Getting to Know Rocks and Soil

Similar documents
1. A student found a sample of a solid material that was gray, shiny and made of all the same material. What category does this sample best fit?

The rock cycle. Introduction. What are rocks?

What are Rocks??? Rocks are the most common material on Earth. They are a naturally occurring collection of one or more minerals.

Rocks and Minerals What is right under your feet?

How can you tell rocks apart?

Three Main Types of Rocks Igneous Rocks. Sedimentary Rocks Metamorphic Rocks. Made by Liesl at The Homeschool Den

Earth Science Landforms, Weathering, and Erosion Reading Comprehension. Landforms, Weathering, and Erosion

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate

Exploring How Rocks Are Formed

FIRST GRADE ROCKS 2 WEEKS LESSON PLANS AND ACTIVITIES

WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST. Which graph best shows the relative stream velocities across the stream from A to B?

What is a rock? How are rocks classified? What does the texture of a rock reveal about how it was formed?

Sedimentary Rocks. Find and take out 11B-15B and #1 From Egg Carton

TYPES OF ROCKS & THE ROCK CYCLE

Unit 4: The Rock Cycle

FOR PERSONAL USE. Weathering (Sessions I and II) BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES

Unit Study Guide: Rocks, Minerals, and the Rock Cycle

Sedimentary Rock Formation Models. 5.7 A Explore the processes that led to the formation of sedimentary rock and fossil fuels.

Weathering, Erosion, and Soils. Weathering and Erosion. Weathering and Erosion

Ocean Floor Continental Slope Begins at the Continental Shelf Very sharp drop to depths over 2 miles Covered with thick layers of sand, mud, and rocks

Granite. A Rocky Journey and Talking Rocks Role play and sorting clues.

Rocks & Minerals 1 Mark Place,

Name: Rocks & Minerals 1 Mark Place,

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire

Rapid Changes in Earth s Surface

The Rock Cycle: Metamorphic, Sedimentary, and Igneous Rocks

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Fourth Grade Geology: The Earth and Its Changes Assessment

Topic: Rocks, Minerals and Soil Duration: Grade Level: 6 9 days

Earth Science Grade 4 Minerals

Rock Identification Lab

EARTH SCIENCE 110 INTRODUCTION to GEOLOGY MINERALS & ROCKS LABORATORY

Credits Copyright, Utah State Office of Education, 2014.

KINDERGARTEN WATER 1 WEEK LESSON PLANS AND ACTIVITIES

Essential Standards: Grade 4 Science Unpacked Content

Mud in the Water. Oklahoma Academic Standards. Objective. Background. Resources Needed. Activities

FROM SEDIMENT INTO SEDIMENTARY ROCK. Objectives. Sediments and Sedimentation

ROCKS OF THE GRAND CANYON BACKGROUND INFORMATION FOR DOCENTS

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE ROCKS 1 WEEK LESSON PLANS AND ACTIVITIES

EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE

LESSON PLAN FOR ROCKS AND MINERALS. Episode Six 306 Street Science (Earth Science)

Sedimentary Rocks, Depositional Environments and Stratigraphy

All sediments have a source or provenance, a place or number of places of origin where they were produced.

2 Wind Erosion and Deposition

Carbonate Rock Formation

Earth Materials: Intro to rocks & Igneous rocks. The three major categories of rocks Fig 3.1 Understanding Earth

Ride the Rock Cycle. Suggested Goals: Students will gain an understanding of how a rock can move through the different stages of the rock cycle.

7) A clastic sedimentary rock composed of rounded to subrounded gravel is called a A) coal. B) shale. C) breccia.

Mixtures. reflect. How is seawater different from pure water? How is it different from rocky soil?

Roadstone - which rock? Investigating the best rock type for the wearing course of roads

5-Minute Refresher: WEATHERING AND EROSION

Third Grade Science Vocabulary Investigation Design & Safety

WEATHERING, EROSION, and DEPOSITION REVIEW

1/2/3. Finding out about the Water Cycle

Igneous rocks formed when hot molten material (magma) cools and hardens (crystallizes).

Lesson 5: The Rock Cycle: Making the Connection

GRADE 3 INSTRUCTIONAL TASKS. Rocks and Minerals

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5

Rocks and Plate Tectonics

Amazing World Under Our Feet

The Water Cycle Now You See It, Now You Don t

Investigation 1-Part 1: Investigating Mock Rocks. Geology: the scientific study of Earth s history and structure

Volcanoes Erupt Grade 6

Lesson 13: Plate Tectonics I

3. Practice describing and classifying rocks as sedimentary, metamorphic or igneous.

Part Two Our Ever Changing Earth

Characteristics of Sedimentary Rocks

Key concepts of rocks and soil

6.4 Taigas and Tundras

The Earth, Sun, and Moon

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

PUSD High Frequency Word List

XVI. Science and Technology/Engineering, Grade 5

The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.

1 yard per sq. 2 Depth. Color is a personal choice. Dye fades due to sunlight. Although color remains, fading begins to occur

Create Your Own Soil Profile Ac5vity

[4] SA1.2 The student demonstrates an understanding of the processes of science by observing,

ES 104: Laboratory # 7 IGNEOUS ROCKS

6. Base your answer to the following question on the graph below, which shows the average monthly temperature of two cities A and B.

Section 1 The Earth System

An Online School for Weather.

Beech Maple Forest Classroom Unit

Volcano in the lab: a wax volcano in action: teacher s notes

The Water Cycle. 4 th Grade Pre-Visit Activity #1

ROCKS, FOSSILS AND SOILS SECTION 8: FOSSILS From Hands on Science by Linda Poore, 2003

TECTONICS ASSESSMENT

Chapter 3: Separating Mixtures (pg )

II. Fourth Grade, Rocks and Minerals 2004 Colorado Summer Writing Institute 1

Water & Climate Review

ORANGE PUBLIC SCHOOLS OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF SCIENCE. GRADE 6 SCIENCE Post - Assessment

2 nd Grade Science Unit B: Life Sciences Chapter 3: Plants and Animals in Their Environment Lesson 1: How are plants and animals like their parents?

6.E.2.2 Plate Tectonics, Earthquakes and Volcanoes

Grade 4 Standard 1 Unit Test Water Cycle. Multiple Choice. 1. Where is most water found on Earth? A. in glaciers B. in lakes C. in rivers D.

[Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics}

Lesson 3: The Big Rock Lesson: Introduction to Rocks. Scientific Process(es) Addressed: Observing, communicating, inferring and defining operationally

KINDERGARTEN PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

Key Idea 2: Ecosystems

Plant Growth - Light and Shade

Transcription:

Science Benchmark: 04:03 Earth materials include rocks, soils, water, and gases. Rock is composed of minerals. Earth materials change over time from one form to another. These changes require energy. Erosion is the movement of materials and weathering is the breakage of bedrock and larger rocks into smaller rocks and soil materials. Soil is continually being formed from weathered rock and plant remains. Soil contains many living organisms. Plants generally get water and minerals from soil. Standard III: Students will understand the basic properties of rocks, the processes involved in the formation of soils, and the needs of plants provided by soil. Shared Reading Getting to Know Rocks and Soil We live on a rocky world! Rocks are all around us. We live on rocks even though we can t always see them. These rocks are sometimes hidden deeply beneath our feet, and sometimes they are exposed on Earth s surface so we can see them. On mountaintops, where the soil is very thin, rocks often poke through. All rocks are made of mixtures of different minerals. Minerals are the building blocks from which rocks are made. People who study rocks make observations of rocks they discover. They identify the different minerals in the rocks they find. How can they do this? Each mineral has a certain color (or colors), appearance, shape, hardness, texture, crystal pattern, and possibly a smell that sets it apart from another. As scientists test each mineral's characteristics, they are able to tell which minerals are in the rocks. Rocks can change over a period of time. The rocks we see today may have looked differently millions of years ago. How rocks change depends on the type of rock and where it is found on Earth. Rocks on Earth's surface are changed by weathering. Weathering of rocks can be caused by the action of plants, wind, heat, or water. The roots of plants can grow into the cracks and soft parts of rocks. As the roots grow larger, they break off pieces of rock from the main rock. Plants can also grow on the rocks when the conditions are right. The acids in plants dissolve parts of the rocks that the plants are closest to. Wind blows sand and dirt onto the surface of rocks and wears them away. Heat from the sun causes rocks to expand. At night the rocks contract. This constant expansion and contraction will eventually break up the rocks. minerals : solid materials formed in nature that has a specific crystal structure weathering : the breaking down of rocks into smaller pieces called sediments Grade Benchmark Standard Page 04 04 : 03 03 10.1.1

When running water carries rocks down a river or stream, the water knocks the rocks against each other and they break apart. Water can also dissolve the soft parts of rocks and leave holes or water lines where rocks are worn away. However, most weathering is caused by the action of water as it runs into the cracks of rocks. During the day when snow thaws, water seeps into the cracks of rocks. At night when the temperature gets cold, the water freezes. As it freezes, it expands and breaks the rocks apart. The sediments resulting from weathering may not stay in one place very long. The broken rock or sediments can be carried away by wind, moving water, or moving ice. This is called erosion. The sediments gather at the mouths of rivers or the bottom of lakes or shallow seas. Over time, layers of sediments continue to build in these bodies of water and press down on the layers beneath. Some minerals in the sediment dissolve in the water and act like cement, holding the sediments together. When this happens a solid mass of rock is formed. These rocks are called sedimentary rocks. Sedimentary rocks usually have rounded sediments, or particles, and are often layered. Some common types of sedimentary rocks found in Utah are: sandstone, conglomerate and shale. Sandstone Conglomerate Shale There are three types of rocks: sedimentary, igneous, and metamorphic. In the next few paragraphs you will learn how and where these rocks form. Igneous rocks form when melted rock rises up from inside Earth and cools. This cooling may happen below Earth's surface or on Earth's surface. When melted rock is below Earth's surface (magma), it takes many years to cool. As it slowly cools, the igneous rock formed may have crystals, which are very easy to see. When melted rock is above Earth's surface (lava), it doesn't take long to cool. Because the surface cools rapidly, these igneous rocks may have air holes in them or appear glasslike. They hardly ever form crystals and are never layered. erosion : the movement of rock fragments from one place to another freezes : turns to ice igneous : rocks formed when magma, or melted rock, from deep inside Earth, rises and cools sedimentary : rocks formed from sediments that have settled into layers thaws : melts 10.1.2

Many igneous rocks are found in Utah. Below are four igneous rocks that are very common in Utah. Obsidian looks like black glass. Native Americans often used this rock to make spears and arrow heads. Granite is often used as building material. It has visible crystals in it. Pumice floats on water because there are air pockets in this rock. Basalt is a heavy, dark rock because it has the element iron in it. It may have air holes throughout it also, but it doesn't float. Many people use this rock for decoration in their yards. Which of these igneous rocks formed inside Earth? Which ones formed on Earth's surface? Obsidian Granite Pumice Basalt Metamorphic rocks are rocks that have been changed inside Earth by heat and pressure. Heat comes from volcanoes and hot rocks under Earth s surface. Pressure comes from the layers of rock pressing down on layers below them. Both heat and pressure must exist at the same time to form metamorphic rocks. Metamorphic rocks may have crystals or layers. Sometimes we call the crystals gems because they are rare or valuable. Some of the most valuable gemstones like rubies, sapphires and garnets are found in metamorphic rocks. Other kinds of metamorphic rocks may be used in buildings and art because of their beauty. Metamorphic rocks found in Utah are marble, gneiss (nice) and schist. Marble starts out as limestone. Under heat and pressure the crystals in limestone recrystalize, making marble harder and stronger than limestone. Marble is used in buildings and carving statues. Gneiss begins as granite. Under heat and pressure the minerals line up with each other, giving the rock a banded appearance. Schist begins as clay sediments. Erosion transports the clay sediments through water to the bottom of a lake or shallow sea. As pressure increases and mineral cementing takes places, the clay turns into shale, a sedimentary rock. If heat is also added, it will help turn shale into slate, a metamorphic rock. If the heat and pressure continue, mica crystals begin to form in the slate. These mica crystals grow together, giving schist a very shiny and sparkly appearance. Marble Gneiss Schist metamorphic : rocks that has been changed by heat and pressure 10.1.3

Soil forms as a result of weathered rock. Soil is partially made up of particles of rocks and minerals. Rocks and minerals are nonliving soil components. The particles of rocks and minerals found in soil have broken away from larger pieces of rocks and minerals. Most of the particles are in very small pieces but of different sizes. The best soils for growing crops have equal amounts of large, medium and small-sized particles. Other nonliving parts of soil are water and air spaces between mineral particles. They are important for plant growth. The circle graph at the right shows the percentage of these components on parts of topsoil. Soil also contains organisms. Living organisms are an important part of soil. Living organisms break down or decompose dead plants and dead animals. This makes soil rich and healthy for plants to grow in. Look at the soil profile to the right. If you dug a hole into the soil, you would see that it has layers like this one. An average soil profile consists of three layers: topsoil, subsoil, and bedrock. The top layer of soil is called topsoil. This layer is usually darker in color because it contains many living and dead organisms. Creatures that live in the soil, like earthworms, insects and snails live in this layer because the topsoil is rich in nutrients. When these living creatures decompose dead plant and animal material, more nutrients are added into the soil. These nutrients become small enough to be absorbed by the roots of plants. The topsoil layer is where plants can absorb water, mineral nutrients, and air. All animals live off this layer. Without this layer, life on Earth would be impossible. It takes about 1,000 years to create one inch of topsoil. In Utah, our topsoil depths range from one to 12 inches. Organic Matter Topsoil Subsoil Bedrock Components of Topsoil mineral matter 45% organic matter 5% Soil Profile nonliving : never lived organisms : living plant or animal life soil profile : side view slice of the different layers of Earth topsoil : the top layer of soil that contains living organisms and nonliving things nutrients : substances that organisms need in order to survive and grow 10.1.4 air 25% water 25%

The middle layer is the subsoil. It has larger grains of rocks and minerals and is usually lighter in color. Plants do not grow well in subsoil because it is tightly packed and has very few nutrients. The bottom layer is bedrock. Bedrock is made up of different rocks in different places. It is the bedrock that erodes and eventually becomes topsoil. Bedrock can be within a few inches of the surface or many feet below it. Since topsoil is very precious, we want to make sure that wind doesn't blow it away or that water erodes it away. Soil that has plants on it will not erode away. When plants are growing, the roots grow down into the soil. This helps prevent soil erosion. When we receive precipitation, it falls on hillsides with and without plants. The hillsides without plants will erode in a rainstorm, causing huge gullies. The hillsides with plants will keep the soil in place. When the wind blows, the soil with no plants will blow away. The soil with plants will stay. How can we prevent soil erosion from happening? Have you ever noticed that the hillsides next to our roads and freeways have plants on them? They were planted there so during storms the soil wouldn't wash away or blow off. Another way to prevent soil erosion is to place a retaining wall on a slope. Boulders, logs, bricks, and cement are used to hold back the soil. Plants grow best when the supply of water, air, light, and nutrients are always available for them. Soil provides a holding place for water and nutrients. Soil also gives plants structural support. However, plants can grow without soil if they have other ways of getting water, mineral nutrients, and something else to hold them up, like gravel or a wire cage. Today, some food crops are grown entirely without soil. This is called hydroponics. Farmers who grow their crops using hydroponics use various support systems, and they carefully monitor the nutrients so the plants will produce fruits and vegetables. You might enjoy sprouting seeds without soil. Seeds will grow on a moist paper towel in a plastic bag. Try it! bedrock : solid rock that lies underneath the subsoil that has not yet been broken down structural support : help to anchor the plant subsoil : the layer below the topsoil 10.1.5

Science Language that Students Should Know and Use 1. bedrock: solid rock that lies underneath the subsoil that has not yet been broken down 2. erosion: the movement of rock fragments from one place to another 3. freeze: turn to ice 4. igneous: rocks that are formed when magma, or melted rock from deep inside Earth, rises and cools 5. metamorphic: a rock that has been changed by heat and pressure 6. minerals: solid materials formed in nature that have a specific crystal structure 7. nonliving: never lived 8. nutrients: substances that organisms need in order to survive and grow 9. organisms: living plant or animal life 10. sedimentary: rocks formed from sediments that have settled into layers 11. soil profile: a side view slice of the different layers of Earth 12. structural support: help to anchor a plant 13. subsoil: the layer below the topsoil 14. thaw: melt 15. topsoil: the top layer of soil that contains living organisms and nonliving things 16. weathering: the breaking down of rocks into smaller pieces called sediments 10.1.6

Resources used: Houghton Mifflin Science Discovery Works 2003-Level 4 Harcourt Science 2002 Level 4 Harcourt Science 2002 Level 3 Dirt: Secrets in the Soil- Special project of Utah Agriculture in the classroom Note: The video in this project is excellent and highly recommended to use as a resource in teaching this standard. Lesson plans from this project can be found on the following website: http://www.nesoil.com/images.htm USOE and JSD Elementary Science Teacher Hands On Science and Resource Book 1995 Kindersley, Dorling. Picturepedia Plants Kindersley, Inc. 1993 Juvenile literature Gardner, Robert. Science Projects About Plants Enslow Publishers, Inc. 1999 pg. 66-67 Rybolt, Thomas R. and Meban, Robert C., Science Experiments for Young People Environmental Experiments about Land. Enslow Publishers, Inc. 1993 Additional Resources: Ganeri, Anita. Nature Detective Plants Franklin Watts. 1992 Illustrations with explanatory text provide information about various types of plants and how and where they grow. Includes simple projects ISBN 0-531-14194-2 Juvenile literature King, John. Reaching for the Sun-How Plants Work 1997. Cambridge University Press ISBN 0-521-58738-7 adult reading Penny, Malcolm. Nature's Mysterious How Plants Grow Benchmark Books. Describes the growth and development of various plants-juvenile literature JSD video Dirt-Wonder Why Series #134458 26 minutes JSB video Soil: An introduction #12697 12 minutes 10.1.7