Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli

Similar documents
1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Ch 25 Chapter Review Q & A s

Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

Chapter 21 Study Questions Name: Class:

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

The Design and Implementation of Multimedia Software

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

Waves Sound and Light

The Sonometer The Resonant String and Timbre Change after plucking

Waves-Wave Characteristics

Waves and Sound. AP Physics B

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power

Mathematical Harmonies Mark Petersen

The Physics of Guitar Strings

Sound and stringed instruments

Solution Derivations for Capa #13

Doppler Effect Plug-in in Music Production and Engineering

Your Hearing ILLUMINATED

The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology

Noise. CIH Review PDC March 2012

Chapter 17: Change of Phase

Resonance in a Closed End Pipe

Musical Analysis and Synthesis in Matlab

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Light and Sound. Pupil Booklet

AP Psychology ~ Ms. Justice

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

The Physics of Music - Physics 15 University of California, Irvine. Instructor: David Kirkby dkirkby@uci.edu. Lecture 14.

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t))

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

The Physics of Music: Brass Instruments. James Bernhard

Waves - Transverse and Longitudinal Waves

The Tuning CD Using Drones to Improve Intonation By Tom Ball

Bass Guitar Investigation. Physics 498, Physics of Music Sean G. Ely Randall Fassbinder

Fine Tuning. By Alan Carruth Copyright All Rights Reserved.

Acoustic Terms, Definitions and General Information

Teaching Fourier Analysis and Wave Physics with the Bass Guitar

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine

Trigonometric functions and sound

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Summary The students will learn how to make a basic musical instrument and how to modify it to get different loudness and pitches.

Responsibility of all areas which could be addressed in this learning journey: Sciences experiences and outcomes:

Building a Guitar to Showcase High School Mathematics and Physics

Engineering with Sound Lesson Plan

Veterans UK Leaflet 10. Notes about War Pension claims for deafness

A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position.

Noise: Impact on Hearing; Regulation

Chapter 15, example problems:

Sound Perception. Sensitivity to Sound. Sensitivity to Sound 1/9/11. Not physically sensitive to all possible sound frequencies Range

Lecture 4: Jan 12, 2005

A diagram of the ear s structure. The outer ear includes the portion of the ear that we see the pinna/auricle and the ear canal.

Guideline for Hearing Conservation and Noise Control

Sound and Music. Drum. Drum. Guitar. Flute. Guitar. Trumpet. Flute. Trumpet

Ultrasonic Gas Leak Detection

After a wave passes through a medium, how does the position of that medium compare to its original position?

What are the causes of presbycusis? What can be done? How can I communicate with someone who has a hearing loss? How does hearing work?

Standing Waves on a String

Boardworks AS Physics

16.2 Periodic Waves Example:

PURE TONE AUDIOMETRY Andrew P. McGrath, AuD

Acoustics for Musicians

Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db

Chapter 2: Forms of Energy

Ultrasound Condition Monitoring

UNIT 1: mechanical waves / sound

Estimation of Loudness by Zwicker's Method

Energy - Heat, Light, and Sound

SOLUTIONS TO CONCEPTS CHAPTER 15

Acousto-optic modulator

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Various Technics of Liquids and Solids Level Measurements. (Part 3)

Physics of Music: Making Waves in a Science Classroom. Rosalind Echols University City High School

Hunting Bats. Diagnostic Ultrasound. Ultrasound Real-time modality

Doppler effect, moving sources/receivers

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli

Acoustics: the study of sound waves

General Thoughts on Generator Set - Acoustic Solutions & Noise Control

Sound absorption and acoustic surface impedance

Pure Tone Hearing Screening in Schools: Revised Notes on Main Video. IMPORTANT: A hearing screening does not diagnose a hearing loss.

UNIVERSITY OF CALICUT

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Basics of Digital Recording

APPLICATION NOTE AP050830

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

Sound and music. Key concepts of sound and music

Giant Slinky: Quantitative Exhibit Activity

How Waves Helped Win the War: Radar and Sonar in WWII

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

All around us we see things that wiggle and jiggle. Even

Tonal Analysis of Different Materials for Trumpet Mouthpieces

STRINGS OF THE ORCHESTRA WORKSHEET

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

Semester 2. Final Exam Review

The Doppler Effect & Hubble

Transcription:

Lecture PowerPoints Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Chapter 12 Sound

Units of Chapter 12 Characteristics of Sound Intensity of Sound: Decibels The Ear and Its Response; Loudness Sources of Sound: Vibrating Strings and Air Columns Quality of Sound, and Noise; Superposition Interference of Sound Waves; Beats Doppler Effect

Units of Chapter 12 Shock Waves and the Sonic Boom Applications: Sonar, Ultrasound, and Medical Imaging

12-1 Characteristics of Sound Sound can travel through any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest in gases, faster in liquids, and fastest in solids. The speed depends somewhat on temperature, especially for gases.

12-1 Characteristics of Sound Loudness: related to intensity of the sound wave Pitch: related to frequency. Audible range: about 20 Hz to 20,000 Hz; upper limit decreases with age Ultrasound: above 20,000 Hz; see ultrasonic camera focusing below Infrasound: below 20 Hz

12-2 Intensity of Sound: Decibels The intensity of a wave is the energy transported per unit time across a unit area. The human ear can detect sounds with an intensity as low as 10-12 W/m 2 and as high as 1 W/m 2. Perceived loudness, however, is not proportional to the intensity.

12-2 Intensity of Sound: Decibels The loudness of a sound is much more closely related to the logarithm of the intensity. Sound level is measured in decibels (db) and is defined: (12-1) I 0 is taken to be the threshold of hearing:

12-2 Intensity of Sound: Decibels An increase in sound level of 3 db, which is a doubling in intensity, is a very small change in loudness. In open areas, the intensity of sound diminishes with distance: However, in enclosed spaces this is complicated by reflections, and if sound travels through air the higher frequencies get preferentially absorbed.

12-3 The Ear and Its Response; Loudness

12-3 The Ear and Its Response; Loudness Outer ear: sound waves travel down the ear canal to the eardrum, which vibrates in response Middle ear: hammer, anvil, and stirrup transfer vibrations to inner ear Inner ear: cochlea transforms vibrational energy to electrical energy and sends signals to the brain

12-3 The Ear and its Response; Loudness The ear s sensitivity varies with frequency. These curves translate the intensity into sound level at different frequencies.

12-4 Sources of Sound: Vibrating Strings and Air Columns Musical instruments produce sounds in various ways vibrating strings, vibrating membranes, vibrating metal or wood shapes, vibrating air columns. The vibration may be started by plucking, striking, bowing, or blowing. The vibrations are transmitted to the air and then to our ears.

12-4 Sources of Sound: Vibrating Strings and Air Columns The strings on a guitar can be effectively shortened by fingering, raising the fundamental pitch. The pitch of a string of a given length can also be altered by using a string of different density.

12-4 Sources of Sound: Vibrating Strings and Air Columns A piano uses both methods to cover its more than seven-octave range the lower strings (at bottom) are both much longer and much thicker than the higher ones.

12-4 Sources of Sound: Vibrating Strings and Air Columns Wind instruments create sound through standing waves in a column of air.

12-4 Sources of Sound: Vibrating Strings and Air Columns A tube open at both ends (most wind instruments) has pressure nodes, and therefore displacement antinodes, at the ends.

12-4 Sources of Sound: Vibrating Strings and Air Columns A tube closed at one end (some organ pipes) has a displacement node (and pressure antinode) at the closed end.

12-5 Quality of Sound, and Noise; Superposition So why does a trumpet sound different from a flute? The answer lies in overtones which ones are present, and how strong they are, makes a big difference. The plot below shows frequency spectra for a clarinet, a piano, and a violin. The differences in overtone strength are apparent.

12-6 Interference of Sound Waves; Beats Sound waves interfere in the same way that other waves do in space.

12-6 Interference of Sound Waves; Beats Waves can also interfere in time, causing a phenomenon called beats. Beats are the slow envelope around two waves that are relatively close in frequency.

12-7 Doppler Effect The Doppler effect occurs when a source of sound is moving with respect to an observer.

12-7 Doppler Effect As can be seen in the previous image, a source moving toward an observer has a higher frequency and shorter wavelength; the opposite is true when a source is moving away from an observer.

12-7 Doppler Effect If we can figure out what the change in the wavelength is, we also know the change in the frequency.

12-7 Doppler Effect The change in the wavelength is given by:

12-7 Doppler Effect And the change in the frequency: (12-2a) If the source is moving away from the observer: (12-2b)

12-7 Doppler Effect If the observer is moving with respect to the source, things are a bit different. The wavelength remains the same, but the wave speed is different for the observer.

12-7 Doppler Effect We find, for an observer moving towards a stationary source: (12-3a) And if it is moving away: (12-3b)

12-8 Shock Waves and the Sonic Boom If a source is moving faster than the wave speed in a medium, waves cannot keep up and a shock wave is formed. The angle of the cone is: (12-5)

12-8 Shock Waves and the Sonic Boom Shock waves are analogous to the bow waves produced by a boat going faster than the wave speed in water.

12-8 Shock Waves and the Sonic Boom Aircraft exceeding the speed of sound in air will produce two sonic booms, one from the front and one from the tail.

12-9 Applications: Sonar, Ultrasound, and Medical Imaging Sonar is used to locate objects underwater by measuring the time it takes a sound pulse to reflect back to the receiver. Similar techniques can be used to learn about the internal structure of the Earth. Sonar usually uses ultrasound waves, as the shorter wavelengths are less likely to be diffracted by obstacles.

12-9 Applications: Sonar, Ultrasound, and Medical Imaging Ultrasound is also used for medical imaging. Repeated traces are made as the transducer is moved, and a complete picture is built.

12-9 Applications: Sonar, Ultrasound, and Medical Imaging Ordinary ultrasound gives a good picture; highresolution ultrasound is excellent.

Summary of Chapter 12 Sound is a longitudinal wave in a medium. The pitch of the sound depends on the frequency. The loudness of the sound depends on the intensity and also on the sensitivity of the ear. The strings on stringed instruments produce a fundamental tone whose wavelength is twice the length of the string; there are also various harmonics present.

Summary of Chapter 12 Wind instruments have a vibrating column of air when played. If the tube is open, the fundamental is twice its length; if it is closed the fundamental is four times the tube length. Sound waves exhibit interference; if two sounds are at slightly different frequencies they produce beats. The Doppler effect is the shift in frequency of a sound due to motion of the source or the observer.