel 10. Symbol for the second energy sublevel a) electron configuration b) Pauli exclusion principle c) orbital d) uncertainty principal e) quantum numbers 11. Four of these are used to describe the location of an electron 12. Specifies that when two electrons occupy the same orbital, they must have opposite spins 13. Arrangement of units of negative charge among the various orbitals of the atom 14. Specifies that it is impossible to know location and velocity of a subatomic particle at the same time 15. Region in space where an electron with specified energy may be found. Multiple Choice: 16. The characteristic bright-line spectrum of an element is produced when electrons a) fall back to lower energy levels b) are gained by a neutral atom c) are emitted by the nucleus as beta particles d) move to higher energy levels 9

CHEMISTRY 17. When an atom goes from an excited state to the ground state, the total energy of the atom a) increases b) decreases c) remains the same 18. The lowest sublevel in each principal energy level is represented by the symbol a) f b) p c) s d) d e) n 19. What is the maximum number of electrons in the nth principal energy level a) n b) 2n c) n 2 d) 2n 2 20. What is the number of kinds of sublevels in the energy level that has the principal quantum number of 2? a) 2 b) 3 c) 4 d) 8 21. What is the number of electrons permitted in the d sublevel of the third energy level? a) 3 b) 9 c) 10 d) 14 e) 18 22. What is the number of orbitals in the 4f sublevel? a) 1 b) 4 c) 7 e) 16 e) 14 23. The arrangement that represents the lowest energy of electrons in an atom is called the a) ground state b) excited state c) valence electrons d) kernel electrons 24. When an orbital is occupied by two electrons, the electrons must have a) the same charge and the same spin b) opposite charge and the same spin c) the same charge and opposite spin d) opposite charge and opposite spin 25. The part of the atom that contains electrons that are not the valence electrons a) nucleus b) standing wave c) orbital d) kernel 26. In the charge-cloud model, energy sublevels are divided into a) energy levels b) orbits c) orbitals d) configurations 27. An orbital may contain more than one a) electron b) proton c) energy level d) orbit 28. According to the Heisenberg uncertainty principle, which two characteristics of a small particle cannot be known precisely at the same time? a) mass and velocity b) location and motion c) wavelength and diameter d) radius and distance from its nearest neighbor 29. Which sublevel contains electrons with the highest energy? a) 3p b) 2p c) 3s d) 4s 10

CHEMISTRY 30. Which electron transition is accompanied by the emission of energy? a) 1s to 2s b) 2s to 2p c) 3p to 3s d) 3p to 4p 31. What is the number of completely filled orbitals in an atom of fluorine in the ground state? a) 4 b) 5 c) 6 d) 9 32. What is the total number of occupied principal energy levels in an atom of Aluminum in the ground state? a) 2 b) 3 c) 4 d) 5 33. Which electron configuration represents a neutral atom of carbon in an excited state? a) 1s 2 2s 2 2p 2 b) 1s 2 2s 2 2p 3 c) 1s 2 2s 1 2p 3 d) 1s 2 2s 2 2p 6 34. Compared to an atom of chlorine in an excited state, a chloride ion has a) one more electron b) one fewer electron c) the same number of electrons 35. Which particle contains a total of 2 protons, 2 neutrons, and 2 electrons a) a cation b) an anion c) the kernel of an atom d) a neutral atom 36. The electron configuration 1s 2 2s 2 2p 5 could represent the a) ground state of a fluorine atom b) ground state of a magnesium ion c) excited state of a magnesium atom d) excited state of a fluoride ion 37. What is the number of valence electrons in an atom that has the electron configuration 1s 2 2s 2 2p 6 3s 2 3p 2 a) 2 b) 3 c) 4 d) 6 38. Which is the electron configuration of a neutral atom in the ground state with a total of six valence electrons? a) 1s 2 2s 2 2p 2 b) 1s 2 2s 2 2p 4 c) 1s 2 2s 2 2p 6 d) 1s 2 2s 2 2p 6 3s 2 3p 6 39. Which applies to an atom that has taken on one additional electron? a) It has entered the excited state b) It has become an ion c) It has absorbed energy d) It has acquired an additional valence shell 40. What additional information must be known in order to determine whether or not an atom with 8 protons and 8 electrons is in the ground state? a) the number of neutrons b) the electron configuration c) the atomic mass d) the mass number 11

12

The Structure of the Periodic Table Directions: 1. Label the columns with the both the 1 18 and IA VIIIA designations. 2. Write the period numbers in the left margin. 3. Draw a heavy line to separate the metals from the nonmetals. 4. Color the groups listed in the key with different colored pencils, indicating colors in the key. 5. Write the atomic numbers in the upper left hand corner of elements 57, 58, 71, 72, 89, 90, 103, and 104. Write the symbols of lanthanum and actinium in the correct boxes. Draw an arrow to indicate where the lanthanide and actinide series fit into the main periodic table. 6. Write the symbols of the elements {Ag, Al, C, Ca, Cl, Cu, F, Fe, H, He, Hg, K, Mg, N, Na, O, P, Pb, S, Zn} in the proper locations. K E Y alkali metals alkaline earth metals halogen family noble gases transition metals lanthanide series actinide series 13

Periodic Trends 1. Discuss the importance of Mendeleev s periodic law. 2. Identify each element as a metal, metalloid, or nonmetal. a) fluorine b) germanium c) zinc d) phosphorous e) lithium 3. Give two examples of elements for each category. a) noble gases b) halogens c) alkali metals d) alkaline earth metals 4. What trend in atomic radius do you see as you go down a group/family on the periodic table? What causes this trend? 5. What trend in atomic radius do you see as you go across a period/row on the periodic table? What causes this trend? 6. Circle the atom in each pair that has the largest atomic radius. a) Al B b) S O c) Br Cl d) Na Al e) O F f) Mg Ca 7. Define ionization energy. 8. Is it easier to form a positive ion with an element that has a high ionization energy or an element that has a low ionization energy? Explain. 9. Use the concept of ionization energy to explain why sodium form a 1+ ion (Na + ) but magnesium forms a 2+ ion (Mg 2+ ). 14

10. What trend in ionization energy do you see as you go down a group/family on the periodic table? What causes this trend? 11. What trend in ionization energy do you see as you go across a period/row on the periodic table? What causes this trend? 12. Circle the atom in each pair that has the greater ionization energy. a) Li Be b) Na K c) Cl Si d) Ca Ba e) P Ar f) Li K 13. Define electronegativity 14. What trend in electronegativity do you see as you go down a group/family on the periodic table? What causes this trend? 15. What trend in electronegativity do you see as you go across a period/row on the periodic table? What causes this trend? 16. Circle the atom in each pair that has the greater electronegativity. a) Ca Ga b) Li O c) Cl S d) Br As e) Ba Sr f) O S 15