Relativistic Electromagnetism

Similar documents
Special Theory of Relativity

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

arxiv: v1 [physics.gen-ph] 17 Sep 2013

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Unified Lecture # 4 Vectors

Figure 1.1 Vector A and Vector F

Elasticity Theory Basics

5.3 The Cross Product in R 3

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

6 J - vector electric current density (A/m2 )

A Primer on Index Notation

Teaching Electromagnetic Field Theory Using Differential Forms

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS.

Electromagnetism Laws and Equations

CBE 6333, R. Levicky 1 Differential Balance Equations

Force on Moving Charges in a Magnetic Field

State of Stress at Point

arxiv: v2 [physics.acc-ph] 27 Oct 2014

Magnetic Fields and Their Effects

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Chapter 15 Collision Theory

5. Measurement of a magnetic field

Rotation: Moment of Inertia and Torque

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

CBE 6333, R. Levicky 1. Tensor Notation.

Representing Vector Fields Using Field Line Diagrams

Eðlisfræði 2, vor 2007

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Eðlisfræði 2, vor 2007

Vector has a magnitude and a direction. Scalar has a magnitude

6. Vectors Scott Surgent (surgent@asu.edu)

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Lab 4: Magnetic Force on Electrons

LINEAR ALGEBRA W W L CHEN

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Chapter 7: Polarization

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

physics 112N magnetic fields and forces

Solutions to Math 51 First Exam January 29, 2015

Section 10.4 Vectors

Lecture 2: Homogeneous Coordinates, Lines and Conics

Copyright 2011 Casa Software Ltd. Centre of Mass

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

DERIVATIVES AS MATRICES; CHAIN RULE

Orthogonal Projections


discuss how to describe points, lines and planes in 3 space.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Divergence and Curl of the Magnetic Field

PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY *

The Quantum Harmonic Oscillator Stephen Webb

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Chapter 27 Magnetic Field and Magnetic Forces

Solving Simultaneous Equations and Matrices

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

Example SECTION X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Data Mining: Algorithms and Applications Matrix Math Review

Magnetostatics (Free Space With Currents & Conductors)

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

10.2 Series and Convergence

Generally Covariant Quantum Mechanics

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Solution Derivations for Capa #11

Some Special Relativity Formulas

Chapter 22 Magnetism

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Phys222 Winter 2012 Quiz 4 Chapters Name

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Chapter 28 Fluid Dynamics

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

Differentiation of vectors

Exercises on Voltage, Capacitance and Circuits. A d = ( ) π(0.05)2 = F

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

1 Introduction to Matrices

Chapter 4 One Dimensional Kinematics

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Exam 1 Practice Problems Solutions

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Time Ordered Perturbation Theory

Chapter 2. Parameterized Curves in R 3

Mechanics 1: Conservation of Energy and Momentum

Experiment 6: Magnetic Force on a Current Carrying Wire

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS

5 Homogeneous systems

APPLICATIONS OF TENSOR ANALYSIS

Matrix Differentiation

PHYSICAL QUANTITIES AND UNITS

2 Session Two - Complex Numbers and Vectors

Transcription:

Chapter 8 Relativistic Electromagnetism In which it is shown that electricity and magnetism can no more be separated than space and time. 8.1 Magnetism from Electricity Our starting point is the electric and magnetic fields of an infinite straight wire, which are derived in most introductory textbooks on electrodynamics, such as Griffiths [3], and which we state here without proof. The electric field of an infinite straight wire with charge density λ points away from the wire with magnitude E λ 2πɛ 0 r (8.1) where r is the perpendicular distance from the wire and ɛ 0 is the permittivity constant. The magnetic field of such a wire with current density I has magnitude B µ 0I (8.2) 2πr with r as above, and where µ 0 is the permeability constant, which is related to ɛ 0 by ɛ 0 µ 0 1 c 2 (8.3) (The direction of the magnetic field is obtained as the cross product of the direction of the current and the position vector from the wire to the point in question.) 43

44 CHAPTER 8. RELATIVISTIC ELECTROMAGNETISM We will also need the Lorentz force law, which says that the force F on a test particle of charge q and velocity v is given by F q( E + v B) (8.4) where E and B denote the electric and magnetic fields (with magnitudes E and B, respectively). Consider an infinite line charge, consisting of identical particles of charge ρ, separated by a distance l. This gives an infinite wire with (average) charge density λ 0 ρ (8.5) l Suppose now that the charges are moving to the right with speed u c tanh α (8.6) Due to length contraction, the charge density seen by an observer at rest increases to λ λ 0 cosh α (8.7) ρ l cosh α Suppose now that there are positively charged particles moving to the right, and equally but negatively charged particles moving to the left, each with speed u. Consider further a test particle of charge q situated a distance r from the wire and moving with speed v c tanh β (8.8) to the right. Then the net charge density in the laboratory frame is 0, so that there is no electrical force on the test particle in this frame. There is of course a net current density, however, namely I λu + ( λ)( u) 2λu (8.9) What does the test particle see? Switch to the rest frame of the test particle; this makes the negative charges appear to move faster, with speed u > u, and the positive charges move slower, with speed u + < u. The relative speeds satisfy u + c u c tanh(α β) (8.10) tanh(α + β) (8.11)

8.1. MAGNETISM FROM ELECTRICITY 45 resulting in current densities λ ± λ cosh(α β) λ(cosh α cosh β sinh α sinh β) (8.12) resulting in a total charge density of λ λ + λ (8.13) 2λ 0 sinh α sinh β (8.14) 2λ tanh α sinh β (8.15) According to (8.1), this results in an electric field of magnitude E λ 2πɛ which in turn leads to an electric force of magnitude (8.16) F qe λ q tanh α sinh β (8.17) πɛ 0 r λu qv cosh β (8.18) πɛ 0 c 2 r µ 0I qv cosh β (8.19) 2πr To relate this to the force observed in the laboratory frame, we must consider how force transforms under a Lorentz transformation. We have 1 F d p dt (8.20) and of course also F d p (8.21) dt But since in this case the force is perpendicular to the direction of motion, we have d p d p (8.22) and since dx 0 in the comoving frame we also have dt dt cosh β (8.23) 1 This is the traditional notion of force, which does not transform simply between frames. As discussed briefly below, a possibly more useful notion of force is obtained by differentiating with respect to proper time.

46 CHAPTER 8. RELATIVISTIC ELECTROMAGNETISM Thus, in this case, the magnitudes are related by But this is just the Lorentz force law F F cosh β µ 0I qv (8.24) 2πr F q v B (8.25) with B B given by (8.2)! We conclude that in the laboratory frame there is a magnetic force on the test particle, which is just the electric force observed in the comoving frame! 8.2 Lorentz Transformations We now investigate more general transformations of electric and magnetic fields between different inertial frames. Our starting point is the electromagnetic field of an infinite flat metal sheet, which is derived in most introductory textbooks on electrodynamics, such as Griffiths [3], and which we state here without proof. The electric field of an infinite metal sheet with charge density σ points away from the sheet and has the constant magnitude E σ 2ɛ 0 (8.26) The magnetic field of such a sheet with current density κ has constant magnitude B µ κ (8.27) 2 and direction determined by the right-hand-rule. Consider a capacitor consisting of 2 horizontal (z constant) parallel plates, with equal and opposite charge densities. For definiteness, take the charge density on the bottom plate to be σ 0, and suppose that the charges are at rest, that is, that the current density of each plate is zero. Then the electric field is given by E 0 E 0 j σ 0 j (8.28) ɛ 0 between the plates and vanishes elsewhere. Now let the capacitor move to the left with velocity u u ı c tanh α ı (8.29)

8.2. LORENTZ TRANSFORMATIONS 47 Then the width of the plate is unchanged, but, just as for the line charge (8.7), the length is Lorentz contracted, which decreases the area, and hence increases the charge density. The charge density (on the bottom plate) is therefore σ σ 0 cosh α (8.30) But there is now also a current density, which is given by κ σ u (8.31) on the lower plate. The top plate has charge density σ, so its current density is κ. Then both the electric and magnetic fields vanish outside the plates, whereas inside the plates one has E E y j σ ɛ 0 j (8.32) B B z k µ0 σu k (8.33) which can be rewritten using (8.29) and (8.30) in the form E y E 0 cosh α (8.34) B z cb 0 sinh α (8.35) For later convenience, we have introduced in the last equation the quantity B 0 µ 0 σ 0 µ 0 ɛ 0 E 0 1 c 2 E 0 (8.36) which does not correspond to the magnetic field when the plate is at rest which of course vanishes since u 0. The above discussion gives the electric and magnetic fields seen by an observer at rest. What is seen by an observer moving to the right with speed v c tanh β? To compute this, first use the velocity addition law to compute the correct rapidity to insert in (8.35), which is simply the sum of the rapidities α and β! The moving observer therefore sees an electric field E and a magnetic field B. From (8.35), (8.36), and the hyperbolic trig formulas (4.5) and (4.6), we have E y E 0 cosh(α + β) E 0 cosh α cosh β + E 0 sinh α sinh β E 0 cosh α cosh β c 2 B 0 sinh α sinh β E y cosh β cb z sinh β (8.37)

48 CHAPTER 8. RELATIVISTIC ELECTROMAGNETISM and similarly B z cb 0 sinh(α + β) cb 0 sinh α cosh β + cb 0 cosh α sinh β B z cosh β 1 c Ey sinh β (8.38) Repeating the argument with the y and z axes interchanged (and being careful about the orientation), we obtain the analogous formulas E z E z cosh β + cb y sinh β (8.39) B x B y cosh β + 1 c Ez sinh β (8.40) Finally, by considering motion perpendicular to the plates one can show [3] and by considering a solenoid one obtains [3] E x E x (8.41) B x B x (8.42) Equations (8.37) (8.42) describe the behavior of the electric and magnetic fields under Lorentz transformations. These equations can be nicely rewritten in vector language by introducing the projections parallel and perpendicular to the direction of motion of the observer, namely and E B v E v v v (8.43) v B v v v (8.44) E E E (8.45) B B B (8.46) We then have E E (8.47) B B (8.48)

8.3. TENSORS 49 and B ( B 1 c 2 v E ) cosh β (8.49) E ( E + v B ) cosh β (8.50) 8.3 Tensors 8.3.1 Vectors In the previous chapter, we used 2-component vectors to describe spacetime, with one component for time and the other for space. In the case of 3 spatial dimensions, we use 4-component vectors, namely x 0 ct x ν x 1 x 2 x y x 3 z (8.51) These are called contravariant vectors, and their indices are written upstairs, that is, as superscripts. Just as before, Lorentz transformations are hyperbolic rotations, which must now be written as 4 4 matrices. For instance, a boost in the x direction now takes the form ct cosh β sinh β 0 0 ct x y sinh β cosh β 0 0 x 0 0 1 0 y z 0 0 0 1 z A general Lorentz transformation can be written in the form (8.52) x µ Λ µ ν x ν (8.53) where Λ µ ν are (the components of) the appropriate 4 4 matrix, and where we have adopted the Einstein summation convention that repeated indices, in this case ν, are to be summed from 0 to 3. In matrix notation, this can be written as x Λx (8.54)

50 CHAPTER 8. RELATIVISTIC ELECTROMAGNETISM Why are some indices up and others down? In relativity, both special and general, it is essential to distinguish between 2 types of vectors. In addition to contravariant vectors, there are also covariant vectors, often referred to as dual vectors. The dual vector associated with x µ is 2 x 0 x x µ 1 x 2 x 3 ct x y z (8.55) We won t have much need for covariant vectors, but note that the invariance of the interval can be nicely written as x µ x µ c 2 t 2 + x 2 + y 2 + z 2 x µ x µ (8.56) (Don t forget the summation convention!) In fact, this equation can be taken as the definition of Lorentz transformations, and it is straightforward to determine which matrices Λ µ ν are allowed. Taking the derivative with respect to proper time leads to the 4-velocity u µ dxµ dτ dxµ dt dt dτ It is often useful to divide these into space and time in the form ( ) ( ) cγ c cosh β u vγ ˆv c sinh β (8.57) (8.58) where ˆv is the unit vector in the direction of v. Note that the 4-velocity is a unit vector in the sense that 1 c u µu µ 1 (8.59) 2 The 4-momentum is is simply the 4-velocity times the rest mess, that is and note that p µ mu µ ( 1 c E p ) which is equivalent to our earlier result 2 Some authors use different conventions. ( mcγ m vγ ) ( mc cosh β ˆv mc sinh β ) (8.60) p µ p µ m 2 c 2 (8.61) E 2 p 2 c 2 m 2 c 4 (8.62)

8.4. THE ELECTROMAGNETIC FIELD 51 8.3.2 Tensors Roughly speaking, tensors are like vectors, but with more components, and hence more indices. We will only consider one particular case, namely rank 2 contravariant tensors, which have 2 upstairs indices. Such a tensor has components in a particular reference frame which make up a 4 4 matrix, namely T 00 T 01 T 02 T 03 T µν T 10 T 11 T 12 T 13 T 20 T 21 T 22 T 23 (8.63) T 30 T 31 T 32 T 33 How does T transform under Lorentz transformations? Well, it has two indices, each of which must be transformed. This leads to a transformation of the form T µν Λ µ ρλ ν σt ρσ Λ µ ρt ρσ Λ ν σ (8.64) where the second form (and the summation convention!) leads naturally to the matrix equation T ΛT Λ t (8.65) where t denotes matrix transpose. Further simplification occurs in the special case where T is antisymmetric, that is so that the components of T take the form T νµ T µν (8.66) 0 a b c T µν a 0 f e b f 0 d c e d 0 (8.67) 8.4 The Electromagnetic Field Why have we done all this? Well, first of all, note that, due to antisymmetry, T has precisely 6 independent components. Next, compute T, using matrix multiplication and the fundamental hyperbolic trig identity (4.4). As you

52 CHAPTER 8. RELATIVISTIC ELECTROMAGNETISM should check for yourself, the result is 0 a b c T µν a 0 f e b f 0 d c e d 0 (8.68) where a a (8.69) b b cosh β f sinh β (8.70) c c cosh β + e sinh β (8.71) d d (8.72) e e cosh β + c sinh β (8.73) f f cosh β b sinh β (8.74) The first 3 of these are the transformation rule for the electric field, and the remaining 3 are the transformation rule for the magnetic field! We are thus led to introduce the electromagnetic field tensor, namely 0 1 c Ex 1 c Ey 1 c Ez F uv 1 c Ex 0 B z B y 1 c Ey B z 0 B x 1 c Ez B y B x 0 (8.75) 8.4.1 Maxwell s equations Maxwell s equations in vacuum (and in MKS units) are E 1 ɛ 0 ρ (8.76) B 0 (8.77) E B t B µ 0 J + µ0 ɛ 0 E t (8.78) (8.79)

8.4. THE ELECTROMAGNETIC FIELD 53 where ρ is the charge density, J is the current density, and the constants µ 0 and ɛ 0 satisfy (8.3). Equation (8.76) is just Gauss Law, (8.78) is Faraday s equation, and (8.79) is Ampère s Law corrected for the case of a timedependent electric field. We also have the charge conservation equation J ρ t (8.80) and the Lorentz force law F q( E + v B) (8.81) The middle two of Maxwell equations are automatically solved by introducing the scalar potential Φ and the vector potential A and defining B A (8.82) E A t Φ (8.83) 8.4.2 Tensor Version of Maxwell s Equations Consider the following derivatives of F : F µν x ν F µ0 t + F µ1 x + F µ2 y + F µ3 z (8.84) This corresponds to four different expressions, one for each value of µ. For µ 0, we get 0 + 1 c E x x + 1 E y c y + 1 E z c z 1 c E ρ cɛ 0 cµ 0 ρ (8.85) where Gauss Law was used to get the final two equalities. µ 1 we have 1 E x + 0 + Bz c 2 t y By z Similarly, for (8.86) and combining this with the expressions for µ 2 and µ 3 yields the left-hand-side of 1 c 2 E t + B µ 0 J (8.87)

54 CHAPTER 8. RELATIVISTIC ELECTROMAGNETISM where the right-hand-side follows from Ampère s Law. equations, and introducing the 4-current density J µ ( ) cρ J Combining these (8.88) leads to F µν µ µ x ν 0J (8.89) which is equivalent to the two Maxwell equations with a physical source, namely Gauss Law and Ampère s Law. Furthermore, taking the (4-dimensional!) divergence of the 4-current density leads to J µ µ 0 x F µν 0 (8.90) µ x µ x ν since there is an implicit double sum over both µ and ν, and the derivatives commute but F µν is antisymmetric. (Check this by interchanging the order of summation.) Working out the components of this equation, we have 1 J 0 c t + J 1 x + J 2 y + J 3 z 0 (8.91) which is just the charge conservation equation (8.80). What about the remaining equations? Introduce the dual tensor G µν obtained from F µν by replacing 1 c E by B and B by 1 c E, resulting in 0 B x B y B z G uv B x 0 1 c Ez 1 c Ey B y 1 c Ez 0 1 c Ex B z 1 c Ey 1 c Ex 0 (8.92) Then the four equations correspond to G µν x ν 0 (8.93) 1 c B 0 (8.94) B t 1 c E 0 (8.95)

8.4. THE ELECTROMAGNETIC FIELD 55 which are precisely the two remaining Maxwell equations. Some further properties of these tensors are 1 2 F µνf µν 1 c 2 E 2 + B 2 1 2 G µνg µν (8.96) 1 4 G µνf µν 1 c E B (8.97) where care must be taken with the signs of the components of the covariant tensors F µν and G µν. You may recognize these equations as corresponding to important scalar invariants of the electromagnetic field. Finally, it is possible to solve the sourcefree Maxwell equations by introducing a 4-potential ( 1 A µ c Φ ) (8.98) A and defining F µν Aν x µ Aµ x ν (8.99) where again care must be taken with the signs of the components with downstairs indices. Furthermore, the Lorentz force law can be rewritten in the form m pµ τ qu νf µν (8.100) Note the appearance of the proper time τ in this equation. Just as in the previous chapter, this is because differentiation with respect to τ pulls through a Lorentz transformation, which makes this a valid tensor equation, valid in any inertial frame.