Grade 7/8 Math Circles. Sequences

Similar documents
Grade 7/8 Math Circles Sequences and Series

4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

10.2 Series and Convergence

GEOMETRIC SEQUENCES AND SERIES

Arithmetic Progression

Sequence of Numbers. Mun Chou, Fong QED Education Scientific Malaysia

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Finding Rates and the Geometric Mean

1.2. Successive Differences

Cubes and Cube Roots

Lesson Plan. N.RN.3: Use properties of rational and irrational numbers.

Section 1.3 P 1 = 1 2. = P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., =

SEQUENCES ARITHMETIC SEQUENCES. Examples

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

Common Core Standards for Fantasy Sports Worksheets. Page 1

Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.

5544 = = = Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

SECTION 10-2 Mathematical Induction

Chapter 13: Fibonacci Numbers and the Golden Ratio

9.2 Summation Notation

5.1 Radical Notation and Rational Exponents

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Chapter 11 Number Theory

Session 6 Number Theory

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.

Core Maths C1. Revision Notes

Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

MEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.

Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions:

Session 7 Fractions and Decimals

Mathematics Review for MS Finance Students

Some practice problems for midterm 2

Grade 6 Math Circles. Binary and Beyond

Possible Stage Two Mathematics Test Topics

Section 1.5 Exponents, Square Roots, and the Order of Operations


Factorizations: Searching for Factor Strings

Introduction. Appendix D Mathematical Induction D1

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

1.6 The Order of Operations

Math Workshop October 2010 Fractions and Repeating Decimals

Just the Factors, Ma am

mod 10 = mod 10 = 49 mod 10 = 9.

Major Work of the Grade

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.

#1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.)

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

Grade 7/8 Math Circles November 3/4, M.C. Escher and Tessellations

k, then n = p2α 1 1 pα k

Geometric Series and Annuities

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Binary Number System. 16. Binary Numbers. Base 10 digits: Base 2 digits: 0 1

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

The Fibonacci Sequence and the Golden Ratio

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

IB Maths SL Sequence and Series Practice Problems Mr. W Name

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Prime Factorization 0.1. Overcoming Math Anxiety

Section 7.2 Area. The Area of Rectangles and Triangles

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus

Grade 7/8 Math Circles Fall 2012 Factors and Primes

1. The Fly In The Ointment

Math 115 Spring 2011 Written Homework 5 Solutions

Assignment 5 - Due Friday March 6

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: b + 90c = c + 10b

Category 3 Number Theory Meet #1, October, 2000

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

MATH10040 Chapter 2: Prime and relatively prime numbers

Primes. Name Period Number Theory

Math 181 Handout 16. Rich Schwartz. March 9, 2010

MATH 289 PROBLEM SET 4: NUMBER THEORY

Problem of the Month: Double Down

SECTION 10-5 Multiplication Principle, Permutations, and Combinations

Factoring Numbers. Factoring numbers means that we break numbers down into the other whole numbers that multiply

Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres

Greatest Common Factor and Least Common Multiple

Week 13 Trigonometric Form of Complex Numbers

Pearson Algebra 1 Common Core 2015

TRIGONOMETRY Compound & Double angle formulae

SAT Math Facts & Formulas Review Quiz

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 1 Real Numbers

Quick Reference ebook

Prime and Composite Numbers

Exponential Notation and the Order of Operations

2.1. Inductive Reasoning EXAMPLE A

Section 1.4. Difference Equations

Mathematics 31 Pre-calculus and Limits

3.2 Matrix Multiplication

Guide to Leaving Certificate Mathematics Ordinary Level

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

0.8 Rational Expressions and Equations

Math 55: Discrete Mathematics

=

Lies My Calculator and Computer Told Me

Common Core State Standards for Mathematics Accelerated 7th Grade

Transcription:

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles October 18 th /19 th Sequences A Sequence of Mathematical Terms What is a sequence? A sequence is list of objects (usually numbers) where each object has a specific position on the list. Objects in the list are called terms Each term is numbered so we know where to find it {Bulbasaur, Ivysaur, Venasaur, Charmander, Charmeleon...} Example. The Pokedex (list of all pokemon) is a sequence since each pokemon entry is numbered starting from Bulbasaur at number 1 to Volcanion at number 721. Since every entry is numbered, we know exactly where to find each pokemon. We say that the sequence is ordered. We often use capital letters to indicate we are referring to a sequence. We could refer to the Pokedex, as P n where P stands for pokedex and n is the n th in the pokedex. Since Pikachu is the 25th entry in the pokedex, we write P 25 to show we are talking about the 25th entry in the pokedex. 1

Numbers in a Sequence In mathematics, we deal with numbers as our objects. Numbers in a sequence are surrounded by curly brackets. Example. {9, 0, 8, 3, 4} We use the letter t (for term) with a subscript (the small number) to refer to a specific number in the sequence. t 1 = 9 t 2 = 0 t 3 = 8 t 4 = 3 t 5 = 4 i.e. 8 is the third term, so we write t to indicate we are referring to a number within the sequence and 3 as the subscript to indicate we are referring to the third number in the sequence. Exercise. a. {1, 3, 5, 7} Identify t 2 and t 3 b. {5, 10, 15, 20, 25, 30} Identify t 1 and t 6 c. {4, 8, 16, 32, 64, 72} Identify t 4 and t 5 d. {1, 8, 27} Identify t 3 Finite and Infinite Sequences Sequences can have a finite (a certain number) or infinite numbers of terms. For example, the two sequences below are similar. The 1st sequence, starting at 2, jumps by 2 each term until we reach the last term of 24, whereas the other also starts at 2 and jumps by 2 each term but goes on forever. We use... at the end of the curly bracket to let others know the sequence is infinite. {2, 4, 6, 8, 10, 12, 14,..24} finite sequence {2, 4, 6, 8,...} infinite sequence 2

Arithmetic Sequences A sequence usually has a rule to find the value of each term. Example. Observe the sequence below, can you find a pattern? {7, 10, 13, 16,...} In words, we can see that we start at 7 and then add 3 to get the next term in the sequence. This type of series is known as a arithmetic series, which each term differs by the same number Definition 1 (Arithmetic Series). In an arithmetic sequence the difference between one term and the one right after is constant How can we tell if a sequence is arithmetic? Take the difference of any two consecutive terms. If all the consecutive terms differ by the same number, the sequence is arithmetic. The n th term in the sequence Suppose we are interested in finding a certain term in the sequence, just like how we might look up the 151 th pokemon in the pokedex. Example. What is the 5 th and 70 th term for the sequence below? {4, 10, 16, 22,...} We can see that any two consecutive terms differ by 6. We can add 6 to 22 to get the 5 th term of 28. However, this idea of repeatedly adding the constant difference may grow tiresome and tedious. We can instead derive a formula that tells us number of the n th term. The key is to notice that in order to find the 70 th term, we need to add 6 69 times not seventy! {4, 4 + 6, 4 + } 6 {{ + 6 }, 4 + } 6 + {{ 6 + 6 },...} 2 6 3 6 {4, 4 + 6, 4 + 2 6, 4 + 3 6} 3

In other words, t 70 = 4 + 6 (70 1) = 4 + 6 69 = 4 + 414 = 418 We can find the n th term of the sequence {4, 10, 16, 22,...} with the formula below, t n = 4 + 6(n 1) since we are adding 6 (n-1) times to get to the nth term. In general, we can express an arithmetic sequence like this: {t 1, t 1 + d, t 1 + 2d, t 1 + 3d,...} We then have a formula for finding the n th term in the sequence t n = t 1 + (n 1)d Where t n is the n th term in the sequence, t 1 is the first term and d is the constant difference Example. Determine a formula for the sequence {5, 16, 27, 38,...} and use it to find the 10 th term. 4

Observe that we have a common difference of 11 and a first term of 5. Hence our formula is: t n = 5 + (n 1)11 Using our formula, we can find the 10 th term t 10 = 5 + 11 (10 1) = 5 + 11 9 = 5 + 99 = 104 Exercise: Determine an explicit formula for following sequences a. {10, 17, 24, 31,...} and find the 11th term in the sequence b. {7, 4, 1, 2,...} and find the 7th term in the sequence Number of Terms in a Sequence We can often find the number of terms between two specified numbers in a sequence. Example. How many terms are there in the sequence {5, 10, 15, 20, 25,...125}, how many terms are there? 5

After noticing the constant difference of 5 and a starting term of 5, we arrive at the formula below: t n = 5 + 5(n 1) Observe that the last term in the sequence denoted by n is also the number of terms in the sequence If we sub in t n = 125, we can solve for n i.e the number of terms in the sequence 125 = 5 + 5(n 1) 125 = 5 + 5n 5 125 = 5n 25 = n Hence we have that there are 25 terms in the sequence Exercise. How many terms are there in the sequence {9, 15, 21, 27, 33,...81}? Geometric Sequences There is another type of sequence call geometric sequences. Rather than adding the constant difference to get to the next term, we need multiply the previous number by a constant to get to the next term. Definition 2 (Geometric Series). A geometric sequence is where the next term is found by multiplying the previous term by a constant (called the common ratio) 6

Example. Can you figure out the rule? {3, 6, 12, 24,...} We are doubling the previous term to get to the next term in the sequence. In this case, we say the sequence has a common ratio. For the specific sequence in the above example, it is 2. Moreover, we can derive an explicit formula in a manner similar to how we derived a formula for the arithmetic sequences. {3, 3 2, 3 2 }{{ 2 }, 3 } 2 {{ 2 2 },...} 2 2 2 3 t n = 3 2 n 1 In geometric series, to get from the first term to the nth term, we need to repeatedly multiply by the constant ratio (n-1) times. To shorten the amount of writing, we can use exponents. In general, the formula for a geometric sequence is t n = t 1 r n 1 Where t 1 is the first term, r is the common ratio, and t n is the the nth term Example. Determine the formula for the sequence {5, 20, 80, 320,...} and find the 6 th term in the sequence. First Term: t 1 = 5 Common Ratio: 4 7

Formula: t n = 5 t n 1 Using the geometric formula and letting n = 6: t 6 = 5 4 6 1 = 5 4 5 = 5 1024 = 5120 Exercise: Determine the formula for the following geometric sequences and find the specified n th term. a. {6, 18, 54, 162,...} 5 th term b. {256, 128, 64, 32,...} 8 th term c. {1, 1, 1, 1, 1,...} 7 th term Recursive Definition Sometimes, we may encounter sequences that are neither geometric nor arithmetic. One of the most famous sequences, the Fibonacci sequence is a prime example. Recall that the Fibonacci Sequence, starting with two 1s, is a sequence of numbers where every number starting on the 3rd term is the sum of the two numbers before it. {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...} 8

To calculate the third term, we add the 1 st and 2 nd term. third term t 3 = second term t 2 = 1 + 1 = 2 + first term t 1 To calculate the fourth term, we add the 3 rd term and 2 nd term. fourth term t 4 = third term t 3 = 1 + 2 = 3 + second term t 2 Similarly, to calculate the fifth term, we add the 4 th term and 3 th term. fourth term t 5 = third term t 4 = 2 + 3 = 5 + second term t 3 In general, to calculate the n th term of the Fibonacci sequence, we add the (n 1) th and (n 2) th. We can write this as t n = t n 1 + t n 2 current term one term back two terms back We call this a recursive sequence. In recursion/recursive sequence, we use the previous term to calculate the next term. When we write sequences in a recursive manner, we need an initial term/number, otherwise we have no initial term to use to get to the next term. Example. Given that t 1 = 3. Find the next 2 terms with the given recursive formula. t n = 2 t n 1 + 1 current term previous term Since we already have 3 as our first term, the only thing to do is determine the second term. 9

Using n = 2, we have Using n = 3, we have t 2 = 2 t 2 1 + 1 t 3 = 3 t 3 1 + 1 = 2 t 1 + 1 = 3 t 2 + 1 = 2 3 + 1 = 3 7 + 1 = 6 + 1 = 21 + 2 = 7 = 23 Exercise. 1. Calculate the 5 th term for the recursive sequence F n = F n 1 + F n 2, with F 1 = 1 and F 2 = 1 2. Calculate the 4 th term for the recursive sequence S n = 3S n 1 + 2S n 2 with S 1 = 2 and S 2 = 5 10

The Babylon Method: Approximating Square Roots with Sequences The ancient Babylonians used recursive sequences to approximate square roots. Recall that the square root of any number other than a perfect square results in an irrational number (infinite non-repeating decimal number). However, most of the time, it is sufficient for us to approximate a decimal number by finding the first few decimal places. Example. 3 is irrational, but when we type 3 into our calculators, it gives us the first 9 decimal places 1.732050806 The method we will be seeing in this Math Circles is called the Babylon Method where each term in the sequence is a better approximation of square root than the previous term. Suppose we want to find the square root of 3. We will use 3 as our initial term. The following terms can be found using the formula below: x n+1 = 1 ) (x n + 3xn 2 11

x 2 = 1 ( 3 + 3 ) x 3 = 1 ( 2 + 3 ) 2 3 2 2 = 1 2 (3 + 1) = 1 ( 4 2 2 + 3 ) 2 = 4 2 = 1 2 7 2 = 2 = 7 4 = 1.75 x 4 = 1 2 ( 1.75 + 3 ) 1.75 x 5 = 1 2 ( ) 3 1.732142857 + 1.732142857 = 1 2 (1.75 + 1.714285714) = 1 (1.732142857 + 1.731958763) 2 = 1 2 (3.464285714) = 1 2 (3.46410162) = 1.732142857 = 1.73205081 You can see that by the fourth term, we get something very very close to what the calculator gives us. In general, we can find the square root of S, with the following recursive formula: with x 1 = S. x n = 1 2 ( x n 1 + S x n 1 ) Exercise. Using the Babylonian Method calculate 5 up to the fifth term. Then check with your calculator. 12

Problem Set 1. Determine if the following sequences are geometric, arithmetic, or neither. (a) {4, 11, 30, 67,...} (b) { 15, 12, 9, 6...} (c) {2, 6, 18, 54,...} (d) { 1 3, 1 6, 1 12,...} (e) {1, 0, 1, 0, 1,...} 2. Which term in the sequence {2, 5, 8, 11,...} is equal to 83? 3. Determine the first 3 terms of the following sequences (a) t n = 2n + 5 (b) t n = n 2 + 1 (c) t n = 3 n 4. Find the fourth term in the following recursive sequences (a) t n = 5t n 1 t 1 = 4 (b) t n = 2t n 1 + 2t n 2, t 1 = 1, t 2 = 3 5. Given the sequence {5, 9, 13, 17,...}, is 413 in the sequence? If so what term does it correspond to? 6. Determine the value of x such that x + 2, 2x + 3, 4x 3 are consecutive term of an arithmetic sequence. 7. Determine t 20 in the arithmetic sequence where t 6 = 28 and t 11 = 63 8. A ball is dropped from a height of 60 m. The ball bounces 4 5 of the distance it falls. (a) To what height does the ball bounce after the first bounce (b) To what height, to one decimal place, does the ball bounce after the third bounce 9. Using the Babylon method, approximate 6 up to 4 iterations. Then check your answer with a calculator 13

10. Does the Babylon method work with perfect squares i.e 4. What happens when you use the Babylon method to approximate perfect squares. Try a few examples. 11. The ancients built square-based structures similar to those shown in the diagram. They began with 1000 identical cubes and wished to build as many structures as possible. The first structure contained in two layers. Beside it was constructed a second layer with three layers. This process was continued as shown until the number of cubes left was not sufficient to build the next structure. How many cubes were left. 12. Find the last digit in the 47th term in the sequence {7 1, 7 2, 7 3, 7 4,...} without using a calculator. 13. We have the following formula below to calculates different terms of a certain sequence. Try for n = 1, 2, 3, 4, 5. What do you see? t n = 1 [( ) n ( ) n ] 1 + 5 1 5 5 2 2 14