MATHEMATICS Unit Pure Core 1
|
|
|
- Arthur Fields
- 9 years ago
- Views:
Transcription
1 General Certificate of Education June 2009 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 1 MPC1 Wednesday 20 May pm to 3.00 pm For this paper you must have: an 8-page answer book the blue AQA booklet of formulae and statistical tables. You must not use a calculator. Time allowed: 1 hour 30 minutes Instructions Use black ink or black ball-point pen. Pencil should only be used for drawing. Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1. Answer all questions. Show all necessary working; otherwise marks for method may be lost. The use of calculators (scientific and graphics) is not permitted. Information The maximum mark for this paper is 75. The marks for questions are shown in brackets. Advice Unless stated otherwise, you may quote formulae, without proof, from the booklet. 6/6/ MPC1
2 2 Answer all questions. 1 The line AB has equation 3x þ 5y ¼ 11. (a) (i) Find the gradient of AB. (2 marks) The point A has coordinates ð2, 1Þ. Find an equation of the line which passes through the point A and which is perpendicular to AB. (b) The line AB intersects the line with equation 2x þ 3y ¼ 8 at the point C. Find the coordinates of C. 2 (a) Express 5 þ p ffiffi 7 3 ffiffi p p in the form m þ n ffiffiffi 7, where m and n are integers. 7 (4 marks) (b) The diagram shows a right-angled triangle. p 2 ffiffiffi 5 cm x cm p 3 ffiffiffi 2 cm p The hypotenuse has length 2 ffiffiffi pffiffiffi 5 cm. The other two sides have lengths 3 2 cm and x cm. Find the value of x. 3 The curve with equation y ¼ x 5 þ 20x 2 8 passes through the point P, where x ¼ 2. (a) Find dy dx. (b) Verify that the point P is a stationary point of the curve. (2 marks) (c) (i) Find the value of d2 y at the point P. dx2 Hence, or otherwise, determine whether P is a maximum point or a minimum point. (1 mark) (d) Find an equation of the tangent to the curve at the point where x ¼ 1. (4 marks)
3 3 4 (a) The polynomial pðxþ is given by pðxþ ¼x 3 x þ 6. (i) Find the remainder when pðxþ is divided by x 3. (2 marks) Use the Factor Theorem to show that x þ 2 is a factor of pðxþ. (2 marks) (iii) (iv) Express pðxþ ¼x 3 x þ 6 in the form ðx þ 2Þðx 2 þ bx þ cþ, where b and c are integers. (2 marks) The equation pðxþ ¼0 has one root equal to 2. Show that the equation has no other real roots. (2 marks) (b) The curve with equation y ¼ x 3 x þ 6 is sketched below. y B A 2 O x The curve cuts the x-axis at the point A ð 2, 0Þ and the y-axis at the point B. (i) State the y-coordinate of the point B. (1 mark) Find ð 0 2 ðx 3 x þ 6Þ dx. (5 marks) (iii) Hence find the area of the shaded region bounded by the curve y ¼ x 3 x þ 6 and the line AB. Turn over for the next question Turn over s
4 4 5 A circle with centre C has equation ðx 5Þ 2 þðy þ 12Þ 2 ¼ 169 (a) Write down: (i) the coordinates of C ; (1 mark) the radius of the circle. (1 mark) (b) (i) Verify that the circle passes through the origin O. (1 mark) Given that the circle also passes through the points ð10, 0Þ and ð0, pþ, sketch the circle and find the value of p. (c) The point A ð 7, 7Þ lies on the circle. (i) Find the gradient of AC. (2 marks) Hence find an equation of the tangent to the circle at the point A, giving your answer in the form ax þ by þ c ¼ 0, where a, b and c are integers. 6 (a) (i) Express x 2 8x þ 17 in the form ðx pþ 2 þ q, where p and q are integers. (2 marks) Hence write down the minimum value of x 2 8x þ 17. (1 mark) (iii) State the value of x for which the minimum value of x 2 8x þ 17 occurs. (1 mark) (b) The point A has coordinates ð5, 4Þ and the point B has coordinates ðx, 7 xþ. (i) Expand ðx 5Þ 2. (1 mark) Show that AB 2 ¼ 2ðx 2 8x þ 17Þ. (iii) Use your results from part (a) to find the minimum value of the distance AB as x varies. (2 marks)
5 5 7 The curve C has equation y ¼ kðx 2 þ 3Þ, where k is a constant. The line L has equation y ¼ 2x þ 2. (a) Show that the x-coordinates of any points of intersection of the curve C with the line L satisfy the equation kx 2 2x þ 3k 2 ¼ 0 (1 mark) (b) The curve C and the line L intersect in two distinct points. (i) Show that 3k 2 2k 1 < 0 (4 marks) Hence find the possible values of k. (4 marks) END OF QUESTIONS
6 6 There are no questions printed on this page
7 7 There are no questions printed on this page
8 8 There are no questions printed on this page Copyright Ó 2009 AQA and its licensors. All rights reserved.
MATHEMATICS Unit Pure Core 2
General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Wednesday 9 January 2008 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer
MATHEMATICS Unit Decision 1
General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 15 January 2008 9.00 am to 10.30 am For this paper you must have: an 8-page answer
Mark Scheme. Mathematics 6360. General Certificate of Education. 2006 examination June series. MPC1 Pure Core 1
Version 1.0: 0706 abc General Certificate of Education Mathematics 660 MPC1 Pure Core 1 Mark Scheme 006 examination June series Mark schemes are prepared by the Principal Examiner and considered, together
*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012
X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
Version : 1.0 0609. klm. General Certificate of Education. Mathematics 6360. MPC1 Pure Core 1. Mark Scheme. 2009 examination - June series
Version :.0 0609 klm General Certificate of Education Mathematics 660 MPC Pure Core Mark Scheme 009 examination - June series Mark schemes are prepared by the Principal Examiner and considered, together
1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs
Year 12 Pure Mathematics. C1 Coordinate Geometry 1. Edexcel Examination Board (UK)
Year 1 Pure Mathematics C1 Coordinate Geometry 1 Edexcel Examination Board (UK) Book used with this handout is Heinemann Modular Mathematics for Edexcel AS and A-Level, Core Mathematics 1 (004 edition).
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Monday 1 January 015 Afternoon Time: hours Candidate Number
*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) NATIONAL QUALIFICATIONS 2014 TUESDAY, 6 MAY 1.00 PM 2.30 PM
X00//0 NTIONL QULIFITIONS 0 TUESY, 6 MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (0 marks) Instructions for completion
MATHEMATICS Unit Decision 1
General Certificate of Education January 2007 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 16 January 2007 9.00 am to 10.30 am For this paper you must have: an 8-page answer
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
SPECIFICATION. Mathematics 6360 2014. General Certificate of Education
Version 1.0: 0913 General Certificate of Education Mathematics 6360 014 Material accompanying this Specification Specimen and Past Papers and Mark Schemes Reports on the Examination Teachers Guide SPECIFICATION
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
MATHEMATICS Unit Decision 1
General Certificate of Education June 2007 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Thursday 7 June 2007 9.00 am to 10.30 am For this paper you must have: an 8-page answer book
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Edexcel IGCSE Centre Number Mathematics A Paper 3H Monday 6 June 2011 Afternoon Time: 2 hours Candidate Number Higher Tier Paper Reference 4MA0/3H You must have:
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
National Quali cations SPECIMEN ONLY. Forename(s) Surname Number of seat. Date of birth Day Month Year Scottish candidate number
N5 SQ9/N5/0 Date Not applicable Duration hour FOR OFFICIAL USE National Quali cations SPECIMEN ONLY Mark Mathematics Paper (Non-Calculator) *SQ9N50* Fill in these boxes and read what is printed below.
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Edexcel IGCSE Mathematics B Paper 1 Centre Number Candidate Number Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes Paper Reference 4MB0/01 You must have: Ruler
AP CALCULUS AB 2008 SCORING GUIDELINES
AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line
egyptigstudentroom.com
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *5128615949* MATHEMATICS 0580/04, 0581/04 Paper 4 (Extended) May/June 2007 Additional Materials:
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
Mathematics (Project Maths Phase 3)
2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300
Wednesday 15 January 2014 Morning Time: 2 hours
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number
AP Calculus AB 2004 Free-Response Questions
AP Calculus AB 2004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be
Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross
CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal
abc GCE 2005 Mark Scheme January Series Mathematics MPC1
GCE 005 January Series abc Mark Scheme Mathematics MPC1 Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark
4.4 Transforming Circles
Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different
Unit 2: Number, Algebra, Geometry 1 (Non-Calculator)
Write your name here Surname Other names Edexcel GCSE Centre Number Mathematics B Unit 2: Number, Algebra, Geometry 1 (Non-Calculator) Friday 14 June 2013 Morning Time: 1 hour 15 minutes Candidate Number
Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used.
Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Monday 18 May 2009 Afternoon Time: 1 hour 45
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel International GCSE Mathematics A Paper 3HR Centre Number Tuesday 6 January 015 Afternoon Time: hours Candidate Number Higher Tier Paper Reference
Oxford Cambridge and RSA Examinations
Oxford Cambridge and RSA Examinations OCR FREE STANDING MATHEMATICS QUALIFICATION (ADVANCED): ADDITIONAL MATHEMATICS 6993 Key Features replaces and (MEI); developed jointly by OCR and MEI; designed for
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
Instructions. Information. Advice
Instructions Use black ink or ball-point pen. Fill in the boxes at the top of this page with your name, centre number and candidate number. Answer all questions. Answer the questions in the spaces provided
Tuesday 6 November 2012 Morning
H Tuesday 6 November 2012 Morning GCSE MATHEMATICS A A502/02 Unit B (Higher Tier) *A516821112* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
National 5 Mathematics Course Assessment Specification (C747 75)
National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for
Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes
Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes
Procedure for Graphing Polynomial Functions
Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine
Monday 11 June 2012 Afternoon
THIS IS A NEW SPECIFICATION H Monday 11 June 2012 Afternoon GCSE MATHEMATICS A A502/02 Unit B (Higher Tier) *A517000612* Candidates answer on the Question Paper. OCR supplied materials: None Other materials
Mathematics Extension 1
Girraween High School 05 Year Trial Higher School Certificate Mathematics Extension General Instructions Reading tjmc - 5 mjnutcs Working time- hours Write using black or blue pen Black pen is preferred
Mathematics (Project Maths Phase 2)
2012. S234 Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination, 2012 Mathematics (Project Maths Phase 2) Paper 1 Higher Level Friday 8 June Afternoon 2:00 to 4:30
AREA & CIRCUMFERENCE OF CIRCLES
Edexcel GCSE Mathematics (Linear) 1MA0 AREA & CIRCUMFERENCE OF CIRCLES Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES
Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian co-ordinates. The Gradient of a Line. As
GRAPHING IN POLAR COORDINATES SYMMETRY
GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,
Graphing Quadratic Functions
Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3
1 QUESTION ONE (12 Marks) Marks (a) Find tan x e 1 2 cos dx x (b) Find the exact value of if. 2 (c) Solve 5 3 2x 1. 3 (d) If are the roots of the equation 2 find the value of. (e) Use the substitution
1MA0/3H Edexcel GCSE Mathematics (Linear) 1MA0 Practice Paper 3H (Non-Calculator) Set C Higher Tier Time: 1 hour 45 minutes
1MA0/H Edexcel GCSE Mathematics (Linear) 1MA0 Practice Paper H (Non-Calculator) Set C Higher Tier Time: 1 hour 45 minutes Materials required for examination Ruler graduated in centimetres and millimetres,
y intercept Gradient Facts Lines that have the same gradient are PARALLEL
CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education MATHEMATICS 0580/02 Paper 2 (Extended) For Examination from 2015 SPECIMEN PAPER Candidates answer
Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Friday 11 June 2010 Morning Time: 1 hour 45 minutes
National Quali cations 2015
N5 X747/75/01 TUESDAY, 19 MAY 9:00 AM 10:00 AM FOR OFFICIAL USE National Quali cations 015 Mark Mathematics Paper 1 (Non-Calculator) *X7477501* Fill in these boxes and read what is printed below. Full
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and
General Certificate of Secondary Education January 2014. Mathematics Unit T3 (With calculator) Higher Tier [GMT31] FRIDAY 10 JANUARY, 9.15am 11.
Centre Number 71 Candidate Number General Certificate of Secondary Education January 2014 Mathematics Unit T3 (With calculator) Higher Tier [GMT31] MV18 FRIDAY 10 JANUARY, 9.15am 11.15 am TIME 2 hours,
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Section 1: How will you be tested? This section will give you information about the different types of examination papers that are available.
REVISION CHECKLIST for IGCSE Mathematics 0580 A guide for students How to use this guide This guide describes what topics and skills you need to know for your IGCSE Mathematics examination. It will help
WEDNESDAY, 2 MAY 1.30 PM 2.25 PM. 3 Full credit will be given only where the solution contains appropriate working.
C 500/1/01 NATIONAL QUALIFICATIONS 01 WEDNESDAY, MAY 1.0 PM.5 PM MATHEMATICS STANDARD GRADE Credit Level Paper 1 (Non-calculator) 1 You may NOT use a calculator. Answer as many questions as you can. Full
TRANSFORMATIONS OF GRAPHS
Mathematics Revision Guides Transformations of Graphs Page 1 of 24 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C1 Edexcel: C1 OCR: C1 OCR MEI: C1 TRANSFORMATIONS OF GRAPHS Version
MATHEMATICS: PAPER I. 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.
NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 015 MATHEMATICS: PAPER I Time: 3 hours 150 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 1 pages and an Information
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
Analyzing Piecewise Functions
Connecting Geometry to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 04/9/09 Analyzing Piecewise Functions Objective: Students will analyze attributes of a piecewise function including
1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives
TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Circles - Past Edexcel Exam Questions
ircles - Past Edecel Eam Questions 1. The points A and B have coordinates (5,-1) and (13,11) respectivel. (a) find the coordinates of the mid-point of AB. [2] Given that AB is a diameter of the circle,
AP Calculus AB 2010 Free-Response Questions Form B
AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
Version 1.0 0110. hij. General Certificate of Education. Mathematics 6360. MPC1 Pure Core 1. Mark Scheme. 2010 examination - January series
Version.0 00 hij General Certificate of Education Mathematics 660 MPC Pure Core Mark Scheme 00 examination - January series Mark schemes are prepared by the Principal Examiner and considered, together
MODERN APPLICATIONS OF PYTHAGORAS S THEOREM
UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
Incenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Thursday 8 November 2012 Afternoon
H Thursday 8 November 2012 Afternoon GCSE MATHEMATICS B J567/04 Paper 4 (Higher Tier) *J517181112* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Monday 6 June 2011 Afternoon Time: 1 hour 45 minutes
Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Monday 6 June 2011 Afternoon Time: 1 hour 45
Mathematics (Project Maths)
2010. M128 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Mathematics (Project Maths) Paper 2 Ordinary Level Monday 14 June Morning 9:30 12:00 300 marks Examination
LINEAR EQUATIONS IN TWO VARIABLES
66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3
CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -
PRACTICE PROBLEMS IN ALGEBRA, TRIGONOMETRY, AND ANALYTIC GEOMETRY
PRACTICE PROLEMS IN ALGERA, TRIGONOMETRY, AND ANALYTIC GEOMETRY The accompanying problems from the subjects covered on the Mathematics Placement Examination can be used by students to identify subject
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 2F Centre Number Monday 12 January 2015 Afternoon Time: 2 hours Candidate Number
QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE
MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse
Pythagoras Theorem Page I can... 1... identify and label right-angled triangles 2... eplain Pythagoras Theorem 4... calculate the hypotenuse 5... calculate a shorter side 6... determine whether a triangle
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
Wednesday 6 November 2013 Morning
H Wednesday 6 November 2013 Morning GCSE MATHEMATICS B J567/03 Paper 3 (Higher Tier) *J540550313* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
