Engineering Math II Spring 2015 Solutions for Class Activity #2

Similar documents
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall Oct. 1, 2004 ANSWERS

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

AP CALCULUS AB 2008 SCORING GUIDELINES

4 More Applications of Definite Integrals: Volumes, arclength and other matters

Contents. 2 Lines and Circles Cartesian Coordinates Distance and Midpoint Formulas Lines Circles...

GRAPHING IN POLAR COORDINATES SYMMETRY

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

Math 1B, lecture 5: area and volume

Solutions to Homework 10

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Section 1.1 Linear Equations: Slope and Equations of Lines

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012

What are the place values to the left of the decimal point and their associated powers of ten?

Graphing Quadratic Functions

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

2.5 Transformations of Functions

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

Exam 1 Sample Question SOLUTIONS. y = 2x

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

MATHEMATICS Unit Pure Core 1

AP Calculus AB 2010 Free-Response Questions Form B

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

EQUATIONS and INEQUALITIES

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Slope-Intercept Equation. Example

Solutions to Practice Problems for Test 4

Higher Education Math Placement

Algebra and Geometry Review (61 topics, no due date)

EL-9650/9600c/9450/9400 Handbook Vol. 1

Understanding Basic Calculus

The Distance Formula and the Circle

(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation

2014 Chapter Competition Solutions

Vocabulary Words and Definitions for Algebra

Sample Problems. Practice Problems

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions

FACTORING QUADRATICS and 8.1.2

This copy of the text was produced at 16:02 on 5/31/2009.

AP Calculus AB 2004 Free-Response Questions

Double Integrals in Polar Coordinates

Exam 1 Practice Problems Solutions

Mathematics (Project Maths Phase 3)

AP Calculus AB 2006 Scoring Guidelines

Math 113 HW #7 Solutions

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

PARABOLAS AND THEIR FEATURES

Lesson 1: Introducing Circles

Homework #1 Solutions

10 Polar Coordinates, Parametric Equations

MSLC Workshop Series Math Workshop: Polynomial & Rational Functions

Graphing Linear Equations

16 Circles and Cylinders

SAT Subject Math Level 2 Facts & Formulas

6.2 Solving Nonlinear Equations

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

MATH 110 College Algebra Online Families of Functions Transformations

Section 12.6: Directional Derivatives and the Gradient Vector

Review of Fundamental Mathematics

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Slope-Intercept Form and Point-Slope Form

Introduction to Quadratic Functions

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

MA107 Precalculus Algebra Exam 2 Review Solutions

Additional Topics in Math

What is a parabola? It is geometrically defined by a set of points or locus of points that are

of surface, , , of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Core Maths C1. Revision Notes

Procedure for Graphing Polynomial Functions

Algebra I Vocabulary Cards

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 120 Final Exam Practice Problems, Form: A

Graphing Linear Equations in Two Variables

Math 2443, Section 16.3

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Algebra Cheat Sheets

MATHEMATICS: PAPER I. 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.

1.1 Practice Worksheet

Week 1: Functions and Equations

Arrangements And Duality

Elements of a graph. Click on the links below to jump directly to the relevant section

Algebra Geometry Glossary. 90 angle

Answer Key for California State Standards: Algebra I

QUADRATIC EQUATIONS AND FUNCTIONS

4.4 Transforming Circles

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

Solutions to old Exam 1 problems

CIRCLE COORDINATE GEOMETRY

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Math 1526 Consumer and Producer Surplus

Algebra 2: Q1 & Q2 Review

Transcription:

Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the x-axis. Then find the volume of the solid generated by rotating this region about the x-axis. Solution. Before we can even start to talk about area, we need to find the equation of the tangent line to y = x at the point 1, 1). Since y x) is the slope of the tangent line to y at x, and this line must pass through the point 1, 1), we can use the point-slope formula to find the equation of the line. From the point-slope formula, we get y 1 = y 1)x 1) = x 1) since y x) = x. Solving the above equation for y yields y = x 1. The following plot shows the graphs of y = x and y = x 1, with the region bounded by these curves and the x-axis shaded. In order to find the area of the shaded region, we subtract the area under the lower curve y = x 1 from the area under the upper curve y = x. The area under the curve y = x is given by the integral x dx, and area under x 1 is given by x 1)dx. Thus the area of the shaded region is given by x dx x 1)dx = 1 1 ) 3 x3 x 1 x 1 ) = 3 1 1) 1 4 1 ) ) = 1 3 1 4 = 1 1.

Solutions for Class Activity # Next, we find the volume of the solid obtained by rotating the same region about the x-axis. In order to set up the integral, the first thing we need to determine is whether we will integrate along the x-axis or the y-axis. It is often easiest to integrate along the same axis about which the region is being rotated. In this case, that suggests we integrate along the x-axis. The cross sections of the solid perpendicular to the x-axis are discs between x = and x = 1, and are washers from x = 1 to x = 1. For this reason, we split our computation into two parts. Between x = and x = 1, the radius of the disc is the distance from the x-axis to the curve y = x, which is just x. Thus the volume is given by the integral / πx ) dx = π / x 4 dx = π 5 x5 = π 5 1 5 = π 16. 1) For the part from x = 1 to x = 1, the outer radius is the distance from the x-axis to the curve y = x, which is just x, and the inner radius is the distance from the x-axis to the line y = x 1, which is just x 1. So the volume of this piece is given by the integral πx ) πx 1) ) dx = π x 4 4x 4x + 1) ) dx = π x 4 4x + 4x 1)dx 1 = π 5 x5 4 ) 3 x3 + x 1 x 1 = π 5 4 1 3 + 1 16 1 6 + 1 1 )) = π 15 77 )) 48 = 13π 48. ) The total volume is then given by the sum of the volumes in 1) and ), which is 16π 48 = π 4. π 16 + 13π 48 = Integration along the y-axis. If we did try to integrate along the y-axis, then the cross sections perpendicular to the y-axis are discs. The radius of each disc, however, is half of the distance between the curve x = y and the line x = y+1, when y is between and 1. Already one gets the feeling that integrating along the y-axis is much more difficult to set up than integrating along the x-axis. As a rule of thumb, it is often easiest to integrate along the axis perpendicular to the axis of rotation.

Solutions for Class Activity # 3 Problem. Find the values) of c such that the area of the region bounded by the parabolas y = x c and y = c x is 7. Solution. The function y = x c is a parabola opening upwards with vertex, c ), and the function y = c x is a parabola opening downwards with vertex, c ). The case when c = is shown in the following plot, with y = x 4 in blue and y = 4 x in red. In the above plot, the two parabolas intersect each other when x = and x =. In general, the parabolas intersect each other when x c = c x. Solving for x gives x = ±c. Hence the region bounded by the two parabolas is bounded on the x-axis between x = c to x = c. You may have noticed in the figure that the area of the region above the x-axis is equal to the area below the x-axis. This is true for general c as well, since each parabola can be obtained from the other by flipping it over the x-axis. Thus the area of the entire region is just twice the area of the region above the x-axis. This area is easily computed by the integral c c c x )dx = c x 1 3 x3) c = 4c3 c 3. So the total area of the region is 8c3 8c3 3. If this area is 7, we have 3 = 7. Solving for c gives c = 3.

Solutions for Class Activity # 4 Problem 3. Sketch the region bounded by the given curves and find the area of the region: 4x + y = 1, x = y. Solution. Solving the equation 4x + y = 1 for x gives x = 3 1 4 y, which is a parabola that opens to the left with vertex 3, ) and y-intercepts y = ± 1. This parabola, together with the line x = y, are shown in the figure below. The parabola intersects the line at the points 6, 6) and, ) these points can be found without graphing by solving 3 1 4 y = y for y). It will be easiest to set up out integral over the y-axis, since our functions are in terms of y. This will require splitting the computation up into three parts representing the area of the regions A, B and C in the figure. To compute the area of region A, we note that both curves are to the left of the y-axis, so that the top curve is the line x = y, and the bottom curve is the parabola. The area is computed by subtracting the area under the parabola from y = 6 to y = 1 from the area under the line from y = 6 to y =. The area under the line is given by 6 ydy = The area under the parabola is given by 1 6 6 ydy = 1 6 y = 18. 3 1 6 4 y) dy = 3 1 1 4 y) dy = 3y 1 1 y3) 6 = 1 = 4 3. 1 So the total area of region A is 18 4 3. To compute the area of region B, first notice that the only curve bounding this region besides the axes) is the parabola. Since it is to the right of the y-axis, the area for this region is given by 3 1 4 y) dy = y 1 1 y3) = 1 = 3. 1 1

Solutions for Class Activity # 5 Finally, to compute the area of region C, first note that the area under the parabola from y = to y = is the same as the area of region B, and so equal to 3. The area of region C can be obtained by subtracting from this the area under the line x = y from y = to y =. This area is given by ydy = 1 y =. Thus the area of region C is 3, which means that the total area is given by area of A + area of B + area of C = 18 4 3 + 3 + 3 = 16.

Solutions for Class Activity # 6 Problem 4. Describe the solid represented by the integral π [1+cosx)) 1 ]dx. Evaluate this integral. You will need to use the double-angle formula cosθ) = cos θ) 1. Solution. In the integral we see π out front and then the difference of two squares in the integrand. This indicates some sort of rotation. The outer radius is the term 1 + cosx), and the inner radius is 1. Here is a plot of these two functions together. The region being rotated is from x = to x = π/, which is the region bounded by these two curves to the right of the y-axis. When rotated about the x-axis, this gives a rounded washer with a flat base. To evaluate the integral, we first simplify the integrand and split the integral into two integrals: 1 + cosx)) 1 ) dx = This second integral is rather easy to evaluate: = cos x) + cosx) ) dx cos x)dx + cosx)dx. cosx)dx = sinx) π/ =. 3) For the other integral, we need to use the double-angle formula and replace cos x) with cosx)+1. cos x)dx = 1 ) cosx) + 1 dx 1 = 4 sinx) + 1 ) x π/ = π 4. 4) So the value of the original integral is the sum of the values in equations 3) and 4); that is, + π 4.

Solutions for Class Activity # 7 Problem 5. Find the volume of the solid obtained by rotating the region bounded by the curves y = 1 + secx) and y = 3 about the line y = 1. Solution. First we plot the relevant functions. In the following graph, 1 + secx) is in blue, y = 3 in red, and y = 1 in yellow. The region is bounded on the x-axis between x = π 3 and x = π 3. When rotated about the line y = 1, cross sections perpendicular to the x-axis are washers with outer radius and inner radius secx). Thus the volume is given by the integral π/3 π sec x) ) dx = π 4x tanx) ) π/3 π/3 π/3 = 4π 3 3π 4π 3 + ) 3π = 8π 3 3π

Solutions for Class Activity # 8 Problem 6. Find the volume of the solid obtained by rotating the region bounded by the curves y = x and x = y about the line x = 1. Solution. The function y = x is a parabola opening upwards with vertex at the origin, and the function x = y is a parabola opening to the right, also with vertex at the origin. See the figure blow. The region bounded by the these parabolas is bounded on the y-axis between y = and y = 1 since the parabolas intersect at the origin and the point 1, 1)). When rotated about the vertical line x = 1, cross sections perpendicular to the y-axis are washers. In order to find the outer radius, we first note that since the region lies to the right of the y-axis, we only care about the portion of the parabola y = x corresponding to positive x values, and so rewrite its equation as x = y. Then the outer radius is 1 + y, and the inner radius is 1 + y. Thus the volume of the solid is given by the integral π 1 + y) 1 + y ) ) dy = π = π 1 + ) y + y 1 + y + y 4 ) dy y + y y y 4 )dy 1 = π y + 4 3 y 3 3 y3 1 5 y5) 1 1 = π + 4 3 3 5) 1 = 9π 3.

Solutions for Class Activity # 9 Problem 7. Let R be the region bounded by the y-axis, the line y = 1, and the curve y = x. Compute the volume of the solid whose base is R and whose cross sections perpendicular to the y-axis are semicircles. Solution. We need to find the area of a a cross section as a function of either x or y. Since the cross sections are perpendicular to the y-axis, it makes the most sense to express the area of each cross section as a function of y. In order to find an expression for this area, we first plot the given functions to find the region R. Since the cross sections are semicircles, the area is given by 1 πr, where r is the radius of the semicircle. The diameter of the semicircle lies between the y-axis and the graph of the function y = x, or x = y when written as a function of y. Thus the radius of a cross section is given by 1 y, and the integral for determining the volume of the solid is π y ) dy π = y 4 dy 8 = π 1 8 5 y5) 1 = π 4.

Solutions for Class Activity # 1 Problem 8. A hole of radius r is bored through the center of a sphere of radius R > r. Find the volume of the remaining portion of the sphere. [Recall that the volume of a sphere with radius R is 4 3 πr3.]