Getting started with the 2 kw fully digital AC-DC power supply (D-SMPS) evaluation board

Similar documents
TN0023 Technical note

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

AN4646 Application note

AN2680 Application note

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

ABB Drives. User s Manual. Pulse Encoder Interface Module RTAC-01

TDA W CAR RADIO AUDIO AMPLIFIER

AN2389 Application note

7-41 POWER FACTOR CORRECTION

Single LNB supply and control IC DiSEqC 1.X compliant with EXTM based on the LNBH29 in a QFN16 (4x4) Description

AN2872 Application note

STLQ ma, ultra low quiescent current linear voltage regulator. Description. Features. Application

32F072BDISCOVERY. Discovery kit for STM32F072xx microcontrollers. Features. Description

TIG INVERTER INSTRUCTION MANUAL

LM337. Three-terminal adjustable negative voltage regulators. Features. Description

Designing an Induction Cooker Using the S08PT Family

EVL185W-LEDTV. 185 W power supply with PFC and standby supply for LED TV based on the L6564, L6599A and Viper27L. Features.

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

AN4571 Application note

UM1613 User manual. 16-pin smartcard interface ST8034P demonstration board. Introduction

EVAL6491HB. Demonstration board for L6491 gate driver with smartsd. Description. Features

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

STM32F4DISCOVERY. Discovery kit with STM32F407VG MCU. Features. Description

AN3353 Application note

98% Efficient Single-Stage AC/DC Converter Topologies

STPS5L60. Power Schottky rectifier. Description. Features

TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:

ABB Drives. User s Manual HTL Encoder Interface FEN-31

LM217M, LM317M. Medium current 1.2 to 37 V adjustable voltage regulator. Description. Features

Product Data Bulletin

CAUTION! THE 7I29 USES VOLTAGE AND POWER LEVELS THAT REPRESENT A HAZARD TO LIFE AND LIMB.

AND8147/D. An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE

Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT <V IN

UM TEA1721 isolated 3-phase universal mains flyback converter demo board. Document information

Evaluating AC Current Sensor Options for Power Delivery Systems

AN486: High-Side Bootstrap Design Using ISODrivers in Power Delivery Systems

DSL03. Low capacitance TVS for high speed lines such as xdsl. Description. Features. Complies with the following standards

Chapter 4. LLC Resonant Converter

AN4368 Application note

Description. Table 1. Device summary

Power Supplies. 1.0 Power Supply Basics. Module

Development of High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

TDA2004R W stereo amplifier for car radio. Features. Description

Line Reactors and AC Drives

STIEC45-xxAS, STIEC45-xxACS

LDS WLED Matrix Driver with Boost Converter FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

Power Electronic Circuits

Modular I/O System Analog and Digital Interface Modules

FEBFL7701_L30U003A. 2.4W LED Ballast Using FL7701. Featured Fairchild Product: FL7701

Whale 3. User Manual and Installation Guide. DC Servo drive. Contents. 1. Safety, policy and warranty Safety notes Policy Warranty.

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

L6234. Three phase motor driver. Features. Description

Bi-directional Power System for Laptop Computers

SAFETY PRECAUTIONS AND INSTRUCTIONS FOR USE OF TECHNICAL INFORMATION

AC-DC Converter Application Guidelines

Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube

ULN2801A, ULN2802A, ULN2803A, ULN2804A

Kit Watt Audio Amplifier

MC34063AB, MC34063AC, MC34063EB, MC34063EC

AN3998 Application note

Power Management & Supply. Design Note. Version 1.0, Nov DN-EVALMF2ICE2A CoolSET 35W DVD Power Supply with ICE2A265.

Single-Stage High Power Factor Flyback for LED Lighting

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

ESDLIN1524BJ. Transil, transient voltage surge suppressor diode for ESD protection. Features. Description SOD323

VICOR WHITE PAPER. The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications

EET272 Worksheet Week 9

DUAL%CHANNEL BROADBAND%LINEAR%AMPLIFIER Model&A800D

STCS1A. 1.5 A max constant current LED driver. Features. Applications. Description

AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs

RGB Wall Washer Using ILD4035

When the Power Fails: Designing for a Smart Meter s Last Gasp

DC/DC power modules basics

Daker DK 1, 2, 3 kva. Manuel d installation Installation manual. Part. LE05334AC-07/13-01 GF

47000 SERIES - ELECTRONIC TRANSFORMERS

PAM2804. Pin Assignments. Description. Applications. Features. Typical Applications Circuit 1A STEP-DOWN CONSTANT CURRENT, HIGH EFFICIENCY LED DRIVER

Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011

ECEN 1400, Introduction to Analog and Digital Electronics

Description SO-8. Table 1. Device summary. Order codes. SO-8 (tape and reel) TO-92 (Bag) TO-92 (Ammopack) TO-92 (tape and reel)

Brushless DC Motor Controller Product Specification Assembly 025F0129

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor

Obsolete Product(s) - Obsolete Product(s)

Sierra Dual 24 Volt Brushless DC Motor Controller Product Specification

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka

AN3332 Application note

STOD2540. PMOLED display power supply. Features. Application. Description

STCS A max constant current LED driver. Features. Applications. Description

RF Power Amplifier PA10W Owner s Manual SpinCore Technologies, Inc.

ULN2001, ULN2002 ULN2003, ULN2004

TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES

Application Note, Rev.1.0, September 2008 TLE8366. Application Information. Automotive Power

Single Phase Two-Channel Interleaved PFC Operating in CrM

DN05034/D. Enhanced PWM LED Dimming DESIGN NOTE

Application Guide. Power Factor Correction (PFC) Basics

AN2760 Application note

Kvaser Mini PCI Express User s Guide

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP

STP60NF06. N-channel 60V Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

Hybrid Power System with A Two-Input Power Converter

Introduction to Power Supplies

Transcription:

User manual Getting started with the 2 kw fully digital AC-DC power supply (D-SMPS) evaluation board Introduction This user manual describes the basic procedure to correctly operate the 2 kw digital power supply evaluation board; order code STEVAL-ISA172V2. This system consists of an interleaved PFC circuit and an isolated full bridge phase-shifted DC-DC converter, designed to deliver 2 kw at 48 V with a maximum current of 42 A. The system operates with input voltages in the range of 90 V to 264 V AC and can be supplied both at 50 Hz and 60 Hz. The board is equipped with a fully digital control algorithm based on the STM32F334C8 microcontroller from the STM32 family. The PFC power stage is based on MDmesh M2 Power MOSFETs STW48N60M2 or STW48N60M2-4 and on silicon carbide diodes. The DC-DC power stage is based on MDmesh DM2 Power MOSFETs STW35N60DM2 Additionally, the DC-DC converter is provided with an active clamp and a synchronous rectification (SR) stage managed by the microcontroller to achieve high conversion efficiency and allow adaptive control according to load levels. The STEVAL-ISA172V2 2 kw fully digital power supply board is pictured in Figure 1: "STEVAL- ISA172V2 evaluation board" Figure 1: STEVAL-ISA172V2 evaluation board July 2016 DocID029535 Rev 1 1/14 www.st.com

Contents UM2088 Contents 1 Safety and operating instructions... 5 2 Evaluation board overview... 6 3 Operating the board... 11 4 Revision history... 13 2/14 DocID029535 Rev 1

List of tables List of tables Table 1: 2 kw AC-DC fully digital power supply specifications... 9 Table 2: Document revision history... 13 DocID029535 Rev 1 3/14

List of figures List of figures UM2088 Figure 1: STEVAL-ISA172V2 evaluation board... 1 Figure 2: STEVAL-ISA172V2 system architecture... 6 Figure 3: Two-stage EMC filter... 7 Figure 4: PFC circuit section... 7 Figure 5: DC-DC converter circuit section... 8 Figure 6: Auxiliary power supply circuit... 9 Figure 7: AC cables and output load connection... 11 Figure 8: Programming connector... 12 4/14 DocID029535 Rev 1

Safety and operating instructions 1 Safety and operating instructions General During assembly and operation, the 2 kw D-SMPS power supply STEVAL-ISA172V2 poses several inherent hazards, including bare wires, moving or rotating parts for the presence of a fan, and hot surfaces. There is danger of serious personal injury and damage to property if the DC-DC converter or its components are improperly used or installed incorrectly. All operations involving transportation, installation and use, as well as maintenance are to be carried out by skilled technical personnel (national accident prevention rules must be observed). For the purposes of these basic safety instructions, "skilled technical personnel" are suitably qualified people who are familiar with the installation, use and maintenance of power electronic systems. 2 kw D-SMPS power supply intended use The technical data as well as information concerning the power supply conditions shall be taken from the documentation and strictly observed. Electrical connection The electrical installation shall be completed in accordance with the appropriate requirements (e.g., cross-sectional areas of conductors, fusing, GND connections).the board is intended only for evaluation purpose. Supply the STEVAL-ISA172V2 only with an AC source lab power supply. Evaluation board operation Do not touch the design boards immediately after disconnecting the voltage supply as several parts and power terminals may still have charged capacitors that need time to discharge. Always use the 2 kw D-SMPS STEVAL-ISA172V2 with the plexiglas provided with the board. Do not use the board without the aluminum plate installed under the PCB. DocID029535 Rev 1 5/14

Evaluation board overview UM2088 2 Evaluation board overview Figure 2: "Block diagram of the STEVAL-ISA172V2 system architecture" shows the block diagram for the 2 kw D-SMPS. A two-part architecture digitally controlled by two 32-bit STM32F3 microcontrollers has been implemented. The first consists of an interleaved PFC, while the second is a DC-DC full bridge phase shifted PWM. Figure 2: STEVAL-ISA172V2 system architecture The main blocks from left to right are: the EMC filter and the input rectifier, the 2-phase interleaved PFC and full bridge DC-DC with synchronous rectification. The double stage EMC filter is installed inside a special shielding case to mitigate electromagnetic injection on the filters. This section is shown in Figure 3: "Two-stage EMC filter". 6/14 DocID029535 Rev 1

Figure 3: Two-stage EMC filter Evaluation board overview The EMC filtering stage is connected directly to the input of the interleaved PFC circuit after the inrush circuit that consists of an NTC short circuited by relay RL1 after a certain time. The PFC circuit is highlighted in Figure 4: "PFC circuit section". It consists of two inductors, L3 and L4, four Power MOSFETs Q9, Q9A and Q10, Q10A STW48N60M2 or STW48N60M2-4 connected two by two in parallel, and two power Schottky silicon carbide diodes STPSC1006D, D8 and D9. Four 470 µf 450 V capacitors are used to stabilize the DC voltage bus shown in the midright part of the highlighted area. Figure 4: PFC circuit section T2 and T3 are the two current sensing transformers used to sense the drain current of each pair of MOSFETs. DocID029535 Rev 1 7/14

Evaluation board overview UM2088 The DC-DC full bridge PWM phase shifted stage performs voltage step-down using an HF transformer with a primary-to-secondary turn ratio chosen to maintain good efficiency and regulation across the whole operating range. The transformer is supplied with a voltage whose average value depends on the phase shift of the primary side active switches. On the secondary side, this voltage waveform is rectified and then smoothed by the output filter. While on the primary side, switching losses are reduced thanks to zero voltage switching (ZVS); on the secondary side, synchronous rectification (SR) is used to ensure low conduction losses. The DC-DC converter is highlighted in Figure 5: "DC-DC converter circuit section". This section consists of the four Power MOSFETs of the full-bridge Q1, Q2, Q3, Q4 STW35N60DM2, the high frequency transformer T4, the resonant inductor L6 and the synchronous rectifier MOSFETs Q11, Q12, Q13, Q14. The output filter capacitors are shown in the left part of the highlighted area in Figure 5: "DC-DC converter circuit section". The full-bridge DC-DC converter is driven by two PM8834, IC1 and IC2, through the pulse transformers TX1 and TX2, while the secondary side synchronous rectification is driven by a single PM8834 IC3. Note the presence of the active clamp on the lower left side, consisting of the MDmesh DM2 Power MOSFETs STP24N60DM2, M1 and M2, and others passive components. L11 and L12 are two pulse transformers to supply the gate signal of the active clamp switches together with a PM8834.The clamp PWM signals are generated by the microcontroller to cancel the peak voltage overshoot generated by energy stored in the leakage inductance of HF transformer. Two dedicated opto-isolators, U7 and U8, are used for bidirectional serial communication between the PFC and DC-DC converter. Figure 5: DC-DC converter circuit section It is possible to program the two microcontrollers through connectors J5 and J8 for PFC and DC-DC converter respectively, using IAR Embedded Workbench for ARM ver. 6.50 or 8/14 DocID029535 Rev 1

Evaluation board overview higher and a suitable debugger/programmer such as IAR J-Link or STMicroelectronics ST- Link. The auxiliary power supply section implemented with a VIPER27HD circuit is highlighted in Figure 6: "Auxiliary power supply circuit". Figure 6: Auxiliary power supply circuit Table 1: "2 kw AC-DC fully digital power supply specifications" lists the main specifications of the 2 kw Fully Digital AC-DC power supply: Table 1: 2 kw AC-DC fully digital power supply specifications Parameter Input AC voltage Input AC frequency Output voltage Max output current PFC output voltage Output power PFC switching frequency DC-DC switching frequency HF transformer isolation Cooling Input short-circuit protection Input under/overvoltage Input under/over-frequency Bus DC under/overvoltage Output under/overvoltage Output short-circuit protection Over-temperature protection Value 90 V AC up to 264 V AC 45 Hz up to 65 Hz 48 V DC 42 A 400 V DC 2000 W 60 khz 100 khz 4 kv Forced air with speed modulation 25 A fuse Managed by primary STM32F334C8 Managed by primary STM32F334C8 Managed by primary STM32F334C8 Managed by secondary STM32F334C8 Managed by secondary STM32F334C8 Managed by both STM32F334C8s DocID029535 Rev 1 9/14

Evaluation board overview UM2088 The 2 kw AC-DC converter accepts universal input voltage and produces a 48 V regulated output. The continuous power rating of the unit is 2 kw. Forced air cooling is used with air flow speed proportional to the output power. The ambient operating temperature range is from 0 C to 50 C. The intermediate high-voltage DC bus is regulated at 400 V by the PFC, which draws sinusoidal input current from the AC input, maintaining a high power factor and low current total harmonic distortion (THD%). The DC-DC circuit converts this high DC voltage to low DC voltage proving isolation (4 kv) by means of an HF transformer and high efficiency thanks to ZVS. Input and output current and voltage protection are also provided together with over-temperature protection. 10/14 DocID029535 Rev 1

Operating the board 3 Operating the board The AC-DC converter must be only used in a power laboratory. The high voltage used in any power systems presents a serious shock hazard. The board can be easily tested up to 2 kw and across the operating input voltage and frequency range. A list of equipment that can be used to perform functional and efficiency testing is provided below: 2.4 kva programmable AC source 60 V / 45 A DC electronic load Power analyzer Digital oscilloscope The programmable AC source must be connected to J1 as shown in Figure 7: "AC cables and output load connection". Figure 7: AC cables and output load connection The 48 V load must be connected to J3 connector (Figure 7: "AC cables and output load connection"), using a cable of adequate current capability. Considering section and length of the cable between load and the power supply, a cable capable of carrying the desired load current (42 A max) must be used; a 10 mm² wire is strongly recommended. Cooling fans are also provided with the board and it should be always activated, do not disconnect the Fan1 and Fan2 from the connectors as this may provoke system damage from overheating. If the user wishes to perform some efficiency measurements excluding fan consumption from the output converter, an external 48 V supply voltage must be applied to the fans in order to keep air flow on the system. To supply the fans, open J12 strap and insert an external 48 V & 0.5 A supply voltage on the J4 connector. DocID029535 Rev 1 11/14

Operating the board UM2088 Once the input power supply (90 V to 264 V AC, 45 Hz to 65 Hz) and output load (48 V, 0 A to 42 A) are connected, the power supply is ready to start. As soon as the input voltage is above 80 V, the auxiliary power supply begins supplying the microcontrollers, drivers and signal conditioning circuitry. In this operating condition the PFC and DC-DC converter are in idle mode. If the input voltage is within the proper range ([90 V, 264 V] and [40 Hz, 65 Hz]) PFC starts ramp-up procedure and charges DC bus at 400 V; LED D47 blinks until this start-up procedure completes, after which it remains on. Once the DC bus is charged, a serial message is sent from the PFC microcontroller U9 to the DC-DC converter microcontroller U11, which enables the modulation of the DC-DC switching and SR devices. The output voltage will ramp up from 0 V to 48 V with LED D55 blinking, after which the system reaches a steady state. Reprogramming the board If it is necessary to reprogram the board, the user has to make a proper programming cable to adapt a JTAG connector to the 4-pin programming connector placed in the board. A female wire-to-board connector with a pitch of 2.5 mm (like the MOLEX 22-01-1042) must be used following the pinout shown in Figure 8: "Programming connector". To program primary or secondary microcontroller, this programming cable must to be connected to J6 or J10 respectively. This operation should be done when the input voltage is disconnected or equal to zero. Once the programming cable is connected between board's connector and the chosen programmer (like ST-Link or J-Link), the board can be supplied with 80V AC to assure that the auxiliary power supply is operating, but the PFC doesn't start to regulate the bus voltage. After programming the board, the user should remove the input voltage and wait for the discharge of bus capacitors (green LEDs D46 and D54 must be off), before disconnecting the programming cable. Figure 8: Programming connector 12/14 DocID029535 Rev 1

Revision history 4 Revision history Table 2: Document revision history Date Revision Changes 07-Jul-2016 1 Initial release. DocID029535 Rev 1 13/14

IMPORTANT NOTICE PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. 2016 STMicroelectronics All rights reserved 14/14 DocID029535 Rev 1