MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Similar documents
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Integration by Substitution

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

Review Problems for the Final of Math 121, Fall 2014

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

Integration. 148 Chapter 7 Integration

Reasoning to Solve Equations and Inequalities

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Review guide for the final exam in Math 233

9 CONTINUOUS DISTRIBUTIONS

The Definite Integral

MODULE 3. 0, y = 0 for all y

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Graphs on Logarithmic and Semilogarithmic Paper

4.11 Inner Product Spaces

Algebra Review. How well do you remember your algebra?

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

Section 5-4 Trigonometric Functions

Operations with Polynomials

Lecture 3 Gaussian Probability Distribution

Or more simply put, when adding or subtracting quantities, their uncertainties add.

EQUATIONS OF LINES AND PLANES

6 Energy Methods And The Energy of Waves MATH 22C

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

The Riemann Integral. Chapter 1

6.2 Volumes of Revolution: The Disk Method

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

SPECIAL PRODUCTS AND FACTORIZATION

MA Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

AREA OF A SURFACE OF REVOLUTION

Lecture 5. Inner Product

Binary Representation of Numbers Autar Kaw

Regular Sets and Expressions

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Factoring Polynomials

A.7.1 Trigonometric interpretation of dot product A.7.2 Geometric interpretation of dot product

2 DIODE CLIPPING and CLAMPING CIRCUITS

Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

Introduction to Integration Part 2: The Definite Integral

Homework 3 Solutions

Experiment 6: Friction

Basic Analysis of Autarky and Free Trade Models

Pure C4. Revision Notes

Chapter. Contents: A Constructing decimal numbers

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Derivatives and Rates of Change

5.6 POSITIVE INTEGRAL EXPONENTS

All pay auctions with certain and uncertain prizes a comment

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

Exponential and Logarithmic Functions

Applications to Physics and Engineering

Physics 43 Homework Set 9 Chapter 40 Key

Unit 6: Exponents and Radicals

The remaining two sides of the right triangle are called the legs of the right triangle.

Answer, Key Homework 10 David McIntyre 1

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Math 314, Homework Assignment Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Lectures 8 and 9 1 Rectangular waveguides

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Ratio and Proportion

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

1.2 The Integers and Rational Numbers

e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach

COMPONENTS: COMBINED LOADING

Real Analysis and Multivariable Calculus: Graduate Level Problems and Solutions. Igor Yanovsky

Warm-up for Differential Calculus

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

10.6 Applications of Quadratic Equations

SUBSTITUTION I.. f(ax + b)

The Velocity Factor of an Insulated Two-Wire Transmission Line

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

CHAPTER 11 Numerical Differentiation and Integration

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

CUBIC-FOOT VOLUME OF A LOG

Vector differentiation. Chapters 6, 7

3 The Utility Maximization Problem

0.1 Basic Set Theory and Interval Notation

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Math 135 Circles and Completing the Square Examples

APPLICATION OF INTEGRALS

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

MATH 150 HOMEWORK 4 SOLUTIONS

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Version 001 Summer Review #03 tubman (IBII ) 1

Rotating DC Motors Part II

The Fundamental Theorem of Calculus

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.

Helicopter Theme and Variations

Linear Equations in Two Variables

Transcription:

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus. Lern how to compute the ntiderivtive of some sic functions. Lern how to use the sustitution method to compute the ntiderivtive of more complex functions. Lern how to solve re nd distnce trveled prolems y mens of ntiderivtives. Assignment 22 Assignment 23 Assignment 24 (Review) So fr we hve lerned out the ide of the integrl, nd wht is ment y computing the definite integrl of function f(x) over the intervl [,]. As in the cse of derivtives, we now study procedures for computing the definite integrl of function f(x) over the intervl [,] tht re esier thn computing limits of Riemnn sums. As with derivtives, however, the definition is importnt ecuse it is only through the definition tht we cn understnd why the integrl gives the nswers to prticulr prolems. Ide of the Fundmentl Theorem of Clculus: The esiest procedure for computing definite integrls is not y computing limit of Riemnn sum, ut y relting integrls to (nti)derivtives. This reltionship is so importnt in Clculus tht the theorem tht descries the reltionships is clled the Fundmentl Theorem of Clculus. Computing some ntiderivtives: In previous chpters we were given function f(x) nd we found the derivtive f (x). In this section, we will do the reverse. We will e given function f(x) tht is the derivtive of nother function F(x) nd will compute F(x). In other words find function F(x) such tht F (x) = f(x). F(x) is clled n ntiderivtive of f(x). For exmple (x 3 ) = 3x 2 so n ntiderivtive of f(x) = 3x 2 is F(x) = x 3. Note tht F(x) = x 3 +2 is lso n ntiderivtive of f(x) = 3x 2 ecuse (x 3 +2) = 3x 2. In generl, if F(x) is n ntiderivtive of f(x), then so is F(x)+C where C is ny constnt. This leds to the following nottion. Definition of the indefinite integrl: The indefinite integrl of f(x), denoted y f(x)dx without limits of integrtion, is the generl ntiderivtive of f(x). For exmple, it is esy to check tht 3t 2 dt = t 3 +c, where c is ny constnt. Recll tht the power rule for derivtives gives us (x n ) = nx n 1. We multiply y n nd sutrct 1 from the exponent. Since ntiderivtives re the reverse of derivtives, to compute n the ntiderivtive we first increse the power y 1, then divide y the new power. 15

The formuls elow cn e verified y differentiting the righthnd side of ech expression. Some sic indefinite integrls: 1. x n dx = 1 n+1 xn+1 +C n 1 2. e x dx = e x +C n = 1 in formul 1 leds to division y zero, ut for this specil cse we my use (ln(x)) = 1 x : 1 3. dx = ln x +C x Rules for indefinite integrls: ( ) ( A. cf(x)dx = c f(x)dx B. (f(x)±g(x))dx = f(x)dx ± Exmple 1: Evlute the indefinite integrl (t 3 +3t 2 +4t+9)dt. ) g(x) dx Exmple 2: Evlute the indefinite integrl 6 t dt. Wrning: We do not hve simple derivtive rules for products nd quotients, so we should not expect simple integrl rules for products nd quotients. Exmple 3: Evlute the indefinite integrl t 3 (t+2)dt. 16

Exmple 4: Evlute the indefinite integrl 2 +9 dx. x 2 We now hve some experience computing ntiderivtives. We will now see how ntiderivtives give us n elegnt method for finding res under curves. Exmple 5: Find formul for A(x) = 1 (4t + 2)dt, tht is, evlute the definite integrl of the function f(t) = 4t+2 over the intervl [1,x] inside [1,1]. (Hint: think of this definite integrl s n re.) Find the vlues A(5), A(1), A(1). Wht is the derivtive of A(x) with respect to x? y f(t) = 4t+2 6 A(x) 1 x 1 t Oservtions: There re two importnt things to notice out the function A(x) nlyzed in Exmple 1: A(1) = 1 1 (4t+2)dt = A (x) = d ( ) (4t+2)dt = 4x+2. dx 1 }{{} A(x) Notice wht the lst equlity sys: The instntneous rte of chnge of the re under the curve y = 4t+2 t t = x is simply equl to the vlue of the curve evluted t t = x. Why? A(x) mesures the re of some geometric figure. As x increses, the width of the figure increses, nd so the re increses. A (x) mesures the rte of increse of the figure. Now, s x increses, the right wll of the figure sweeps out dditionl re, so the rte t which the re increses should e equl to the height of the right wll. The following pges will mke this ide more precise. 17

Ide: Suppose tht for ny function f(t) it were true tht the re function A(x) = A() = f(t)dt = A (x) = d dx ( ) f(t)dt = f(x). f(t) dt stisfies Moreover, suppose tht F(x) is ny ndtiderivtive of f(x) (i.e., F (x) = f(x) = A (x).) By The Constnt Function Theorem (Chpter 6), there exists constnt vlue c such tht F(x) = A(x)+c. All these fcts put together help us esily evlute f(t) dt. Indeed, f(t)dt = A() = A() = A() A() = F() F() = [A()+c] [A()+c] The ove specultions re ctully true for ny continuous function on the intervl over which we re integrting. These results re stted in the following theorem, which is divided into two prts: The Fundmentl Theorem of Clculus: PART I: Let f(t) e continuous function on the intervl [,]. Then the function A(x), defined y the formul A(x) = f(t)dt for ll x in the intervl [,], is n ntiderivtive of f(x), tht is A (x) = d ( ) f(t)dt = f(x) dx for ll x in the intervl [,]. PART II: Let F(x) e ny ntiderivtive of f(x) on [,], so tht F (x) = f(x) for ll x in the intervl [,]. Then f(x)dx = F() F(). Specil nottions: The ove theorem tells us tht evluting definite integrl is two-step process: find ny ntiderivtive F(x) of the function f(x) nd then compute the difference F() F(). A nottion hs een devised to seprte the two steps of this process: F(x) stnds for the difference F() F(). Thus f(x)dx = F(x) = F() F(). 18

Some properties of definite integrls: 1. 3. 4. f(x)dx = 2. ( (f(x)±g(x))dx = f(x)dx+ c f(x)dx = ) ( f(x)dx ± c ) g(x) dx f(x)dx 5. 6. If m f(x) M on [,] then m( ) Geometric illustrtion of some of the ove properties: f(x)dx M( ) kf(x)dx = k f(x)dx = f(x)dx f(x)dx Property 3. sys tht if f nd g re positive vlued Property 4. sys tht if f(x) is positive vlued functions with f greter thn g. Then function then the re underneth the grph of f(x) y y etween nd plus f (f(x) g(x))dx the re underneth gives the re etween the grph of f(x) etween nd c equls the grphs of f nd g the re underneth g f(x)dx g(x) dx the grph of f(x) x x etween nd c. c Property 5. follows from Properties 4. nd 1. y letting c =. Alterntively, the Fundmentl Theorem of Clculus gives us f(x)dx = F(x) = F() F() = [F() F()] = F(x) = f(x)dx. Property 6. is illustrted in the picture tht ccompnies the proof of the Fundmentl Theorem of Clculus. An ide of the proof of the Fundmentl Theorem of Clculus: We lredy gve n explntion of why the second prt of the Fundmentl Theorem of Clculus follows from the first one. To prove the first prt we need to use the definition of the derivtive. More precisely, we must show tht A A(x+h) A(x) (x) = lim = f(x). h h For convenience, let us ssume tht f is positive vlued function. Given tht A(x) is defined y quotient is f(t)dt, the numertor of the ove difference M m y h A(x+h) A(x) = +h f(t)dt f(t)dt. Using properties 4. nd 5. of definite integrls, the ove difference equls +h x x x+h f(t)dt. As the function f is continuous over the intervl [x,x +h], the Extreme Vlue Theorem sys tht there re vlues c 1 nd c 2 in [x,x+h] wheref ttins theminimumndmximumvlues, sy mndm, respectively. Thus m f(t) M on [x,x+h]. As the length of the intervl [x,x+h] is h, y property 6. of definite integrls we hve tht t f(c 1 )h = mh +h x f(t)dt Mh = f(c 2 )h or, equivlently, f(c 1 ) +h x f(t)dt h f(c 2 ). Finlly, s f is continuous we hve tht lim h f(c 1 ) = f(x) = lim h f(c 2 ). This concludes the proof. 19

Exmples illustrting the First Fundmentl Theorem of Clculus: Exmple 6: Compute the derivtive of F(x) if F(x) = 2 (t 4 +t 3 +t+9)dt. Exmple 7: Compute the derivtive of g(s) if g(s) = s 5 8 u 2 +u+2 du. Exmple 8: Suppose f(x) = 1 t 2 7t+12.25dt. For which positive vlue of x does f (x) equl? Exmple 9: Find the vlue of x t which F(x) = intervl [3,1]. The vlue of x tht gives minimum of F(x) is. 3 (t 8 +t 6 +t 4 +t 2 +1)dt tkes its minimum on the 11

Exmple 1: Find the vlue of x t which G(x) = [ 5,1]. The vlue of x tht gives mximum of G(x) is. 5 ( t +2)dt tkes its mximum on the intervl Exmples illustrting the Second Fundmentl Theorem of Clculus: Exmple 11: Evlute the integrl 5 (t 2 +1)dt. Exmple 12: Evlute the integrl 5 7 ( ) 1 2 dt. t Exmple 13: Evlute the integrl 2 e x dx. 111

Exmple 14: Evlute the integrl 2 2 (t 5 +t 4 +t 3 +t 2 +t+1)dt. Exmple 15: Evlute the integrl 12 6 t dt. Exmple 16: Evlute the integrl 5 2 ( 3u 5 + 7 ) du. u Exmple 17: Suppose Evlute the integrl 5 f(x)dx. 2x, x 2; f(x) = 8 x, x > 2. 112

The sustitution rule for integrls: suintervl I nd f is continuous on I, then In cse of definite integrls the sustitution rule ecomes Exmple 18: Evlute the integrl If u = g(t) is differentile function whose rnge is f(g(t))g (t)dt = f(u)du. (t+9) 2 dt. f(g(t))g (t)dt = g() g() f(u)du. Exmple 19: Evlute the integrl 3t+7dt. Exmple 2: Evlute the integrl 1 (5t+4) 2 dt. Exmple 21: Evlute the integrl 5 2t+1dt. 113

Exmple 22: Evlute the integrl 1 5e 5x+1 dx Exmple 23: Evlute the integrl 3 2x x 2 +1 dx. Exmple 24: Compute the derivtive of F(x) if F(x) = (Hint: Write F(x) = g(f(x)) where f(x) = x 2 nd g(x) = 2 2tdt. 2tdt nd use the chin rule to find F (x).) Generl formul: If F(x) = f(x) H(t)dt then F (x) = d dx f(x) H(t)dt = H(f(x)) f (x). 114

Word prolems: If the velocity v(t) of n oject t time t is lwys positive, then the re underneth the grph of the velocity function nd lyingove thet-xis represents thetotl distnce trveled y theoject from t = to t =. Exmple 25: A trin trvels long trck nd its velocity (in miles per hour) is given y v(t) = 76t for the first hlf hour of trvel. Its velocity is constnt nd equl to v(t) = 76/2 fter the first hlf hour. Here time t is mesured in hours. How fr (in miles) does the trin trvel in the second hour of trvel? Exmple 26: A trin trvels long trck nd its velocity (in miles per hour) is given y v(t) = 76t for the first hlf hour of trvel. Its velocity is constnt nd equl to v(t) = 76/2 fter the first hlf hour. Here time t is mesured in hours. How fr (in miles) does the trin trvel in the first hour of trvel? Exmple 27: A rock is dropped from height of 21 feet. Its velocity in feet per second t time t fter it is dropped is given y v(t) = 32t where time t is mesured in seconds. How fr is the rock from the ground one second fter it is dropped? 115

Exmple 28: Suppose n oject is thrown down from cliff with n initil speed of 5 feet per sec, nd its speed in ft/sec fter t seconds is given y s(t) = 1t+5. If the oject lnds fter 7 seconds, how high (in ft) is the cliff? (Hint: how fr did the oject trvel?) Exmple 29: A cr is trveling due est. Its velocity (in miles per hour) t time t hours is given y v(t) = 2.5t 2 +1t+5. How fr did the cr trvel during the first five hours of the trip? Averge Vlues: The verge of finitely mny numers y 1,y 2,...,y n is y ve = y 1 +y 2 + +y n. Wht n if we re deling with infinitely mny vlues? More generlly, how cn we compute the verge of function f defined on n intervl? Averge of function: Theverge offunctionf onnintervl [,] y equls the integrl of f over the intervl divided y thelength of the intervl: Geometric mening: f(x)dx f ve =. x If f is positive vlued function, f ve is tht numer such tht the rectngle with se [,] nd height f ve hs the sme re s the region underneth the grph of f from to. Exmple 3: Wht is the verge of f(x) = x 2 over the intervl [,6]? f ve 116