New CNLS software for analysis of impedance spectra Outline



Similar documents
DIEGO TONINI MORPHOLOGY OF NIOBIUM FILMS SPUTTERED AT DIFFERENT TARGET SUBSTRATE ANGLE

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Frequency response: Resonance, Bandwidth, Q factor

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Reading: HH Sections , (pgs , )

VCO Phase noise. Characterizing Phase Noise

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

Dynamic Process Modeling. Process Dynamics and Control

Application Note #49 RF Amplifier Output Voltage, Current, Power, and Impedance Relationship

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

Frequency response. Chapter Introduction

Chemical Kinetics. Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B

Sophomore Physics Laboratory (PH005/105)

MAT 274 HW 2 Solutions c Bin Cheng. Due 11:59pm, W 9/07, Points

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information.

Introduction to Complex Numbers in Physics/Engineering

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

30. Bode Plots. Introduction

Analysis of Common-Collector Colpitts Oscillator

Figure 1. Diode circuit model

Lecture 13: The Fictive and Glass Transition Temperatures

Power System review W I L L I A M V. T O R R E A P R I L 1 0,

Diodes and Transistors

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Fundamentals of Microelectronics

Laboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2

EDUMECH Mechatronic Instructional Systems. Ball on Beam System

KIA7805AF/API~KIA7824AF/API SEMICONDUCTOR TECHNICAL DATA THREE TERMINAL POSITIVE VOLTAGE REGULATORS 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V.

11: AUDIO AMPLIFIER I. INTRODUCTION

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = m. Thus,

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

Tutorial 12 Solutions

Temperature Control Loop Analyzer (TeCLA) Software

USB 3.0 CDR Model White Paper Revision 0.5

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013

Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics

Lab E1: Introduction to Circuits

Basic Op Amp Circuits

RLC Series Resonance

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION

Step Response of RC Circuits

Understanding Power Impedance Supply for Optimum Decoupling

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

Lecture - 4 Diode Rectifier Circuits

Problem Solving 8: RC and LR Circuits

Transistor Amplifiers

RLC Resonant Circuits

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

PHYSICS LAB #2 Passive Low-pass and High-pass Filter Circuits and Integrator and Differentiator Circuits

Experiment #1, Analyze Data using Excel, Calculator and Graphs.

Design of op amp sine wave oscillators

Unit2: Resistor/Capacitor-Filters

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

F = ma. F = G m 1m 2 R 2

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS

PS25202 EPIC Ultra High Impedance ECG Sensor Advance Information

Noise Specs Confusing

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

EMC Basics. Speaker : Alain Lafuente. Alain.lafuente@we-online.com

Oscillations. Vern Lindberg. June 10, 2010

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Regression III: Advanced Methods

Kinetic Molecular Theory of Matter

EE362L, Power Electronics Triac Light Dimmer

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies

Understanding Noise Figure

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Cable Analysis and Fault Detection using the Bode 100

2.161 Signal Processing: Continuous and Discrete Fall 2008

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Step response of an RLC series circuit

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

ADS Tutorial Stability and Gain Circles ECE145A/218A

CONCEPT-II. Overview of demo examples

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

Using the Impedance Method

PWM Motor Drives and EMC in installations and systems

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Reaction Rates and Chemical Kinetics. Factors Affecting Reaction Rate [O 2. CHAPTER 13 Page 1

Linear Parameter Measurement (LPM)

Chapter Outline. Diffusion - how do atoms move through solids?

Angle Modulation, II. Lecture topics FM bandwidth and Carson s rule. Spectral analysis of FM. Narrowband FM Modulation. Wideband FM Modulation

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Inductors in AC Circuits

Dayton Audio is proud to introduce DATS V2, the best tool ever for accurately measuring loudspeaker driver parameters in seconds.

AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA Tel: 781/ Fax: 781/

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Laboratory #5: RF Filter Design

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

An octave bandwidth dipole antenna

RC Circuits and The Oscilloscope Physics Lab X

Transcription:

New CNLS software for analysis of impedance spectra Outline Motivation Impedance spectroscopy on thermal barrier coatings (TBC) Insertion: RQ-element thermally activated conductivity New CNLS software MVCNLS Introduction Comparison with standard CNLS software fit problem from practice Summary and Outlook Source: MVCNLS-Slides.PPT, Folie: 1, 04.02.2004

Motivation Measurement setup for impedance spectroscopy (IS) I( ω) U ˆ sin( ω t ) ~ U( ω) Z( ω) U ω = ( ) I( ω) IS IS measurementsn between 200 200 C C and and500 C C from from10 10mHz mhztoto 1 MHz MHz impedance analyzer furnace Source: IWE, Thilo Hilpert MVCNLS-Slides.PPT, Folie: 2, 04.02.2004

Motivation temperatur dependance of TBC impedance spectra 6,50 6,00 200 C R decreases R decreases 76M3 300 76M3 250 76M3 200 log( Z ) /Ohm 5,50 5,00 4,50 250 C 300 C 4,00 3,50-1,00 0,00 1,00 2,00 3,00 4,00 5,00 6,00 log(f) /Hz MVCNLS-Slides.PPT, Folie: 3, 04.02.2004

Insertion difference between RC- and RQ-elements C1 C2 Q1 Q Q2 Q R1 R2 R1 R2 Z R = + 1+ jωrc 1+ 1 2 R jωr C 1 1 2 2 Z R R = + 1 + ( jω) RQ 1 + ( j ) R Q 1 2 n1 n2 1 1 ω 2 2 A Constant Phase Phase Element (Q) (Q) is is artificial. For For n=1 n=1 it it is is an an ideal ideal capacitor, for for n=0 n=0 an an resistance. Index Index n is is a measure for for the the broadness of of the the distribution of of the the electrical properties, thus thus a measure for for the the (electrical) inhomogeneity. an alternative expression of our ignorance of the mechanism (Cole 1968) MVCNLS-Slides.PPT, Folie: 4, 04.02.2004

Insertion Constant Phase Element temperature dependence of Q 1,4E-08 1,2E-08 6,0E-10 Q shows exponential temperature behaviour 5,5E-10 1,0E-08 for YSZ not feasible Q* 8,0E-09 6,0E-09 4,0E-09 Q 5,0E-10 4,5E-10 C* equivalent capacity shows linear or 1/T behaviour => feasible 2,0E-09 4,0E-10 200 250 300 350 T / C MVCNLS-Slides.PPT, Folie: 5, 04.02.2004

Insertion Conversion of a RQ-element to an equivalent RC-element log( Z ) /Ohm 6,0 5,0 4,0 3,0 infinite number of RC-elements 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 log(f) /Hz... RC-element with the highest weight 1 n 1/ n C* = ( R Q) absolute value RC* RQ Q R Im(Z) / Ohm 0,E+00 1,E+05 2,E+05 3,E+05 4,E+05 5,E+05 6,E+05 7,E+05 8,E+05 9,E+05 1,E+06 0,E+00-1,E+05-2,E+05-3,E+05-4,E+05-5,E+05 C* R phi / Grad 0-10 -20-30 -40-50 -60-70 -80-90 nyquist plot RQ phase RC* Re(Z) / Ohm RC* 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 log(f) /Hz MVCNLS-Slides.PPT, RQ Folie: 6, 04.02.2004

Motivation temperatur dependance of TBC impedance spectra 6,50 6,00 200 C R decreases R decreases 76M3 300 76M3 250 76M3 200 log( Z ) /Ohm 5,50 5,00 4,50 250 C 300 C 4,00 3,50-1,00 0,00 1,00 2,00 3,00 4,00 5,00 6,00 log(f) /Hz MVCNLS-Slides.PPT, Folie: 7, 04.02.2004

Motivation typical nyquist plot and fit model 0 Re(Z) / Ohm 0 25000 50000 Q RQ1 Im(Z) / Ohm -10000 Q Q RQ2 RQ3 model model of ofmicrostructure Source: IWE, Thilo Hilpert MVCNLS-Slides.PPT, Folie: 8, 04.02.2004

Motivation thermally activated conductivity 623K 573K 523K 473K 1 1,12 ev σ 1 σ 2 arrhenius plot σ T = A exp( E ) kt σt / (SK/m) 0,1 0,01 1,6 1,7 1,8 1,9 2,0 2,1 1000K / T 0,96 ev but... MVCNLS-Slides.PPT, Folie: 9, 04.02.2004

Motivation thermally activated conductivity, fit problems 623K 573K 523K 473K arrhenius plot σ T = A exp( E ) kt 1 σ 1 σ 2 σt / (SK/m) 0,1 permutation of RQ1 and RQ2 The fit software does not know anything about the thermally activated conductivity! 0,01 difficult to analyze 1,6 1,7 1,8 1,9 2,0 2,1 1000K / T MVCNLS-Slides.PPT, Folie: 10, 04.02.2004

Motivation Comparison with standard CNLS software merit function: relative weighting: Complex Nonlinear Least Squares (CNLS) fit N 1 S = Z ˆ j Z w j = 1 N j 1 S = Z ˆ 2 j Z j = 1 Z j j 2 j 2 w j : weight factors 2 ideal: w = 1 σ j Z j : measured impedance Zˆ j : modelled impedance j standard fit software LEVM (Macdonald): difficult input and output files, many equivalent circuits possible, flexible weighting, many impedance representations EquivCrt (Boukamp): grafical and interactive, good for orientation, for mass fit to slowly to operate, any equivalent circuit through CDC (Circuit Description Code) possible, only relative weighting, many impedance representations MVCNLS-Slides.PPT, Folie: 11, 04.02.2004

new fit software approach new approach simultaneous fit of many impedance spectra consideration of assumptions regarding temperature dependance of equivalent circuit elements R, C, Q, n better boundary conditions for fit requirements impedance spectra at all relevant temperatures can be described by the same equivalent circuit model impedance spectra can be modelled by (infinite) RQ-elements in series MVCNLS-Slides.PPT, Folie: 12, 04.02.2004

new fit software common temperature equation common equation for R, C, n xt ( ) = A T exp( E ) + M T+ B+ D T kt N thermally activated conductivity linear, constant square root laws, 1/T, etc. superposed effects E xt ( ) = A T exp( ) + M T+ B + D T + 1 N1 1 kt 1 1 1 E2 N2 2 exp( ) 2 2 2 + A T + M T + B + D T + kt MVCNLS-Slides.PPT, Folie: 13, 04.02.2004

new fit software boundary conditions common temperature equation xt ( ) = A T exp( E ) + M T+ B+ D T kt example: thermally activated conductivity RT ( ) = A T exp( E ) kt N limit on equiv. crt. value R R( T) R u o f u limit on any parameter combined limit Au A Ao 1 f E 1/ n o u E Eo 2 π ( RQ) no other fit software supports these necessary multitude of boundary conditions MVCNLS-Slides.PPT, Folie: 14, 04.02.2004

new fit software command file (easy) readable command file the fit problem is defined by a file, changes in starting values of boundaries are easily possible [FITPREFS] GNUPlotCmd="..\gnuplot\wgnupl32.exe" FitName="P222M07_1" R1=f(A1,E1) A1>=1e-12 A1<=1e-5 E1>=0.8 E1<=1.3 C1=f(F) definition of temperature n1=f(f) dependance of RQ1 R2=f(A1,E1) A1>=1e-12 A1<=1e-5 E1>=0.8 E1<=1.3 C2=f(F) definition of temperature n2=f(f) dependance of RQ2 R3=f(A1,E1) A1>=1e-12 A1<=1e-5 E1>=0.8 E1<=1.3 C3=f(F) definition of temperature n3=f(f) dependance of RQ3 f1=1 start and end frequence of the fit f2=5e5 [ISFILE] P222M07.258 4 250 [RQPREFS] R1!=6,5021e+005 Q1!=6,9201e-010 n1!=0,741 >=0.5 R2!=4,1961e+005 Q2!=7,2801e-009 n2!=0,853 >=0.5 R3!=7,6072e+007 Q3!=1,0384e-008 n3!=0,739 >=0.5 [ISFILE] P222M07.307 4 300 [RQPREFS] R1!=7,2287e+004 Q1!=1,8819e-010...... n1!=0,867 >=0.5 R2!=3,015e+004 Q2!=1,8891e-010 n2!=0,9 >=0.5 R3!=1,6852e+007 Q3!=2,2945e-008 n3!=0,674 >=0.5 [ISFILE] P222M07.355 4 350 [RQPREFS] R1!=2e+004 Q1!=4e-009 n1!=0,69 >=0.5 R2!=1e4 Q2!=4e-008 n2!=0,62 >=0.5 R3!=3e+006 Q3!=4e-8 n3!=0,70 >=0.5 MVCNLS-Slides.PPT, Folie: 15, 04.02.2004

Comparison with standard CNLS software synthetic data, 2 RQ elements, same initial values equivalent circurit parameters Q Q R1 = 3,11e6 R2 = 5,06e6 Q1 = 9,73e-10 Q2 = 7,45e-8 n1 = 0,9 n2 = 0,7 noise Re nyquist plot initial values Im 0 5 5 6 6 6 + R1 = 3e6 Q1 = 9e-10 n1 = 0,88 R2 = 4,5e6 Q2 = 7e-8 n2 = 0,72 fit software MVCNLS-Slides.PPT, Folie: 16, 04.02.2004

Comparison with standard CNLS software: nyquist plots synthetic data, 2 RQ elements, same initial values Im(Z) / Ohm Im(Z) / Ohm 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 6,0E+06 7,0E+06 8,0E+06 9,0E+06 0,0E+00-4,0E+05-8,0E+05-1,2E+06-1,6E+06-2,0E+06 Original EquivCrt LEVM MVCNLS Re(Z) / Ohm 1% noise 200 C 0,0E+00 1,0E+06 2,0E+06 3,0E+06 4,0E+06 5,0E+06 6,0E+06 7,0E+06 8,0E+06 9,0E+06 0,0E+00-4,0E+05-8,0E+05-1,2E+06-1,6E+06-2,0E+06 Original EquivCrt LEVM MVCNLS Re(Z) / Ohm 5% noise 200 C MVCNLS-Slides.PPT, Folie: 17, 04.02.2004

Comparison with standard CNLS software: fit results synthetic data, 2 RQ elements, same initial values 1,015 1% noise 1,040 1,010 1,010 1,005 1,020 1,005 0,995 0,990 R1* R2* 0,980 0,960 Q1* Q2* 0,995 n1* n2* 0,985 0,940 0,990 1,100 5% noise 1,100 1,100 1,050 1,050 0,900 0,800 0,950 0,700 Q1* Q2* 0,950 R1* R2* n1* n2* 0,900 0,600 0,900 MVCNLS-Slides.PPT, Folie: 18, 04.02.2004

Comparison with standard CNLS software: fit results synthetic data, 3 RQ elements, same initial values Im Re 1% noise Re 3. RQ element only partial in measured frequency range Im Original EquivCrt LEVM MVCNLS fit is ok, but the errors... MVCNLS-Slides.PPT, Folie: 19, 04.02.2004

Comparison with standard CNLS software: fit results synthetic data, 3 RQ elements, same initial values 1,100 1,050 1% noise R1* R2* 1,500 1,400 1,300 1,200 Q1* Q2* 1,050 1,100 0,900 0,800 n1* n2* 0,950 0,700 0,950 1,200 1,150 1,100 1,050 0,950 0,900 0,850 0,800 0,750 0,700 5% noise R1* R2* 2,000 1,800 1,600 1,400 1,200 0,800 0,600 0,400 0,200 0,000 Q1* Q2* 1,300 1,250 1,200 1,150 1,100 1,050 0,950 0,900 n1* n2* MVCNLS-Slides.PPT, Folie: 20, 04.02.2004

thermally cycled TBC-Systems: fit problem from practice fit results equivalent circuit of 3 RQ elements same initial values for both LEVM: each temperature alone MVCNLS: 3 temperatures at once MVCNLS 623K 573K 523K Q Q Q LEVM 623K 573K 523K 1 1 σt / (SK/m) 0,1 0,01 1E-3 S1T S2T S3T S1T S2T S3T σt / (SK/m) 0,1 0,01 1E-3? S1T S2T S3T S1T S2T S3T 1E-4 1,6 1,7 1,8 1,9 1000K / T 1E-4 1,6 1,7 1,8 1,9 1000K / T MVCNLS-Slides.PPT, Folie: 21, 04.02.2004

thermally cycled TBC-Systems: fit problem from practice fit results 1 MVCNLS 1 LEVM C* / (F/µm) 0,1 0,01 C1 C2 C3 C1 C2 C3 C* / (F/µm) 0,1 0,01 C1 C2 C3 C1 C2 C3 1E-3 1,0 0,9 0,8 1E-3 523 573 623 Q 1 n 1/ n C* = ( R Q) 1,0 0,8 523 573 623 n 0,7 R C* n 0,6 n1 n2 n3 n1 n2 n3 0,6 n1 n2 n3 n1 n2 n3 0,5 523 573 623 R 523 573 623 MVCNLS-Slides.PPT, Folie: 22, 04.02.2004

Summary and Outlook fit software for analysis of temperature depended impedance spectra standard CNLS fit with boundary conditions possible direct determination of activiation energies expertise can be used graphical interface MVCNLS-Slides.PPT, Folie: 23, 04.02.2004