108-2,936 μs K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, How fast-folding proteins fold. Science 334, (2011). 100 ns, 64,000,000 atoms

Similar documents
Tutorial for Trypsin- Benzamidine complex molecular dynamics study.

GROMACS Introductory Tutorial

Molecular Dynamics Simulations

What is molecular dynamics (MD) simulation and how does it work?

Gromacs Introductory Tutorial

Biomolecular Modelling

Hydrogen Bonds The electrostatic nature of hydrogen bonds

The Quixote Project: a pioneering work in managing Computational Chemistry research data

file:///c /Documents%20and%20Settings/terry/Desktop/DOCK%20website/terry/Old%20Versions/dock4.0_faq.txt

The Application of Distributed Computing to the Investigation of Protein Conformational Change

Overview of NAMD and Molecular Dynamics

Scoring Functions and Docking. Keith Davies Treweren Consultants Ltd 26 October 2005

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

CHEM 451 BIOCHEMISTRY I. SUNY Cortland Fall 2010

Carbohydrates, proteins and lipids

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Molecular Docking. - Computational prediction of the structure of receptor-ligand complexes. Receptor: Protein Ligand: Protein or Small Molecule

Introduction to Molecular Dynamics Simulations

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Physical Chemistry. Tutor: Dr. Jia Falong

Supplementary Figures S1 - S11

Molecular Modelling of DNA. Charlie Laughton University of Nottingham

AP CHEMISTRY 2009 SCORING GUIDELINES

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Protein Dynamics Intro

AP BIOLOGY 2008 SCORING GUIDELINES

1. Free energy with controlled uncertainty 2. The modes of ligand binding to DNA

Molecular Cell Biology

Carbon-organic Compounds

CHEMISTRY 113 EXAM 4(A)

Lecture 19: Proteins, Primary Struture

Assessing Checking the the reliability of protein-ligand structures

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

Chapter 3. Protein Structure and Function

Chemistry Diagnostic Questions

GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation

Structure Check. Authors: Eduard Schreiner Leonardo G. Trabuco. February 7, 2012

CHAPTER 4: Enzyme Structure ENZYMES

ATOMS AND BONDS. Bonds

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Combinatorial Biochemistry and Phage Display

H 2O gas: molecules are very far apart

DCI for Electronegativity. Data Table:

Ions cannot cross membranes. Ions move through pores

Infrared Spectroscopy: Theory

Chemical Basis of Life Module A Anchor 2

Cells & Cell Organelles

1 The water molecule and hydrogen bonds in water

Atsushi Matsumoto. Hisashi Ishida 1, Kei Yura 1, Takuma Kano 1 and Atsushi Matsumoto Introduction

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Chapter 5: The Structure and Function of Large Biological Molecules

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

Hands-on exercises on solvent models & electrostatics EMBnet - Molecular Modeling Course 2005

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors

M.Sc. in Nano Technology with specialisation in Nano Biotechnology

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

CSC 2427: Algorithms for Molecular Biology Spring Lecture 16 March 10

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016

Language: English Lecturer: Gianni de Fabritiis. Teaching staff: Language: English Lecturer: Jordi Villà i Freixa

ENZYMES. Serine Proteases Chymotrypsin, Trypsin, Elastase, Subtisisin. Principle of Enzyme Catalysis

Steffen Lindert, René Staritzbichler, Nils Wötzel, Mert Karakaş, Phoebe L. Stewart, and Jens Meiler

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity

Chapter 2: The Chemical Context of Life

2/10/2011. Stability of Cycloalkanes: Ring Strain. Stability of Cycloalkanes: Ring Strain. 4.3 Stability of Cycloalkanes: Ring Strain

Photosynthesis and Cellular Respiration. Stored Energy

NO CALCULATORS OR CELL PHONES ALLOWED

Faculty of Computer Science, Universitas Indonesia 2 Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Indonesia

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

Order of Filling Subshells

Bonding & Molecular Shape Ron Robertson

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

6.5 Periodic Variations in Element Properties

Analysis of structural dynamics by H/D-exchange coupled to mass spectrometry HDX-MS

Chapter 8: Energy and Metabolism

Lesson 3. Chemical Bonding. Molecular Orbital Theory

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

Kinetic Molecular Theory of Matter

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

PLEASE SCROLL DOWN FOR ARTICLE

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

SELF DIFFUSION COEFFICIENT OF LENNARD-JONES FLUID USING TEMPERATURE DEPENDENT INTERACTION PARAMETERS AT DIFFERENT PRESSURES

COURSE TITLE COURSE DESCRIPTION

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Preliminary MFM Quiz

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

Paper: 6 Chemistry University I Chemistry: Models Page: 2 of Which of the following weak acids would make the best buffer at ph = 5.0?

Basic Scientific Principles that All Students Should Know Upon Entering Medical and Dental School at McGill

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

4. Biology of the Cell

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

Transcription:

www.nobelprize.org 108-2,936 μs K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, How fast-folding proteins fold. Science 334, 517-520 (2011). 100 ns, 64,000,000 atoms 3.2 ps, < 1,000 atoms J.A. McCammon, B.R. Gelin & M. Karplus, Dynamics of folded proteins. Nature 267, 585-590 (1977). G. Zhao et al. Mature HIV1 capsid structure by cryoelectron microscopy and all-atom molecular dynamics. Nature, 497, 643-646 (2013).

Molecular Dynamics Simulation 1957 hard spheres - Alder & Waiinwright 1964 argon? Rahman 1971 water 2.2 ps Rahman & Stillinger 1977 BPTI 8 ps 1988 phospholipid bilayer 200 ps Egberts & Berendsen 1993 biotin-streptavidin 108 ps Myiamoto & Kollman 1995 bacteriorhodopsin 300 ps Edholm et al. 1998 porin 1 ns Tieleman & Berendsen 1998 peptide folding 1 μs Duan & Kollman 2011 small protein folding 2.9 ms Shaw et al. 2013 virus capsid 100 ns Schulten et al. McCammon et al.

BIOMOLECULAR SIMULATIONS - 4D structures - molecular microscopy - explanation of structural phenomena - predictions

BIOMOLECULAR SIMULATIONS - protein stability in different environments effect of covalent modifications on protein structures protein folding validation of predicted protein structures protein-ligand, protein-protein interactions membrane structures structures of other biopolymers mechanics of biopolymers and their complexes signal transition in biomolecular systems virtual experiments assistance of experimental methods

Newton's equation of motion 2 mi ri t 2 =Fi V Fi = ri

Software for biomolecular simulation free GROMACS http://www.gromacs.org cheap AMBER http://ambermd.org GROMOS http://www.gromos.net CHARMM http://www.charmm.org expensive

Potential energy good structure low energy bad structure high energy

Force fields 1 1 2 2 V = k r r r 0 k 0 bonds 2 angles 2 k 1 cos n s torsions pairs [ 12 ij 12 ij qi q j C 1 4 0 r r ij r 2 4 1 3 5 6 C 6 ij 6 ij r ]

Force fields 1 1 2 2 V = k r r r 0 k 0 bonds 2 angles 2 k 1 cos n s torsions pairs [ 12 ij 12 ij qi q j C 1 4 0 r r ij r 7 2 8 1 3 4 5 6 C 6 ij 6 ij r ]

Partial charges

Force fields Proteins, nucleic acids, lipids: AMBER GROMOS OPLS CHARMM general molecules: GAFF MM2 MM3 MMFF Special: Glycam (carbohydrates) Martini (coarse grained)

Force fields all atom united atom coarse grained

[ atomtypes ] ;name bond_type mass charge ptype sigma epsilon opls_111 OW 8 15.99940 0.834 A 3.15061e 01 6.36386e 01 opls_112 HW 1 1.00800 0.417 A 0.00000e+00 0.00000e+00 [ moleculetype ] ; molname nrexcl SOL 2 [ atoms ] ; id at type res nr residu name at name cg nr charge 1 opls_111 1 SOL OW 1 0.834 2 opls_112 1 SOL HW1 1 0.417 3 opls_112 1 SOL HW2 1 0.417 [ bonds ] ; i j funct length force.c. 1 2 1 0.09572 502416.0 1 3 1 0.09572 502416.0 [ angles ] ; i j k funct angle force.c. 2 1 3 1 104.52 628.02

Water (TIP3P model) [ atomtypes ] ;name bond_type mass charge ptype sigma epsilon opls_111 OW 8 15.99940 0.834 A 3.15061e 01 6.36386e 01 opls_112 HW 1 1.00800 0.417 A 0.00000e+00 0.00000e+00 [ moleculetype ] ; molname nrexcl SOL 2 [ atoms ] ; id at type res nr residu name at name cg nr charge 1 opls_111 1 SOL OW 1 0.834 2 opls_112 1 SOL HW1 1 0.417 3 opls_112 1 SOL HW2 1 0.417 [ bonds ] ; i j funct length force.c. 1 2 1 0.09572 502416.0 1 3 1 0.09572 502416.0 [ angles ] ; i j k funct angle force.c. 2 1 3 1 104.52 628.02

How to obtain (missing) force field parameters? 1. Other force fields (with caution) 2. Experiment infrared spectroscopy, crystallography,... 3. Molecular modelling quantum chemistry

Newton's equation of motion Forces 2 Masses mi ri t 2 =Fi V Fi = ri Potential energy

Molecular dynamics simulation vs geometry optimization & geometry search r r

Chemical reactions - quantum chemistry - combination of molecular mechanics with quantum chemistry (QM/MM) - molecular mechanics trained by quantum chemistry (empirical valence bond) - special reactive force fields

Water Why is water important? + +

QM/MM M. Krupička, I. Tvaroška: J Phys Chem B (2009) 113, 11314-9.

Constraints

Periodic boundary condition

Other issues: Temperature control - Berendsen, Nose-Hoover, V-rescale thermostat - initial velocity Pressure control - Berendsen, Parrinello-Rahman barostats Control of surface tension

Output analysis temporary development of structural parameters: - energy, temperature - distances, angles, torsions - number of native contacts - secondary structure - radius of gyration - root mean square deviations (RMSD) RMSD RMSD time time

Output analysis - root mean square fluctuations (RMSF) RMSF residue number

Output analysis - essential dynamics trajectory molecule CV2 collective motions CV1

S-peptide demo

S-peptide GROMACS 1. initial coordinates 2. topology 3. instructions for the program

S-peptide GROMACS convert speptide.pdb to topology and coordinates, add hydrogens $ pdb2gmx -f speptide -o speptide -p speptide + chose the right force field create a box with the protein in the centre $ editconf -f speptide -o box -c -d 1 fill the box with water $ genbox -cp box -cs -p speptide -o solvated add counterions if necessary

S-peptide GROMACS 1. initial coordinates (speptide.gro) Go Rough, Oppose Many Angry Chinese Serial killers 286 1LYS N 1 2.497-0.065 2.231 1LYS H1 2 2.581-0.048 2.180 1LYS H2 3 2.519-0.086 2.326 1LYS H3 4 2.448-0.142 2.190... 19ALA C 284 2.846 3.022 2.056 19ALA OC1 285 2.919 3.015 1.954 19ALA OC2 286 2.713 3.020 2.055 1.79949 3.37953 1.37997 S-peptide (19 amino acids, 286 atoms, C86H140N27O32S, 1 Cl-, 859 H2O)

S-peptide GROMACS 2. topology (speptide.top) 22 atom types 286 atoms 287 bonds, 733 1 4 interactions 513 valence angles 798 torsions + water and ion topology

S-peptide GROMACS 3. instructions for the program (md.mdp) integrator = constraints = constraint_algorithm = dt = nsteps = nstcomm = nstxout = nstvout = nstfout = nstlog = nstenergy = nstlist = ns_type = coulombtype = rlist = rcoulomb = rvdw = Use molecular dynamics md Fixed length of all bonds all-bonds lincs 0.002 ; ps! 500000 ; total 1 ns. 1 Simulated time 250 (500 000 times 2 fs = 1 ns) 1000 0 100 100 Frequency of data storage 10 grid PME 1.0 Set-up of non-covalent 1.0 interaction treatment 1.0

S-peptide GROMACS 3. instructions for the program (speptide.top) ; Berendsen temperature coupling is on in two groups Tcoupl = berendsen tc-grps = Protein SOL Temperature control tau_t = 0.1 0.1 ref_t = 300 300 ; Energy monitoring energygrps = Protein SOL ; Isotropic pressure coupling is now on Pcoupl = berendsen Pcoupltype = isotropic tau_p = 0.5 Pressure control compressibility = 4.5e-5 ref_p = 1.0 ; Generate velocites is off at 300 K. gen_vel = no gen_temp = 300.0 Temperature at t=0 gen_seed = 173529

S-peptide run energy minimization $ grompp -f em -c solvated -p speptide -o em1 $ mdrun -s em1 -o em1 -e em1 -g em1 -c after_em1 run molecular dynamics simulation $ grompp -f md -c after_em1 -p speptide -o md1 $ mdrun -s md1 -o md1 -e md1 -g md1 -c after_md1 Step Time Lambda 2800 5.60000 0.00000 Rel. Constraint Deviation: Max between atoms RMS Before LINCS 0.058424 247 248 0.007393 After LINCS 0.000082 180 182 0.000029 Energies (kj/mol) Angle Proper Dih. Ryckaert Bell. LJ 14 Coulomb 14 6.22621e+02 5.32697e+01 7.29416e+02 2.94892e+02 3.86087e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 4.62848e+03 4.71919e+04 3.70024e+04 7.47176e+03 2.95306e+04 Temperature Pressure (bar) 3.14265e+02 2.02309e+02

S-peptide NODE (s) Real (s) (%) Time: 573.400 580.000 98.9 9:33 (Mnbf/s) (GFlops) (ns/day) (hour/ns) Performance: 11.327 1.597 15.068 1.593 Finished mdrun on node 0 Sun Sep 20 11:21:17 2011

Example study V. Spiwok, P. Lipovová, T. Skálová, J. Dušková, J. Dohnálek, J. Hašek, N.J. Russell, B. Králová: J. Mol. Model. (2007) 13:485-497.

Example study V. Spiwok, P. Lipovová, T. Skálová, J. Dušková, J. Dohnálek, J. Hašek, N.J. Russell, B. Králová: J. Mol. Model. (2007) 13:485-497.

Example study V. Spiwok, P. Lipovová, T. Skálová, J. Dušková, J. Dohnálek, J. Hašek, N.J. Russell, B. Králová: J. Mol. Model. (2007) 13:485-497.

Sampling

Sampling A B

Sampling A Vpot,A B Vpot,B Comparison of Vpot does not (usually) work: - many degrees of freedom - water - temperature, entropy

Sampling A B A B time

Sampling A B A B time We can really simulate

Computers Clusters

Supercomputers http://www.top500.org #1: Tianhe-2 (MilkyWay-2), 3,120,000 cores, China

Supercomputers http://www.top500.org #40: Salomon, 76,896 cores, IT4Innovation, CZ

GPU computing

Special purpose computers

Příklady simulací 2-adrenergní receptor Dror et al. (2009) Proc Natl Acad Sci USA, 106, 4689 4694

Distributed computing http://folding.stanford.edu/

Sampling problem algorithmic solutions Metadynamics Herbert C. et al. Molecular Mechanism of SSR128129E, an Extracellularly Acting, Small-Molecule, Allosteric Inhibitor of FGF Receptor Signaling. Cancer Cell 23, 489501 (2013). SSR128129E - Allosteric inhibitor of fibroblast growth factor receptor, which does not compete with FGF, but inhibits FGF signalling.

Sampling problem algorithmic solutions Metadynamics Iduronic acid 4 C1 1 C4 2 SO P. Oborský, I. Tvaroška, B. Králová, V. Spiwok, Toward an Accurate Conformational Modeling of Iduronic Acid. J Phys Chem B 117, 1003-1009 (2013).

Sampling problem algorithmic solutions Metadynamics Iduronic acid 4 C1 4 C1 SO 2 population (%) 100 1 80 60 +30 kj/mol C4 SO 2 100 60 40 40 20 20 0 0 C4 4 C1 +30 kj/mol 80 α-l-idoa2s-ome 1 C4 1 2 SO others α-l-idoa-ome 1 C4 4 C1 2 SO others P. Oborský, I. Tvaroška, B. Králová, V. Spiwok, Toward an Accurate Conformational Modeling of Iduronic Acid. J Phys Chem B 117, 1003-1009 (2013).

Metadynamika Spiwok et al. (2015) J Chem Phys, 113, 9589 9594