ABSTRACT 1. INTRODUCTION. Larger Amplitude Deformation Discrete Actuator SPA DM. Increased. Density. Actuator. Surface Parallel Array DM

Similar documents
THE STRAIN GAGE PRESSURE TRANSDUCER

MEMS mirror for low cost laser scanners. Ulrich Hofmann

Polymer Termination. Mechanical Cracking 2. The reason for polymer termination. What is Polymer Termination? 3

PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

SECTION 13. Multipliers. Outline of Multiplier Design Process:

High Voltage Power Supplies for Analytical Instrumentation

Acousto-optic modulator

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Opto-Mechanical I/F for ANSYS

Practical Application of Industrial Fiber Optic Sensing Systems

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior

LUXEON LEDs. Circuit Design and Layout Practices to Minimize Electrical Stress. Introduction. Scope LED PORTFOLIO

Safakcan Tuncdemir 1, William M. Bradley *2. 1. Introduction

Adaptive Optics Phoropters

The accelerometer designed and realized so far is intended for an. aerospace application. Detailed testing and analysis needs to be

Silicon-On-Glass MEMS. Design. Handbook

Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor

Anatech Electronics, Inc.

P O W E R C A P A C I T O R A S S E M B L I E S

Welcome to this presentation on LED System Design, part of OSRAM Opto Semiconductors LED 101 series.

Material Deformations. Academic Resource Center

A new technology for high current, low insertion force, low resistance and long cycle life power connectors

The Don ts of Better Flexible Circuit Design and Manufacture By Mark Finstad Friday, 01 June 2007

MXD7202G/H/M/N. Low Cost, Low Noise ±2 g Dual Axis Accelerometer with Digital Outputs

Weight Measurement Technology

Thermoelectric Generator (TEG) for Heavy Diesel Trucks John C. Bass, Aleksandr S. Kushch, Norbert B. Elsner Hi-Z Technology, Inc.

Free piston Stirling engine for rural development

Axial and Radial Leaded Multilayer Ceramic Capacitors for Automotive Applications Class 1 and Class 2, 50 V DC, 100 V DC and 200 V DC

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

ENS 07 Paris, France, 3-4 December 2007

2.5-inch Hard Disk Drive with High Recording Density and High Shock Resistance

New High Current MOSFET Module Offers 177 µω R DS(on)

Embedding components within PCB substrates

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

Optical modeling of finite element surface displacements using commercial software

High-ohmic/high-voltage resistors

The Do s and Don ts of Pressure Transducers

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

Silicone Rubber Thermal Interface Materials: Applications and Performance Considerations

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M

Surface Profilometry as a tool to Measure Thin Film Stress, A Practical Approach. Gianni Franceschinis, RIT MicroE Graduate Student

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

The Optical Submarine Repeater and Its Associated Technologies

Flex Circuit Design and Manufacture.

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

HOT BAR REFLOW SOLDERING FUNDAMENTALS. A high quality Selective Soldering Technology

Adjustable Stiffening Device for Alpine Snow Ski

Development of MEMS micromirrors for intracavity laser control

A Comparison of Trapped Acoustic Technology and Standard Piezo Switching Elements By: Donald Sweeney

Supertex inc. HV Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

FREQUENCY RESPONSE ANALYZERS

Wafer Placement Repeatibility and Robot Speed Improvements for Bonded Wafer Pairs Used in 3D Integration

12S, 14S, 15S Series. Time Delay Relays and Sequencers. Time Delay Relays and Sequencers. Features and Benefits. Switch Actions and Configurations

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

Overview of Energy Harvesting Systems (for low-power electronics)

Optimization of Support Point Locations and Force Levels of the Primary Mirror Support System

Lapping and Polishing Basics

Bourns Resistive Products

Application Note 142 August New Linear Regulators Solve Old Problems AN142-1

I-PEX MHF4 Micro Coaxial Connector

Finite Element Formulation for Plates - Handout 3 -

SpectraTec II. Polarized Multi-Laser Source BLUE SKY RESEARCH WAVELENGTHS. The SpectraTec II

Excerpt Direct Bonded Copper

Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox

Measuring Impedance and Frequency Response of Guitar Pickups

Structural Integrity Analysis

Experiment 5. Strain Gage Measurements

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator

Basic Principle. These trapped energy regions are set into motion with transducers and act as high quality resonators.

SOLIDWORKS SOFTWARE OPTIMIZATION

Thermal Resistance, Power Dissipation and Current Rating for Ceramic and Porcelain Multilayer Capacitors

INTERNATIONAL ATOMIC ENERGY AGENCY INSTRUMENTATION UNIT SMD (SURFACE MOUNTED DEVICES) REPAIR S. WIERZBINSKI FEBRUARY 1999

15 th International Conference on Experimental Mechanics

Development of High-Speed High-Precision Cooling Plate

30 GHz 5-Bit Phase Shifter TGP2100

Types MC and MCN Multilayer RF Capacitors

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

The Effect of Forced Air Cooling on Heat Sink Thermal Ratings

Ultra Low Profile Silicon Capacitors (down to 80 µm) applied to Decoupling Applications. Results on ESR/ESL.

The quadrature signals and the index pulse are accessed through five inch square pins located on 0.1 inch centers.

The Wide Field Cassegrain: Exploring Solution Space

Power Supplies. 1.0 Power Supply Basics. Module

1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.

Micro Power Generators. Sung Park Kelvin Yuk ECS 203

Avoidance of Ceramic-Substrate-Based LED Chip Cracking Induced by PCB Bending or Flexing

Solid shape molding is not desired in injection molding due to following reasons.

Quasi-Continuous Wave (CW) UV Laser Xcyte Series

High-ohmic/high-voltage resistors

Basic Properties and Application Examples of PGS Graphite Sheet

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

How to measure absolute pressure using piezoresistive sensing elements

Considerations When Specifying a DC Power Supply

Interference. Physics 102 Workshop #3. General Instructions

Small Optical Encoder Modules 480lpi Digital Output. Features. Applications VCC 3 CHANNEL A 2 CHANNEL B 4 GND 1

Laser beam sintering of coatings and structures

Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits

Alternative Linear Motion Systems. Iron Core Linear Motors

Transcription:

Actuator Arrays Discrete Actuator Deformable Mirror Technologies at AOA Xinetics Allan Wirth, Jeffrey Cavaco, Theresa Bruno, Kevin Ezzo AOA Xinetics Inc., 115 Jackson Road, Devens, MA USA 01434 ABSTRACT AOA Xinetics (AOX) has been at the forefront of Deformable Mirror (DM) technology development for over two decades. In this paper the current state of that technology is reviewed and the particular strengths and weaknesses of the various DM architectures are presented. Emphasis is placed on the requirements for DMs applied to the correction of high-energy and high average power lasers. Mirror designs optimized for the correction of typical thermal lensing effects in diode pumped solid-state lasers will be detailed and their capabilities summarized. Passive thermal management techniques that allow long laser run times to be supported will also be discussed. Keywords: deformable mirrors, adaptive optics, high energy lasers, actuators 1. INTRODUCTION The concept of traditional DMs is quite simple. A two dimensional array of actuators is bonded to a thin facesheet which forms the optical reflector. Acting against a stiff reaction plate the force of the actuators deflects the facesheet and produces a local deformation of the surface. Since the actuator s force is perpendicular to the mirror surface these DMs are termed Surface Normal. Over the last several years AOX has explored a range of alternative architectures for DMs. The results of this research are presented graphically in Figure 1. In the upper left of the figure is the conventional surface normal configuration with discrete actuators. Driven by the desired increase the actuator spatial density, AOX has developed the Photonex Mirror Module which incorporates a technique for forming monolithic blocks of actuator material where the individual actuators are defined by saw cuts in the block. These are shown in the lower left of Figure 1 in a surface normal arrangement similar to the Conventional DM. Surface Normal Mirrors Conventional DM Surface Parallel Mirrors Larger Amplitude Deformation Discrete Actuator SPA DM Integrated Wavefront Corrector Combines DM with tip/tilt Increased Actuator Density Photonex Mirror Module Increased Actuator Density Surface Parallel Array DM Larger Amplitude Deformation Figure 1. Matrix of Deformable Mirror Architectures Approved for public release, distribution unlimited. Northrop Grumman Case 13-0583 dated 4/2/13

A very different mechanical behavior is obtained if the actuators are placed parallel to the optical surface. A realization of the Surface Parallel Mirror architecture is shown in the upper right of Figure 1. In this case the actuator imparts a bending moment to the structure which leads to a global deformation of the surface. No reaction plate is required since the actuator applied its force to two separated points in a plane parallel to the surface. In this case discrete actuators are bonded into the stiffening ribs of a lightweight mirror structure. Analogous to the Photonex Mirror Module approach, the Surface Parallel Array (SPA) architecture also has a monolithic version in which the actuators are formed in a micro-machined web that is bonded to the thin mirror facesheet. This is shown in the lower right section of Figure 1. A strong desire exists to not only decrease the actuator spacing but also compact the optical systems and simplify their operation. Adaptive optics requires that the image plane always be relayed to the active optic to insure that the correction is done purely in phase space. The relay optics needed to insure this cause the systems to increase in size and complexity. AOX has merged the functionality of a steering mirror and DM into a single device to reduce the need for as many relay points. To that end, the Integrated Wavefront Corrector (IWC, shown on the right of Figure 1) incorporates a tilt stage into a deformable mirror thereby combining two functions into a single device. Any of the DM architectures described may be used in the IWC. In the following sections the characteristics of each of these DM architectures will be discussed. 2. DISCRETE ACTUATOR SURFACE NORMAL DEFORMABLE MIRROR AOX has preserved critical defense-related active materials technologies by developing commercial precision motion control products. Its first product was a commercial line of deformable mirrors for astronomy, which feature lead magnesium niobate (PMN) electroceramic actuators. Actuator reliability is a key to scaling the mirror technology to the large scale. Our PMN actuated deformable mirror product is driven routinely in the field to 1x10 11 cycles at stresses and strains comparable to what would be encountered in high speed astronomical adaptive-optics applications. Figure 2. Typical AOX Deformable Mirror Assembly AOX standard deformable mirror designs utilize a modular assembly approach. This saves time, money, and insures a more reliable product. Figure 2 shows an exploded view of a typical mirror. Its distinguishing feature is the single optical assembly consisting of base, actuators, and facesheet potted inside a metal bezel. The RTV potting prevents thermal distortions of the optical components by absorbing any differential expansion between the metal bezel and optical assembly. In a higher density design, actuator spacing of 5 mm prevents the use of discrete actuator cards. In this case, machining of the base with individual holes allows the actuator wires to be inserted through the base to the back of the mirror. Here, a single board accepts the actuator wires and relays the signals to individual connectors. These connectors provide the interface to the driver electronics.

Hysteresis % 2.1 Actuators The heart of the deformable mirror would be the PNM actuators. All AOX deformable mirrors use our unique PMN multilayer cofired actuator technology. The PMN multilayer actuator fabricated by AOX features low hysteresis, high tensile strength, and nanometer precision-the key to reliable and precise deformable mirror operation. Figure 3 depicts our commercial cofired multilayer actuator stacks that feature operation below 100 volts, tensile strengths in excess of 3500 psi, and strain levels of 1000 ppm. Figure 3. AOX Deformable Mirror Actuator Assembly The electroceramic materials feature low hysteresis, low thermal expansion, and high elastic modulus. In terms of energy per active material volume, AOX s PMN electrostrictive formulation is two times greater than cofired piezoelectric lead zirconate titanate (PZT). PZT actuators are unable to meet a variety of requirements for operating in a precision optical system. The silver used in the production of PZT actuators migrates within the actuator eventually shorting the actuator within a few hundred thousand cycles. In addition, the well documented short and long term creep of PZT means that precision and stable figure control is not possible eventually resulting in loss of dynamic range. Production of actuators that can withstand the stress of high cycle operation and can withstand environmental effects such as humidity, shock, and temperature is a key to insuring system performance. Quality control of AOX PMN actuators insures consistent operation. AOX routinely fabricates actuators with overall actuator stroke uniformity at 100 V of <2.5% with linearity of >99%. The material hysteresis of <1% at room temperature will increase as the mirror approaches -5 C. The hysteresis within this temperature range will be 2.5-20% (see Figure 4). 20 PMN:RE Hysteresis 18 15 13 10 8 5 3 0-19 -10 0 10 20 30 40 50 Temperature ( C) Figure 4. Hysteresis vs. Temperature for PMN Capacitance of a typical actuator for this application would be 1.8-2 µf. Coupling this with the performance of the AOX driver system would result in a small signal bandwidth of 15 khz and large signal response of 2 khz. This is much higher than needed for the requirements of this system. Figure 5 and Figure 6 show the measured characteristics of the AOX actuators. Over the driver operating range the response is linear with a correlation coefficient greater than 0.99. PMN actuators have a gain change with respect to temperature of 2.7%/deg K. They are specified for operation at 22 deg C.

Stroke ( m) Figure 5. Typical Response Function vs. Operational Voltage Gemini PMN Actuator Response vs Temperature 9 8 Act #1 Act #2 Act #3 7 6 5 Figure 6. Measured Displacement vs. Temperature for typical deformable mirror actuator 2.2 Performance of a 5mm Spaced Deformable Mirror 4-20 -10 0 10 20 30 Temp (deg C) AOX designs its deformable mirrors to have specific characteristics so that the response is identical no matter the actuator spacing. It s important to maintain stress and stiffness to produce the same influence function no matter how large or small the mirror. The actuators used in 5 mm mirrors (Figure 7) have the same stroke characteristics as the 7 mm spaced mirrors. By carefully designing the facesheet, response can be made identical with regard to influence function, residual error, and polishing. Figure 7. 941-channel deformable mirror with 5 mm spacing

Measurements made of a typical 5mm spaced mirror show characteristics identical to those of the older 7 mm spaced design. The mirror s design calls for a 10% influence function with average actuator stroke of 4 microns. Figure 8 shows the mirror surface after applying a set of commands to flatten the mirror. Over the full aperture it shows a residual error of 13 nm rms which is typical of a AOX deformable mirror. Influence function measurements show the same similarities. Figure 9 shows the 2D influence function measurement made when pushing a single actuator. Figure 10 shows a 1D cut through the center. A 10% value of the central displacement appears at the next nearest neighbor as predicted by the design. The characteristics undershoot beyond that is a distinguishing feature of a deformable mirror and duplicates exactly the shape seen on the lower density mirrors. Figure 8. Measured response of 349ch deformable mirror after flattening commands. The residual figure error of 16 nm rms is typical for these types of mirrors. Figure 9. Influence function measurement of 349ch 5mm spaced mirror. The measurement displays the same features as that of larger spacing deformable mirrors.

Figure 10. Detailed view of the influence function measurement. This shows all the classic features of a standard influence function. The value at the nearest neighbor is 10% of the peak displacement and shows the undershoot between the 1st and 2nd neighbor due to the facesheet stiffness. 3. PHOTONEX DEFORMABLE MIRROR The problem a mirror designer faces when trying to increase the actuator packing density is where to put the wires. AOX has found that there is roughly a 5 mm spacing limitation beyond which discrete actuators no longer provide an adequate solution. As had been seen earlier in this paper, the PMN actuators are built similarly to ceramic capacitors. Electrode material is interleaved between PMN ceramic to form a parallel plate capacitor. AOX took this configuration and turned it 90 degrees making the electronics run perpendicular to the facesheet rather than parallel. In this way ceramic modules can have all the wiring emerge at the back of a module allowing tighter spacing. Figure 11. Comparison of modular mirror approach and conventional discrete actuator approach. The modular approach on the left has the electrodes running perpendicular to the facesheet. The electrical interconnect then appear at the back freeing up substantial space within the mirror structure.

Figure 12. Example of a 349-channel Photonex deformable mirror. The aperture of only 53 mm is substantially smaller than a conventional deformable mirror which has a 160 mm aperture As with the discrete actuator mirrors, the mirrors are designed to have as identical performance characteristics as possible for all mirror sizes. In this way users know what to expect from AOX mirrors and can easily predict their system s performance. Figure 13 and Figure 14, we see measurements made on a 349-ch modular mirror that has 2.5mm actuator spacing. This mirror uses a sealed facesheet and produces polished figure comparable to AOX discrete actuator mirrors. The influence function measurements show the 10% values routinely designed into AOX mirrors. Figure 13. Surface Measurements of 349-ch 2.5mm Modular Mirror in the unpowered state.

Figure 14. Influence function measurement of a 349-ch modular mirror. The Photonex mirrors are designed to produce response characteristics as close as possible to the original conventional mirrors. 4. INTEGRATED WAVEFRONT CORRECTOR Adaptive optics systems increasing complexity have shown the need to simplify the setups and begin merging functionality into individual components. AOX development of the Integrated Wavefront Corrector (IWC) intends to combine the capabilities of a fast-steering mirror and deformable mirror into one package. This is advantageous for the following reasons. Generally, adaptive optics requires relaying the pupil plane of the system to all the components that will be modifying the phase of the collected wavefront. This insures that the correction occurs to a wavefront that is purely phase and not a combination of phase and intensity. To relay the phase front requires reimaging optics for each of the active components in the system. If the designer can combine functions into a single optic, significant space savings result. Additionally, fewer optics means better throughput and less distortion. Figure 15. AOX design of a 177-channel deformable mirror with an integrated wavefront corrector. The IWC is capable of 0.5 mrad of tilt at 100 Hz. Figure 15 shows a picture of an example of a deformable mirror and an integrated wavefront corrector. The basic mirror uses an AOX 177-channel mirror modified to mount within the tilt stage. The mirror has a 98 mm aperture requiring tilt actuators with a large amount of displacement (> 60 microns). The deformable mirror has characteristics shown in

Table 1. These are typical deformable mirror characteristics; again AOX always desires to insure mirrors meet the same performance characteristics unless otherwise specified. Number of Actuators 177 Mechanical Stroke 4 µm Actuator Capacitance @ 1kHz 2 F Operating Voltage 100 V (70V ± 30V) Maximum Interactuator Stroke 2 µm Influence Function 10% at nearest neighbor Hysteresis < 1% Actuator Frequency Response > 4 khz Mirror Surface Figure λ/10 rms Clear Aperture 98.2 mm Coating Customer Supplied Table 1 - Performance characteristics of the 177 channel deformable mirror Tilt stages are found in Table 2. Take note of the relatively high frequency response of the tilt system. Despite the large size of the deformable mirror and the associated mass, the high force capability of the AOX actuators provides the ability to drive to higher frequencies. Actuators 6 actuators per stack Mechanical Stroke > 60µm Actuator Capacitance < 250 microfarads Operating Voltage 80v (50v±30v) Actuator Frequency Response 840 Hz System Tilt Across Aperture 0.5 mrads Table 2 - Tilt Stage Characteristics 5. SURFACE PARALLEL ARRAY DM The Surface Parallel Array (SPA) DM is fabricated by bonding a micro-machined electrostrictive ceramic actuator array to a thin, optically polished facesheet. Electrical connections are made via a flexcircuit. This structure is shown in Figure 16. The bonding of the actuator array is performed after the facesheet is coated allowing the application of stress balanced coating designs.

Aperture Mask Facesheet PMN SPA Array Flex Circuit Support Structure Bezel Connector Plate Figure 16. Exploded view of SPA DM 6. DISCRETE ACTUATOR SURFACE PARALLEL ACTUATED DM Conventional deformable mirrors use actuators normal to the optical surface. The overall stroke of the deformable mirror is limited by the maximum stroke of a single actuator. For high energy applications, large stroke is needed to mitigate the laser induced thermal errors while high spatial and temporal correction is still required for the atmospheric errors. While the actuator length can be increased to produce larger stroke, the capacitance increases thereby reducing the bandwidth and compromising the higher order response. By utilizing the SPA configuration as seen in Figure 17 large stroke and high spatial correction are enabled while keeping high bandwidth. Actuators are embedded directly into the silicon carbide isogrid structure which serves as both the mirror face and the reaction structure. Activating a single actuator in this configuration induces a local bending moment while activating an array enables additive stroke and large global deformation across the optical surface. Small, low capacitance actuators produce large deflections while keeping peak current requirements low thereby enabling high bandwidth operation. Fine control actuators located within the isogrid compensate for thermal print-through and higher order errors induced by laser irradiance mapping. Figure 17. SPA DM Produced 40 um of Deformation An analysis of the overall stroke produced by a SPA DM with actuators capable of producing 4 microns of displacement can be seen in Figure 17. This shows that the SPA DM can correct low spatial frequency aberrations of amplitudes up to 40 microns. To correct for the higher spatial frequency aberrations, fine control actuators will be placed within a cathedral rib structure that is closer to the optical surface. The locations of the global control and fine control actuators

can be seen in Figure 18. By placing the actuator inside the stiffening rib structure, a localized influence function is produced. The shape of the fine control actuator influence function (Figure 19) is very similar to that of a classical deformable mirror that has been typically used for the correction of atmospheric distortions and can correct for local deformations in optical elements due to hot spots in the laser, or thermal quilting of the lightweight optics. Figure 18. Fine and Global Control actuators integrated into SiC isogrids Figure 19. Fine Control Influence function The silicon carbide mirror substrate is manufactured with the CERAFORM casting process which has recently achieved a TRL level of 8/9. Ultra-lightweight structures can be rapidly fabricated with stiffening ribs as thin as 0.030 inches and rib heights as tall as 4 inches. With the high elastic modulus, the low mass density, and the ability to fabricate structures utilizing high thickness to height aspect ratios, surface parallel deformable mirrors can be designed to produce 40 microns of deformation with a first resonant frequency well above 2500 Hz. The first resonant frequency of this structure is a plate bending mode which can be seen in Figure 20. Since the actuators add to the plate stiffness of the system, an impedance matched design between the actuators and silicon carbide structure will produce an optimally stiff system. Silicon carbide has very high thermal conductivity and low thermal expansion that matches that of the PMN actuators. The high thermal conductivity of silicon carbide will minimize temperature gradients through the thickness of the mirror which will minimize the thermal distortion and has the capability to rapidly dissipate localized hot spots which will minimize the probability of thermally induced coating failures. The silicon carbide rib structure is a perfect shape and size to maximize convection heat loss through a semi infinite fin. The SPA greater surface area enables an order of magnitude better heat rejection than conventional DMs.

Figure 20. Impedance matched design maximizes system resonant frequency 7. SUMMARY AOX has developed new mirror technologies that strive to produce more responsive optical systems. The discrete actuator mirrors have pushed actuator spacing down to 5 mm while maintaining the performance characteristics of the older and larger mirrors. With the need of more compact systems, Photonex modules give the designer the option of using much smaller deformable mirrors with actuator spacing as small as 1 mm. This means that either the system can be made much smaller or that more channels can be placed within the same space. The nature of the spacing also means the optical designer can tailor the mirror size to the beam size, eliminating the need for expensive beam expanders and compactors the rob performance and introduce distortion. The Integrated Wavefront Corrector provides further tools to make more compact optical systems by integrating tilt and high order correction into one package. Compact systems do not necessarily mean that design gives up displacement. The SPA DM shows a way to generate larger displacements in a smaller package while keep stress lower and providing a high speed correction.