AP BIOLOGY 2008 SCORING GUIDELINES
|
|
|
- Francis Chase
- 10 years ago
- Views:
Transcription
1 AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins. For each type, describe its role in determining protein structure. (6 points; 1 point for bond/interaction description, 1 point for description of role) Bond/interaction Description Role associated to bond/interaction Covalent/ peptide sharing electrons OR linking amino acids together amino acid sequence OR primary structure (no credit for chain or polypeptide alone) Disulfide/ disulfide, S S bond (bridges); tertiary or quaternary structure covalent sulfur-containing R group bonding Hydrogen H O or H N interactions α helix, β sheet; secondary, tertiary, or quaternary structure van der Waals unequal electron clouds in R group; tertiary or quaternary structure dipole moments Hydrophobic nonpolar R groups tertiary or quaternary structure Ionic charged R groups tertiary or quaternary structure (b) Discuss how the structure of a protein affects the function of TWO of the following. (3 points maximum) Muscle contraction (1 point for each bullet; 2 points maximum) Actin (thin filaments) and myosin; cross-bridges OR filamentous proteins slide past each other. Troponin/tropomyosin interaction blocks binding of myosin to actin. Ca 2+ changes troponin shape/binding of troponin-tropomyosin to actin altered. ATP/ADP changes myosin structure. Regulation of enzyme activity (2 points maximum) Shape change caused by (1 point for each bullet) o Binding of allosteric or noncompetitive inhibitor. o Binding of allosteric activator. o Feedback control. o ph or temperature changes. o Cleavage of pre-enzyme (e.g., zymogen). o Cooperativity; coenzymes; cofactors. o Covalent modification (e.g., phosphorylation). Competitive inhibitors binding in the active site prevent substrate binding. NOTE: The active site regulating enzyme activity is not enough to earn a point The College Board. All rights reserved.
2 AP BIOLOGY 2008 SCORING GUIDELINES Question 1 (continued) Cell signaling (2 points maximum) Receptor-ligand binding (1 point for each bullet) o Event: Ligand binds specifically to receptor. o Result: Receptor structure altered by binding, transducing signal through membrane. Examples may include hormones, neurotransmitters. Enzyme-linked receptors: binding of ligand causes enzyme to catalyze reaction. Gap junctions: shape of junctions allows for passage of regulatory ions or molecules. Ligand-gated channel: binding of ligand opens channel. Immune signaling: leads to activation of cells. (c) Abnormal hemoglobin is the identifying characteristic of sickle cell anemia. Explain the genetic basis of the abnormal hemoglobin. Explain why the sickle cell allele is selected for in certain areas of the world. (3 points maximum) Genetic basis (2 points maximum) Point mutation in DNA; base substitution leading to a different amino acid in the hemoglobin. Changing glutamate (glutamic acid) to valine (in β-globin). Selection (2 points maximum) Sickle cell condition protects against or resists malaria. Changed hemoglobin leads to oxygen-deprivation minimizing malarial infection. Heterozygotes maintain a reproductive advantage/success. NOTE: Stating that sickle cell confers immunity to malaria does not earn a point The College Board. All rights reserved.
3
4
5
6
7
8
9 AP BIOLOGY 2008 SCORING COMMENTARY Question 1 Overview This question tested knowledge of protein form and function from the basic to the applied level. Students were asked to describe the bonds involved with protein structure and apply their knowledge of protein structure to specific functions, such as muscle contraction, cell signaling, and enzyme regulation. Students were expected to integrate their knowledge of molecular genetics, biochemistry, and population biology using sickle cell anemia as a model. Sample: 1A Score: 10 Part (a): 6 points were earned. The student provides an extensive description for disulfide bonds (1 point) and states that the bonds stabilize protein structure, mentioning their involvement in tertiary structures (1 point). Two more points were earned for a thorough description of van der Waals interactions and their association in protein quaternary structure. A final 2 points were earned for an H + bond explanation (bonding between oxygen or nitrogen and hydrogen). Part (b): 3 points were earned. The student earned 2 points for describing competitive and noncompetitive inhibitions relating to enzyme regulation. The third point was earned for the discussion of substrate (ligand) interactions, causing a change in the protein ( signal receptor protein ) structure. The student goes further, providing details on G-protein signaling; however, no point was given since the student had already earned the maximum 3 points for part (b). Part (c): 1 point was earned. The genetic explanation behind sickle cell anemia was given ( substitution mutation ), earning 1 point. No point was given for the amino acid change, since this was incorrect. The student states that this allele provides resistance to malaria, and therefore the allele is selected for in the population, but did not earn a point for this since the maximum 10 points for question 1 was already earned. The student earned the maximum 10 points out of a possible 12 points. Sample: 1B Score: 6 Part (a): 3 points were earned. The student indicates that peptide bonds are involved in the primary structure and gives a description of peptide bonds as when amino acids are bonded together via dehydration synthesis, earning 2 points. The description of the H + bond role in secondary structure earned 1 point. The student mentions that the tertiary structure is made from α helices and β sheets but gives no bond or interactions. Part (b): 3 points were earned. The student earned 2 points for describing both allosteric and competitive inhibitions in relation to enzyme regulation. The receptor-ligand specificity point was earned for the discussion of cell signaling. The student provides a good description of cell junctions, but no point was earned since the 3-point maximum for part (b) was already reached. Part (c): No points were earned because the student does not explain the genetics of sickle cell anemia, nor its association with malaria The College Board. All rights reserved.
10 AP BIOLOGY 2008 SCORING COMMENTARY Question 1 (continued) Sample: 1C Score: 3 Part (a): No points were earned. The student describes various protein structures but provides no bonds or interactions to account for them. Part (b): 2 points were earned for the student s explanation of competitive and noncompetitive inhibition with regard to enzyme regulation. No points were given for the muscle contraction description. Part (c): 1 point was earned for the student s explanation that sickle cell anemia provides resistance to malaria The College Board. All rights reserved.
AP Biology 2008 Scoring Guidelines
AP Biology 2008 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
8/20/2012 H C OH H R. Proteins
Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids
AP BIOLOGY 2010 SCORING GUIDELINES (Form B)
AP BIOLOGY 2010 SCORING GUIDELINES (Form B) Question 2 Certain human genetic conditions, such as sickle cell anemia, result from single base-pair mutations in DNA. (a) Explain how a single base-pair mutation
http://faculty.sau.edu.sa/h.alshehri
http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They
Built from 20 kinds of amino acids
Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels
Proteins and Nucleic Acids
Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,
Carbohydrates, proteins and lipids
Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,
A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys
Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide
Helices From Readily in Biological Structures
The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α
4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose
1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen
Structures of Proteins. Primary structure - amino acid sequence
Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of
Chapter 12 - Proteins
Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino
2007 7.013 Problem Set 1 KEY
2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you
A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.
CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic
Chemical Basis of Life Module A Anchor 2
Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity
How To Understand The Chemistry Of Organic Molecules
CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which
Chemistry 20 Chapters 15 Enzymes
Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An
Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.
1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.
Structure of proteins
Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide
Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)
Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)
Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell
Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php
Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?
Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their
Chapter 8: An Introduction to Metabolism
Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?
Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins
IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H
Preliminary MFM Quiz
Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate
Non-Covalent Bonds (Weak Bond)
Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies
NO CALCULATORS OR CELL PHONES ALLOWED
Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.
Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function
Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and it
Shu-Ping Lin, Ph.D. E-mail: [email protected]
Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing E-mail: [email protected] Website: http://web.nchu.edu.tw/pweb/users/splin/ edu tw/pweb/users/splin/ Date: 10.13.2010
CHAPTER 4: Enzyme Structure ENZYMES
CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor
CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes
CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic
The Molecules of Cells
The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates
Enzymes and Metabolism
Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction
Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.
Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential
Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1
Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions
Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water
Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water
Enzymes and Metabolic Pathways
Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and
1. The diagram below represents a biological process
1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set
Myoglobin and Hemoglobin
Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein
Chapter 16 Amino Acids, Proteins, and Enzymes
Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order
Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation
Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of
Structure and Function of DNA
Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four
Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.
Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are
Combinatorial Biochemistry and Phage Display
Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY
What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.
CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by
1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.
1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of
Chapter 5. The Structure and Function of Macromolecule s
Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.
Chapter 3 Molecules of Cells
Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons
Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction.
Catalysis by Enzymes Enzyme A protein that acts as a catalyst for a biochemical reaction. Enzymatic Reaction Specificity Enzyme Cofactors Many enzymes are conjugated proteins that require nonprotein portions
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. [email protected] Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal
Biological Molecules
Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t
Biological molecules:
Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some
Ms. Campbell Protein Synthesis Practice Questions Regents L.E.
Name Student # Ms. Campbell Protein Synthesis Practice Questions Regents L.E. 1. A sequence of three nitrogenous bases in a messenger-rna molecule is known as a 1) codon 2) gene 3) polypeptide 4) nucleotide
Chapter 5: The Structure and Function of Large Biological Molecules
Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called
Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:
Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed
Amino Acids and Proteins
Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because
Chapter 3. Protein Structure and Function
Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER
Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide
Transmembrane proteins span the bilayer α-helix transmembrane domain Hydrophobic R groups of a.a. interact with fatty acid chains Multiple transmembrane helices in one polypeptide Polar a.a. Hydrophilic
Nafith Abu Tarboush DDS, MSc, PhD [email protected] www.facebook.com/natarboush
Nafith Abu Tarboush DDS, MSc, PhD [email protected] www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist
Computational Systems Biology. Lecture 2: Enzymes
Computational Systems Biology Lecture 2: Enzymes 1 Images from: David L. Nelson, Lehninger Principles of Biochemistry, IV Edition, Freeman ed. or under creative commons license (search for images at http://search.creativecommons.org/)
Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )
Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins
Name: Hour: Elements & Macromolecules in Organisms
Name: Hour: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight. All compounds
AP BIOLOGY 2009 SCORING GUIDELINES
AP BIOLOGY 2009 SCORING GUIDELINES Question 4 The flow of genetic information from DNA to protein in eukaryotic cells is called the central dogma of biology. (a) Explain the role of each of the following
Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.
Chapter 6 The amino acid side chains have polar and nonpolar properties, and the relative hydrophobicity of the amino acid side chains is critical for the folding and stability of a protein. The more hydrophobic
Sickle cell anemia: Altered beta chain Single AA change (#6 Glu to Val) Consequence: Protein polymerizes Change in RBC shape ---> phenotypes
Protein Structure Polypeptide: Protein: Therefore: Example: Single chain of amino acids 1 or more polypeptide chains All polypeptides are proteins Some proteins contain >1 polypeptide Hemoglobin (O 2 binding
BIO 361 Biochemistry. Oficina: CABD Building 20 Room 133 First Floor Fall 2015 Email: [email protected] Thursday 16.00-17-00 Office Hours:
Centro Universitario Internacional BIO 361 Biochemistry Carlos Santos Ocaña Course Information: Oficina: CABD Building 20 Room 133 First Floor Fall 2015 Email: [email protected] Thursday 16.00-17-00 Office
Introduction to Proteins and Enzymes
Introduction to Proteins and Enzymes Basics of protein structure and composition The life of a protein Enzymes Theory of enzyme function Not all enzymes are proteins / not all proteins are enzymes Enzyme
18.2 Protein Structure and Function: An Overview
18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded
1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes
Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the
Amino Acids, Peptides, Proteins
Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses
PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.
Ca 2+ The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department of Education. However, those
Carbon-organic Compounds
Elements in Cells The living substance of cells is made up of cytoplasm and the structures within it. About 96% of cytoplasm and its included structures are composed of the elements carbon, hydrogen, oxygen,
Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?
Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,
PRACTICE TEST QUESTIONS
PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.
Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?
Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control
Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)
ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See
Elements in Biological Molecules
Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)
From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains
Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes
Syllabus for MCB 3010/5001: Biochemistry Fall Semester 2011
Syllabus for MCB 3010/5001: Biochemistry Fall Semester 2011 Instructor: Dr. Wolf-Dieter Reiter Office: TLS 406 Phone: 486-5733 E-mail: [email protected] Office hours: Wednesday, 11:00 12:00 a.m., Thursday,
Activity 7.21 Transcription factors
Purpose To consolidate understanding of protein synthesis. To explain the role of transcription factors and hormones in switching genes on and off. Play the transcription initiation complex game Regulation
BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT
BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY BMLS II / B Pharm II / BDS II VJ Temple
Biochemistry of Cells
Biochemistry of Cells 1 Carbon-based Molecules Although a cell is mostly water, the rest of the cell consists mostly of carbon-based molecules Organic chemistry is the study of carbon compounds Carbon
The peptide bond is rigid and planar
Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)
Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy
Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within
DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3
DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can
CHEM 451 BIOCHEMISTRY I. SUNY Cortland Fall 2010
CHEM 451 BIOCHEMISTRY I SUNY Cortland Fall 2010 Instructor: Dr. Frank Rossi Office: Bowers 135 Office Hours: Mon. 2:30-4:00, Wed. 4:00-5:30, Friday 2:30-3:00, or by appointment. Extra evening office hours
Exam 4 Outline CH 105 Spring 2012
Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain
Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids
Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)
CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10
CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced
Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in
DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results
Methods of Grading S/N Style of grading Percentage Score 1 Attendance, class work and assignment 10 2 Test 20 3 Examination 70 Total 100
COURSE: MIB 303 Microbial Physiology and Metabolism (3 Units- Compulsory) Course Duration: Three hours per week for 15 weeks (45 hours). Lecturer: Jimoh, S.O. B.Sc., M.Sc, Ph.D Microbiology (ABU, Zaria)
Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5
Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational
Elements & Macromolecules in Organisms
Name: Date: Per: Table # Elements & Macromolecules in rganisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.
Disulfide Bonds at the Hair Salon
Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,
Genetics Lecture Notes 7.03 2005. Lectures 1 2
Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIAIDS PEPTIDES AMIAIDS = substitutional/functional derivatives of carboxylic acids = basic units of proteins (2-aminoacids) General formula of 2-aminoacids (α-aminoacids):
a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled
Biology 101 Chapter 14 Name: Fill-in-the-Blanks Which base follows the next in a strand of DNA is referred to. as the base (1) Sequence. The region of DNA that calls for the assembly of specific amino
Hydrogen Bonds The electrostatic nature of hydrogen bonds
Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely
Regulation of enzyme activity
1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment
