3. INNER PRODUCT SPACES



Similar documents
Inner Product Spaces

Lecture 14: Section 3.3

Inner product. Definition of inner product

Inner Product Spaces and Orthogonality

1 VECTOR SPACES AND SUBSPACES

α = u v. In other words, Orthogonal Projection

Numerical Analysis Lecture Notes

Section 1.1. Introduction to R n

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Section Inner Products and Norms

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Section 4.4 Inner Product Spaces

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

17. Inner product spaces Definition Let V be a real vector space. An inner product on V is a function

FURTHER VECTORS (MEI)

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

LEARNING OBJECTIVES FOR THIS CHAPTER

Orthogonal Projections and Orthonormal Bases

it is easy to see that α = a

BANACH AND HILBERT SPACE REVIEW

Math 215 HW #6 Solutions

Vector and Matrix Norms

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Similarity and Diagonalization. Similar Matrices

T ( a i x i ) = a i T (x i ).

1 Sets and Set Notation.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

Orthogonal Projections

1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two non-zero vectors u and v,

LINEAR ALGEBRA W W L CHEN

THREE DIMENSIONAL GEOMETRY

Lectures notes on orthogonal matrices (with exercises) Linear Algebra II - Spring 2004 by D. Klain

Chapter 6. Orthogonality

5.3 The Cross Product in R 3

1 Norms and Vector Spaces

Math 4310 Handout - Quotient Vector Spaces

Equations Involving Lines and Planes Standard equations for lines in space

9 Multiplication of Vectors: The Scalar or Dot Product

Recall that two vectors in are perpendicular or orthogonal provided that their dot

ISOMETRIES OF R n KEITH CONRAD

Metric Spaces. Chapter Metrics

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

MATH1231 Algebra, 2015 Chapter 7: Linear maps

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Orthogonal Diagonalization of Symmetric Matrices

LEARNING OBJECTIVES FOR THIS CHAPTER

LINEAR ALGEBRA. September 23, 2010

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 1341: REVIEW II SANGHOON BAEK

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra: Vectors

NOV /II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

CS3220 Lecture Notes: QR factorization and orthogonal transformations

Nonlinear Iterative Partial Least Squares Method

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

by the matrix A results in a vector which is a reflection of the given

Solutions to Math 51 First Exam January 29, 2015

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Chapter 20. Vector Spaces and Bases

5. Orthogonal matrices

Systems of Linear Equations

Vector Math Computer Graphics Scott D. Anderson

4.5 Linear Dependence and Linear Independence

Chapter 17. Orthogonal Matrices and Symmetries of Space

THE DIMENSION OF A VECTOR SPACE

MAT 242 Test 3 SOLUTIONS, FORM A

Linear Algebra Notes

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

( ) which must be a vector

discuss how to describe points, lines and planes in 3 space.

Mathematical Methods of Engineering Analysis

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Section 9.5: Equations of Lines and Planes

Metric Spaces. Chapter 1

BX in ( u, v) basis in two ways. On the one hand, AN = u+

1 3 4 = 8i + 20j 13k. x + w. y + w

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

Elementary Linear Algebra

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Figure 1.1 Vector A and Vector F

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

Data Mining: Algorithms and Applications Matrix Math Review

1 if 1 x 0 1 if 0 x 1

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Math 241, Exam 1 Information.

Section 13.5 Equations of Lines and Planes

Orthogonal Bases and the QR Algorithm

The Determinant: a Means to Calculate Volume

Continued Fractions and the Euclidean Algorithm

Math 312 Homework 1 Solutions

Transcription:

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space. In R and R we have the concepts of lengths and angles. In those spaces we use the dot product for this purpose, but the dot product only makes sense when we have components. In the absence of components we introduce something called an inner product to play the role of the dot product. We consider only vector spaces over C, or some subfield of C, such as R. An inner product space is a vector space V over C together with a function (called an inner product) that associates with every pair of vectors in V a complex number u v such that: () v u u v for all u, v V; () u v w u w v w for all u, v, w V; () u v u v for all u, v V and all C; (4) v v is real and for all v V; (5) v v = if and only if v =. These are known as the axioms for an inner product space (along with the usual vector space axioms). A Euclidean space is a vector space over R, where u v R for all u, v and where the above five axioms hold. In this case we can simplify the axioms slightly: () v u u v for all u, v V; () u v w u w v w for all u, v, w V; () u v u v for all u, v V and all C; (4) v v for all v V; (5) v v = if and only if v =. Example : Take V = R n as a vector space over R and define u v = u v +... + u n v n where u = (u,, u n ) and v = (v,, v n ) (the usual dot product). This makes R n into a Euclidean space. When n = we can interpret this geometrically as the real Euclidean plane. When n = this is the usual Euclidean space. Example : Take V = C n as a vector space over C and define u = (u,, u n ) and v = (v,, v n ). u v u v... u v n n where Example : Take V = M n (R), the space of nn matrices over R where A B = trace(a T B). Note, this becomes the usual dot product if we consider an n n matrix as a vector with n components, since trace(a T B) = a b ij ij if A = (a ij ) and B = (b ij ). n i, j Example 4: Show that R can be made into a Euclidean space by defining u u = 5x x x y x y + 5y y when u = (x, y ) and u = (x, y ). Solution: We check the five axioms. 9

() u u = 5x x x y x y + 5y y = u u. () If u = (x, y ) then u + u u = 5(x + x )x x (y + y ) (x + x )y + 5(y + y )y = 5x x + 5x x x y x y x y x y + 5y y + 5y y = (5x x x y x y + 5y y ) + (5x x x y x y + 5y y ) = u u + u u. () u u = 5(x )x x (y ) (x )y + 5(y )y = [5x x x y x y + 5y y ] = u u. (4) If v = (x, y) then v v = 5x xy + 5y = 5(x xy/5 + y ) = 5(x y/5) + 4y /5 for all x, y. (5) v v = if and only if x = y/5 and y =, that is, if and only if v =. Now we move to a rather different sort of inner product, but one that still satisfies tha above axioms. Inner product spaces of this type are very important in mathematics. Example 5: Take V to be the space of continuous functions of a real variable and define u x v( x) NOTE: Axioms (), () show that the function u However u( x) v( x) dx u v is a linear transformation for a fixed v. u v u is not linear since v u u v u v u v v u... Lengths and Distances The length of a vector in an inner product space is defined by: (Remember that v v v. v v is real and non-negative. The square root is the non-negative one.) So the zero vector is the only one with zero length. All other vectors in an inner product space have positive length. Example 6: In R, with the dot product as inner product, the length of (x, y, z) is x + y + z. Example 6: If V is the space of continuous functions of a real variable and u x vx uxvx dx = f(x)g(x) dx then the length of f(x) = x is x 4 dx = 5. The following properties of length are easily proved. Theorem : For all vectors u, v and all scalars : () v =. v ; () v ; () v = if and only if v =.

Theorem (Cauchy Schwarz Inequality): u v u. v. Equality holds if and only if u = u v Proof: Let d = v. Now u dv = u dv u dv = u u d v u d u v + dd v v = u dd v + dd v = u d v = u u v v Since u dv, u v u v. Example 7: In R n we have y x y Example 8: f(x)g(x) dx x. i i f(x) dx g(x) dx. i i u v v v. The Triangle Inequality in the Euclidean plane states no side of a triangle can be longer than the sum of the other two sides. It is usually proved geometrically, or appealing to the principle that the shortest distance between two points is a straight line. In a general inner product space we must prove it from the axioms. Theorem (Triangle Inequality): For all vectors u, v: u + v u + v. Proof: u + v = u + v u + v = u u + v v + u v + v u = u + v + Re(u v) u + v + u v u + v + u. v ( u + v ) So u + v u + v. We define the distance between two vectors u, v to be u v. The distance version of the Triangle Inequality is as follows. If u, v, w are the vertices of a triangle in an inner product space V then u w u v + v w. It follows from the length version as u w = (u v) + (v w). If we take u, v, w to be vertices of a triangle in the Euclidean plane this gives the geometric version of the Triangle Inequality... Orthogonality It is not possible to define angles in a general inner product space, because inner products need not be real. But in any Euclidean space we can define these geometrical concepts even if the vectors have no obvious geometric significance.

Now we can use the Cauchy Schwarz inequality to define the angle between vectors. If u, v are non-zero vectors the angle between them is defined to be cos u v u. v. The Cauchy u v Schwarz inequality ensures that u. v lies between and. The angle between the vectors is / if and only if u v =. Example 9: Suppose we define the inner product between two continuous functions by u v / Solution: u u( x) v( x) dx. If u(x) = sin x and v(x) = x find the angle, between them in degrees. u v / x ux / / xsin xdx / = =. sin sin x x cos x (integrating by parts) xdx cos x = dx x / = sin x 4 = 4 which is approximately.7854. Hence u(x) is approximately.886. v x vx / x x = dx / = which is approximately.99. 4 Hence v(x)} is approximately.66. So if the angle (in degrees) between these two functions is then cos.886*.66.75.998. Hence 6.8796. NOTE: Measuring the angle between two functions in degrees is rather useless and is done here only as a curiosity. By far the major application of angles in function spaces is to orthogonality. This is a concept that is meaningful for all inner product spaces, not just Euclidean ones. Two vectors in an inner product space are orthogonal if their inner product is zero. The same definition applies to Euclidean spaces, where angles are defined and there orthogonality means that either the angle between the vectors is / or one of the vectors is zero. So orthogonality is slightly more general than perpendicularity. A vector v in an inner product space is a unit vector if v =.

We define a set of vectors to be orthonormal if they are all unit vectors and each one is orthogonal to each of the others. An orthonormal basis is simply a basis that is orthonormal. Note that there is no such thing as an orthonormal vector. The property applies to a whole set of vectors, not to an individual vector. Theorem 4: An orthonormal set of vectors {v,, v n } is linearly independent. Proof: Suppose v + + n v n =. Then v + + n v n v r = for each r. But v + + n v n v r = v v r + + n v n v r = r v r v r since v r is orthogonal to the other vectors in the set = r since v r v r = v r =. Hence each r =. Because of the above theorem, if we want to show that a set of vectors is an orthonormal basis we need only show that it is orthonormal and that it spans the space. Linear independences come free. Another important consequence of the above theorem is that it is very easy to find the coordinates of a vector relative to an orthonormal basis. Theorem 5: If,,..., n is an orthogonal basis for the inner product V, and v V, then x v x v i where xi. i x n Proof: Let v = x + x +... + x n n. Then v i x j j i j = x j j since the j i are mutually orthogonal Example : Consider R as an inner product space with the usual inner product. Show that the set,,,,,,,, is an orthonormal basis for R. Solution: They are clearly mutually orthogonal and, since 9 + 4 9 + 4 9 = they are all unit vectors. Hence they are linearly independent and so span a -dimensional subspace of R. Clearly this must be the whole of R. Example : Find the coordinates of (, 4, 5) relative to the above orthonormal basis. Solution: (, 4, 5) (/, /, /) = 7 (, 4, 5) (/, /, /) = (, 4, 5) (/, /, /) =. Hence the coordinates are (7,, ). In other words, (, 4, 5) = 7,,,,. Example : In C as an inner product space with the inner product (x, y ) (x, y ) = x x + y y show that the vectors ( i, 4i) and ( 4i, /5 + /5 i) are orthogonal. Use them to find an orthonormal basis for C.

Solution: ( i)( + 4i) + ( 4i)(/5 /5 i) = + 5i 5i =. ( i, 4i) = 5 + 5 = and ( 4i, /5 + /5 i) = 5 + 5 =. Hence { ( i, 4i), ( 4i, /5 + /5 i)} is an orthonormal basis. Theorem 6 (Gram-Schmidt): Every finite-dimensional inner product space V has an orthonormal basis. Proof: We prove this by induction on the dimension of V. If dim(v) = then the empty set is an orthonormal basis. Suppose that every vector space of dimension n has an orthonormal basis of V and suppose that V is a vector space of dimension n +. Let {u,, u n+ } be a basis for V and let U = v,, v n. By the induction hypothesis U has an orthonormal basis v,, v n. Define w = u n+ u n+ v v u n+ v n v n. Then for each i, w v i = u n+ v i u n+ v i v i v i, since v j v i = when i j = u n+ v i v v i since v i v i = =. Hence w is orthogonal to each of the v i. But it may not be a unit vector, but it is non-zero. So we may divide it by its length without affecting orthogonality. So we define v n+ = w w and so obtain an orthonormal basis {v,, v n, v n+ } for V. In practice it is inconvenient to normalise the vectors (divide by their length) as we go, because we will have to carry these lengths along into our subsequent calculations. It s much easier to produce an orthogonal basis and then to normalise at the end. GRAM-SCHMIDT ALGORITHM {u, u,..., u n } is a given basis; {v, v,..., v n } is an orthogonal basis; {w, w,..., w n } is an orthonormal basis. () LET v = u. () FOR r = TO n, LET v r = u r u r v v v u r v v v... u r v r v r v r. Multiply by a convenient factor to remove fractions. (4) FOR r = TO n, LET w r = v r v r. Example : Find an orthonormal basis for V = (,,, ), (,,, 4), (,,, ). Solution: u = basis v = orthogonal basis v w = orthonormal basis (,,, ) (,,, ) (,,, ) (,,, 4) (,,, ) 5 (,,, ) 5 (,,, ) (, 6, 6, ) 6 (6,, 8, ) 4

WORKING: v = u u v v v = (,,, 4) 4 (,,, ) = (,,, 4) 5 (,,, ). Multiply by, so now v = (, 4, 6, 8) 5(,,, ) = (,,, ). v = u u v v v u v v v = (,,, ) (,,, ) (,,, ). Multiply by, so now v = (,,, ) (5, 5, 5, 5) + (,,, ) = (, 6, 6, ). Example 4: Let V be the function space, x, x made into a Euclidean space by defining u x vx uxvx dx. Find an orthonormal basis for V. Solution: u = basis v = orthogonal basis v w = orthonormal basis x x (x ) x 6x 6x + 5 5 (6x 6x + ) WORKING: u x v x x dx x. x dx x v v (x) = u (x) u (x) v (x) v (x) v (x) = x. Multiply by, so now v (x) = x. u x v x x x. 4 ux vx x x dx x x dx x x 4 vx x dx 4x 4x dx x x x. v (x) = u (x) u (x) v (x) v (x) v (x) u (x) v (x) v (x) v (x) = x /6 / (x ) = x (x ) Multiply by 6, so now v (x) = 6x (x ) = 6x 6x +. 4 6 5 4 vx 6 x 6x dx 6x 7x 48x x dx x 8x 6x 6x x 5 6. 5 5

.4. Fourier Series The most important applications of inner product spaces involves function spaces with the inner product defined by means of an integral. Fourier series are infinite series in an infinite dimensional function space. However it is not appropriate here to give more than a cursory overview because to discuss them properly requires not only a good knowledge of integration, but a deep understanding of the convergence of infinite series. For any positive integer n the functions, cos nx and sin nx are periodic, with period. [This does not mean that they do not have smaller period, but simply that for each of them f(x + ) = f(x) for all x.] Take the space T spanned by all of these functions. Define the inner product on T as So T =, cos x, cos x,..., sin x, sin x,... u ( x) v( x) u( x) v( x) dx. T is an infinite dimensional vector space. Clearly, for every function f(x) T, f(x + ) = f(x). If f(x) is a continuous function for which f(x + ) = f(x) we may ask whether f(x) T. The answer is usually no. Such an f(x) may not be a linear combination of, cos x, cos x,..., sin x, sin x,... But remember that a linear combination is a finite linear combination. It may well be that f(x) can be expressed as an infinite series involving these functions. That is we might have f(x) = a + a cos nx b sin nx n n n. Such a series is called a Fourier series, named after the French mathematician Joseph de Fourier [768 8]. Of course, for this to make sense we would need this series to converge, which why we need to know a lot about infinite series in order to study Fourier series. But suppose we limit the values of n. Let T N =, sin x, sin x,..., cos x, cos x,... We can show that these N + functions are linearly independent. orthogonal. So T N is a N + dimensional Euclidean space. For n >, cos nx cos nx dx = and sin x = sin In fact, they are mutually nx dx =. Clearly = dx =. (Remember that here is not the absolute value but rather the length of the function.) N Fx By theorem 5, if F(x) = a + an cos nx bn sin nx then a = = F ( x) dx and, if n >, a n = F x cos nx cos nx n = F ( x)cos nx dx and b n = F x sin nx sin nx = F ( x)sin nx dx. A function in T N must be continuous and have period. But by no means does every such function belong to T N. However if F(x) is continuous and has period then it can be approximated by a function in T N, with the approximation getting better as N becomes larger. Even functions with period having some discontinuities can be so approximated. (We won t go into details here as to the precise conditions, or how close the approximation will be.) where a = If F (N) (x) is the approximation to F(x) in T N then F (N) (x) = a + a cos nx b sin nx F N ( x) dx and, if n >, a n = N n F N ( x)cos nx dx and b n = n F N ( x)sin nx dx. Now it can be shown that generally these integrals can be approximated by the corresponding integrals with F (N) replaced by F(x). Letting N it can be shown that if F[x] can be expressed as n a n n then a = a Fourier series a + cos nx b sin nx F ( x) dx and, if n >, n 6

a n = F ( x)cos nx dx and b n = F ( x)sin nx dx. Example 5: Find the Fourier series for the function F(x) = x if x / F(x) = x if / x / F(x) = x F(x + ) = F(x) for all x Answer: The solution involves a fair bit of integration by parts and, since this is not a calculus course, we omit the details and simply give the answer. 4 sin x sin x sin 5x F(x) =. 5 / / / /.5. Orthogonal Complements In R the normal to a plane through the origin is a plane through the origin. Every vector in the plane is orthogonal (i.e. perpendicular if they are non-zero) to every vector along the line. The line and the plane are said to be orthogonal complements of one another. The orthogonal complement of a subspace U, of V is defined to be: U = {v V u v = for all u U}. Intuitively it would seem that U should be U, but there are examples where this is not so. However for finite-dimensional subspaces it is true. This follows from the following important theorem. Theorem 7: If U is a finite-dimensional subspace of the vector space then U is also subspace of V and V = U U. Proof: () U is a subspace of V. Let v, w U and let u U. Then u v + w = u v + u w = + =. Hence v + w U T. Let v U and let be a scalar. Then u v =u v =. =. Hence v U and so we have shown that U is a subspace. () U U =. 7

Suppose v U U. Then v is orthogonal to itself, and so v v =. By the axioms of an inner product space this implies that v =. () V = U + U. Let u, u n be an orthonormal basis for U. Let v V, u = v u u v u n u n and let w = v u. Then for each i, w u i = v u i v u i u i u i since u j u i = if i j = v u i v u i since u i u i = =. Hence w U. Clearly u U. So v = u + w U + U. Theorem 8: If U is a subspace of a finite-dimensional vector space then U = U. Proof: Suppose u U and let v U. Then u v =. Hence v u =. Since this holds for all v U, and so u U. So it follows that U U. Now V = U U = U U so dim U = dim U. Hence U = U. EXERCISES FOR CHAPTER Exercise : If v = (x, y ) and v = (x, y ) define u v = x x x y x y + 5y y and [u v] = x x + x y + x y + y y. Show that under one of these products R becomes a Euclidean space and under the other it is not a Euclidean space. Exercise : Find an orthonormal basis for (,, ), (,, 5). Exercise : Find an orthonormal basis for (,,,, ), (,,,, ), (,,,, ), (,,,, ). Exercise 4: Find an orthonormal basis for the function space, x, x where u x vx uxvx dx. Exercise 5: Find an orthonormal basis for the function space, x, sin x where / x vx uxvx u dx. Exercise 6: Find the orthogonal complement for (,, 6), (,, ) in R. Exercise 7: Find the orthogonal complement of (,,, ), (,,, ) in R 4. Exercise 8: Find the orthogonal complement of, x in the vector space, x, x, where u ( x) vx is defined to be u xvx dx. 8

SOLUTIONS FOR CHAPTER Exercise : Axioms (), (), () are easily checked for both products. The simplest way to check them is to let A = and B =. Then u v = uav T and [u v] = ubv T. It is now very simple to check these first three axioms. (4) If v = (x, y) then v v = x 4xy + 5y = (x y) + y for all x, y. If v = (x, y) then [v v] = x + 4xy + y = (x + y) y. When x = and y = this is negative. Hence under the product [u v] R is not a Euclidean space. (5) If v v = then x = y and y = so v =. Hence under the product v v, R is a Euclidean space. Exercise : u = basis v = orthogonal basis v w = orthonormal basis (,, ) (,, ) (,, ) (,, 5) (,, 6) 8 (,, 6) 8 WORKING: v = u u v v v = (,, 5) (,, ) = (,, 5) (,, ) = (,, 6). Exercise : u = basis v = orthogonal basis v w = orthonormal basis (,,,, ) (,,,, ) (,,,, ) (,,,, ) (,, 4,, ) 8 (,, 4,, ) 8 (,,,, ) (, 4, 4, 6, ) 7 (, 4, 4, 6, ) 7 4 (,,,, ) (9, 49, 56, 49, ) 6958 (9, 49, 56, 49, ) 6958 WORKING: v = u u v v v = (,,,, ) 4 (,,,, ). Multiply by 4. Now v = (4,, 4, 4, 4) (,,,, ) = (,, 4,, ). v = u u v v v u v v v = (,,,, ) 4 (,,,, ) 8 (,, 4,, ). Multiply by 8. Now v = (8, 8, 8,, 8) (,,,, ) (, 9,,, ) = (4, 6, 6, 4, 4). Divide by 4. Now v = (, 4, 4, 6, ). v 4 = u 4 u 4 v v v u 4 v v v u 4 v v v = (,,,, ) (,,,, ) 8 (,, 4,, ) 7 (, 4, 4, 6, ). Multiply by 4. Now v 4 = (4, 4, 4, 4, ) (,,,, ) (5, 45, 6, 5, 5) (6, 4, 4, 6, 6) = (9, 49, 56, 49, ). 9

Exercise 4: u = basis v = orthogonal basis v w = orthonormal basis x x (x ) x x x + (x x + ) WORKING: / u x v x x dx = x =. v (x) = u (x) u (x) v (x) v (x) v (x) = x /. = x. Multiply by, so now v (x) = x. v x x u dx = x x 4 9 dx 9 / = x 8x 9 = 8 4 =. x v x x dx = x =. 4x x v x x x dx u / = x dx x dx = x 5 = 6 5 = 5. 5 / x v (x) = u (x) u (x) v (x) v (x) v (x) u (x) v (x) v (x) v (x) = x / /5. / (x ) 4

= x 5 (x ) = x 6 5 x + 4 5 = x 6 5 x +. Multiplying by we now take v (x) = x x +. v (x) = x x dx = x 44x 9 4x / 6x 7 x dx = x 4x 9 4x / 7 x dx = 5/ / 9 96 48 x x x x x = + + 9 96 48 = =. Exercise 5: u = basis v = orthogonal basis v w = orthonormal basis WORKING: x x sin x sin x / / v x dx = / x v x x = / u xdx = x = v (x) = u (x) u (x) v (x) v (x) v (x) = x /4 /. = x. Multiply by, so now v (x) = x. v / x x dx / = 4x 4x dx 4 4 6 x 6 8 sin x 8

4 = x x x = 6 = 6. / x v x x dx u sin / = =. cos x / / x v x x x dx u sin / = xsin x dx / sin = cos x x dx / / / x cos x dx x dx sin / / = + sin x + cos x = =. v (x) = u (x) u (x) v (x) v (x) v (x) u (x) v (x) v (x) v (x) = sin x..(cos x sin x) = sin x. Multiplying by we now take v (x) = sin x. / v (x) = sin x dx / = sin x 4 sin x 4 / dx = sin dx 4 sin x dx + 4 dx / = cos / / = sin x = 4 + / / x dx 4 sin x dx + 4 dx / x + / 4 cos x + 4

= 4 4. = 8 Exercise 6: First Solution: Let u = (,, ) and u = (,, 6). Suppose (x, y, z) is orthogonal to both u and u. Then x + y + z = and x + y + 6z =. so x=, z = k, y = k. 6 4 Hence the orthogonal complement is (,, ). Second Solution: We could take, as a third vector (,, ), being outside of the space spanned by a and b, and use the Gram Schmidt process. However we are content with an orthogonal basis. u = basis v = orthogonal basis v (,, ) (,, ) 9 (,, 6) (5,, 4) 45 (,, ) (,, ) WORKING: v = u u v v v = (,, 6) 9 9 (,, ). Multiply by 9 to get the new v to be v = 9(,, 6) 9(,, ) = (8, 7, 54) (8, 9, 8) = (, 8, 6). Perhaps it would now be a good idea to divide by 4 to get a new v as v = (5,, 4). u v = 5 and u v =. v = u u v v v u v v v = (,, ) 5 9 (,, ) 45 (5,, 4) Multiply by 45 to get a new v as v = (45, 45, 45) (5, 5, 5) (5,, 4) = (, 8, 9). Divide by 9 to get a new v as v = (,, ). Hence the orthogonal complement is (,, ). Third Solution: A third method, that only works for R, is to simply find u u. i j k u u = = (6 6)i ( 4)j + (6 )k = (, 8, 4). So the orthogonal complement is 6 (, 8, 4) = (,, ). You can make up your own mind as to which is the easiest method! Exercise 7: Here we cannot use the vector product. Suppose (x, y, z, w) is orthogonal to both vectors. Then we have a system of two homogeneous linear equations that is represented by 4

44. So w = h, z = k, y = h, x = k giving the vector (k, h, k, h). Taking h =, k = and h =, k =, we get a basis for the orthogonal complement, which is (,,, ), (,,, ). Exercise 8: dx cx bx a. = x c x b ax = a + b + c and dx x cx bx a. = 4 4 x c x b x a = a + b + c 4. Hence w(x) = a + bx + cx is orthogonal to both and x if a + b + c = and a + b + c 4 =. We solve the homogeneous system 4 6 6 6. This gives c = k, b = k, 6a = 5k. Take k = 6. Then a = 5, b = 6, c = 6 and hence w(x) = 5 + 6x + 6x. Hence the orthogonal complement is 6x + 6x 5.