Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004



Similar documents
Technology guidelines for efficient design and operation of ship propulsors by Teus van Beek, Propulsor Technology, Wärtsilä Propulsion Netherlands BV

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

NACA airfoil geometrical construction

CFD ANALYSIS OF CONTROLLABLE PITCH PROPELLER USED IN MARINE VEHICLE

Electric Motors and Drives

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Solution: Angular velocity in consistent units (Table 8.1): Velocity of a point on the disk: Rate at which bits pass by the read/write head:

Propeller Selection For Boats and Small Ships

GEAROLOGY 4-1 WORMS AND WORM GEARS WORMS AND WORM GEARS

Resistance & Propulsion (1) MAR Presentation of ships wake

IPS Inboard performance system. Volvo Penta IPS, the future for fast vessels

Chapter 3.5: Fans and Blowers

Propellers. Inboard propellers and speed calculation Marine Engines 2.1L 16L

Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller

MAN Diesel & Turbo. Frederik Carstens Head of Offshore Sales Marine Medium Speed. Frederik Carstens & Karsten Borneman

Unit 4 Practice Test: Rotational Motion

ROVs in a Bucket Building an Underwater Robot. 3.0 ROV Thrusters & Propeller Attachment. 3.1 Propulsion

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP

Relevance of Modern Optimization Methods in Turbo Machinery Applications

Application of CFD in connection with ship design

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

GEAROLOGY 2-1 SPUR GEARS SPUR GEARS

A new era in yacht power. For Vessels up to 100+ feet

DRAFTING MANUAL. Gears (Bevel and Hypoid) Drafting Practice

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE

Torque and Rotary Motion

EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised for ACCESS TO APPRENTICESHIP

NACA Nomenclature NACA NACA Airfoils. Definitions: Airfoil Geometry

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar

CFD Analysis of a Propeller Flow and Cavitation

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET

Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations.

Unit 24: Applications of Pneumatics and Hydraulics

Linear Motion vs. Rotational Motion

Center of Gravity. We touched on this briefly in chapter 7! x 2

The INSEAN E779a Propeller Test Case: a Database For CFD Validation

Belt Drives and Chain Drives. Power Train. Power Train

MAXIMIZING THE OUTPUT OF YOUR BRAKES Getting Your Pedal Geometry Right

Gear Trains. Introduction:

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

DC Motor / Propeller Matching 3 Mar 05 Lab 5 Lecture Notes

Why Lead Screws are the Best Fit for Many Linear Motion Applications - and How to Rightly Apply Them

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Automatic Transmission Basics

ZF 301 A. Marine Propulsion Systems

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Module 2 - GEARS Lecture 7 - SPUR GEAR DESIGN

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Propeller Design and Propulsion Concepts for Ship Operation in Off- Design Conditions

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps

Experiment 3 Pipe Friction

ZF W320 Vertical offset, direct mount marine transmission.

FAN PROTECTION AGAINST STALLING PHENOMENON

ZF 220 A 10 Down angle, direct mount marine transmission.

ZF W325 Vertical offset, direct mount marine transmission.

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

Mechanical Principles

Azimuth thrusters. propulsors

Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29

ZF 286 A 7 Down angle, direct mount marine transmission.

The Pressure Velocity (PV) Relationship for Lead Screws

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Waterjets. propulsors. courtesy of Austal

Solution Derivations for Capa #11

Chapter 2 Lead Screws

Wind Energy Math Calculations Calculating the Tip Speed Ratio of Your Wind Turbine

What is a Mouse-Trap

HUMAN POWERED SUBMARINE PICUA II 2011

Design and Characterization of a Small Wind Turbine Model equipped with a Pitching System

Tips For Selecting DC Motors For Your Mobile Robot

Selecting and Sizing Ball Screw Drives

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Application Information

Slide Basic system Models

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

DOUBLE DRUM TRACTION WINCH SYSTEMS FOR OCEANOGRAPHIC RESEARCH 1.0 TRACTION WINCH SYSTEM ADVANTAGES 11-2

Wind Turbine Power Calculations

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.

Awell-known lecture demonstration1

ZF 85 IV. Marine Propulsion Systems

Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically

SYNCHRONOUS MACHINES

Module 9: Basics of Pumps and Hydraulics Instructor Guide

The Effects of Wheelbase and Track on Vehicle Dynamics. Automotive vehicles move by delivering rotational forces from the engine to

How do sails work? Article by Paul Bogataj

DIRECT CURRENT GENERATORS

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

ZF 25. Marine Propulsion Systems

CFturbo Modern turbomachinery design software

Natural Convection. Buoyancy force

User s Guide by David Burch

Useful Motor/Torque Equations for EML2322L

Ship propulsion by renewable energies available at sea: Innovations for utilisation of wind and waves

AE Stability and Control of Aerospace Vehicles

Transcription:

13.012 Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004 Marine Propellers Today, conventional marine propellers remain the standard propulsion mechanism for surface ships and underwater vehicles. Modifications of basic propeller geometries into water jet propulsors and alternate style thrusters on underwater vehicles, has not significantly changed how we determine and analyze propeller performance. We still need propellers to generate adequate thrust to propel a vessel at some design speed with some care taken in ensuring some reasonable propulsive efficiency. Considerations are made to match the engine s power and shaft speed, as well as the size of the vessel and the ship s operating speed, with an appropriately designed propeller. Given that the above conditions are interdependent (ship speed depends on ship size, power required depends on desired speed, etc.) we must at least know a priori our desired operating speed for a given vessel. Following this we should understand the basic relationship between ship power, shaft torque and fuel consumption. Power: Power is simply force times velocity, where 1 HP (horsepower, english units) is equal to 0.7457 kw (kilowatt, metric) and 1kW = 1000 Newtons*meters/second. P = F*V version 1.0 updated 11/30/2004-1- 2003, 2004, aht

Effective Horsepower (EHP) is the power required to overcome a vessel s total resistance at a given speed, not including the power required to turn the propeller or operate any machinery (this is close to the power required to tow a vessel). Indicated Horsepower (IHP) is the power required to drive a ship at a given speed, including the power required to turn the propeller and to overcome any additional friction inherent in the system. Typically the ratio of EHP/IHP is about 1:2 (or EHP is 50% of IHP). Brake Horsepower (BHP) is the maximum power generated by an engine at a given RPM as determined by the engine manufacturer. Shaft Horsepower (SHP) is the power delivered along the shaft to the propeller at a given RPM. Regardless of how you think of engine power, as a general rule: the more power available the faster the ship should go all other factors being equal. There is a tradeoff between minimum required power, which would prevent the vessel operating at a fast enough speed, and excessive power, which could be wasteful in terms of fuel, space, cost, etc. Torque: To use the power provided by the power plant (engine) to propel the vessel it must be used to rotate the shaft connected between the engine and the propeller. Shaft horsepower is converted to a rotary force (or moment) applied to the propeller. This rotary force necessary to turn the shaft is simply torque. Torque = Force * length (Newtons*meters) When power is given in HP then torque can be found as T = 5252.0 * HP / RPM version 1.0 updated 11/30/2004-2- 2003, 2004, aht

Where RPM is the revolutions per minute of the shaft and HP is the shaft horsepower. You can see here that for the same power, a slower turning propeller will generate more thrust. Typically for engines and motors, power and available torque are provided as curves on performance data sheets as a plot of BHP, Torque, and fuel consumption as a function of RPM. Speed of the vessel: We have already laid the foundation for determining the resistance on a full scale ship based on model testing for a desired full scale ship speed. This is of course a function of the ship geometry and an important part of choosing the correct ship propeller. Choosing a Propeller To properly choose a propeller we must first understand some of the basic nomenclature used to describe propeller geometry. Figure 1 is taken from Gilmer and Johnson, Introduction to Naval Architecture. Basic Nomenclature: Hub The hub of a propeller is the solid center disk that mates with the propeller shaft and to which the blades are attached. Ideally the hub should be as small in diameter as possible to obtain maximum thrust, however there is a tradeoff between size and strength. Too small a hub ultimately will not be strong enough. Blades Twisted fins or foils that protrude from the propeller hub. The shape of the blades and the speed at which they are driven dictates the torque a given propeller can deliver. version 1.0 updated 11/30/2004-3- 2003, 2004, aht

Blade Root and Blade Tip The root of a propeller blade is where the blade attaches to the hub. The tip is the outermost edge of the blade at a point furthest from the propeller shaft. Blade Face and Back The face of a blade is considered to be the high-pressure side, or pressure face of the blade. This is the side that faces aft (backwards) and pushes the water when the vessel is in forward motion. The back of the blade is the low pressure side or the suction face of the blade. This is the side that faces upstream or towards the front of the vessel. Leading and Trailing Edges The leading edge of a propeller blade or any foil is the side that cuts through the fluid. The trailing edge is the downstream edge of the foil. Right Handed vs. Left Handed A propeller s handedness affects its shape. A righthanded propeller rotates clockwise when propelling a vessel forward, as viewed from the stern of the ship. A left-handed propeller rotates counter-clockwise, as viewed from the stern, when in a forward propulsion mode. When viewing a propeller from astern, the leading edges of the blades will always be farther away from you than the trailing edges. The propeller rotates clockwise, and is right-handed, if the leading edges are on the right. A propeller s handedness is fixed. A right-handed propeller can never be exchanged with a left handed propeller, and vice versa. Most single screw vessels (one engine, one propeller) have right-handed propellers and clockwise rotating propeller shafts (as viewed from astern). Single propellers tend to naturally push the vessel to one side when going forward (and the opposite side when in reverse) a right-handed prop will push the stern to starboard when in forward (and port when in reverse). Since Propellers are not ideally designed for reverse propulsion, this effect is somewhat exaggerated when operating a single-screw vessel in reverse. Twin screw vessels have counter rotating propellers with identical specifications. The port (left) side propeller is usually left-handed and the starboard (right) side propeller is usually right-handed. version 1.0 updated 11/30/2004-4- 2003, 2004, aht

Diameter The diameter (or radius) is a crucial geometric parameter in determining the amount of power that a propeller can absorb and deliver, and thus dictating the amount of thrust available for propulsion. With the exception of high speed (35 Knots+) vehicles the diameter is proportional to propeller efficiency (ie. Higher diameter equates to higher efficiency). In high speed vessels, however, larger diameter equates to high drag. For typical vessels a small increase in diameter translates into a dramatic increase in thrust and torque load on the engine shaft, thus the larger the diameter the slower the propeller will turn, limited by structural loading and engine rating. Revolutions per Minute (RPMs) RPM is the number of full turns or rotations of a propeller in one minute. RPM is often designated by the variable N. High values of RPM are typically not efficient except on high speed vessels. For vessels operating under 35Knots speed, it is usual practice to reduce RPM, and increase diameter, to obtain higher torque from a reasonably sized power plant. Achieving low RPM from a typical engine usually requires a reduction gearbox. Pitch The pitch of a propeller is defined similarly to that of a wood or machine screw. It indicates the distance the propeller would drive forward for each full rotation. If a propeller moves forward 10inches for every complete turn it has a 10inch nominal pitch. In reality since the propeller is attached to a shaft it will not actually move forward, but instead propel the ship forward. The distance the ship is propelled forward in one propeller rotation is actually less than the pitch. The difference between the nominal pitch and the actual distance traveled by the vessel in one rotation is called slip. Typically blades are twisted to guarantee constant pitch along the blades from root to tip. Often a pitch ratio will be supplied. This is simply the ratio of pitch to diameter, usually in millimeters, and typically falls between 0.5 and 2.5 with an optimal value for most vessels closer to 0.8 to 1.8. Pitch effectively converts torque of the propeller shaft to thrust by deflecting or accelerating the water astern simple Newton s Second Law. version 1.0 updated 11/30/2004-5- 2003, 2004, aht

Figure 1 version 1.0 updated 11/30/2004-6- 2003, 2004, aht

Propeller Section Propeller section: A circular arc section cut through the blade at some radius. When this section is "flattened out" it looks like a foil section (see figure 2) The following definitions apply to a propeller section : Meanline: Half distance along a section between the upper and lower surfaces of the blade Nose-Tail line: Straight line connecting the leading edge meanline point to the trailing edge meanline point. Chordlength: Length of Nose-tail line Camber height: distance between nose-tail line and meanline normal to the nose-tail line (varies with chordwise position) Max. Camber: Maximum camber height along the section Meanline Distribution: A standard distribution of camber height as a function of chordwise position starting at the section leading edge. Quite often these are tabulated forms such as a NACA A=0.8 Meanline, and can be obtained from standard foil literature. Thickness: Section thickness along a line normal to the meanline. Varies with chordwise position Max. Thickness: Maximum section thickness version 1.0 updated 11/30/2004-7- 2003, 2004, aht

Thickness distribution: A standard distribution of thickness as a function of chord length quite often are tabulated forms such as NACA 66 thickness form that can be obtained from standard foil literature. The following geometry definitions apply to the overall propeller geometry and are a function of radius: Pitch: The axial distance traveled by the section if rotated on revolution ant translated along the section nose-tail line (arc) Midchord line: line produced from the midchords (i.e. Midpoint of section nose tail line) of each section along a propeller blade. Rake: Axial distance from the midchord point at the hub section and the section of interest. Skew or Skew Angle: Tangential component of the angle formed on the propeller between a radial line going through the hub section midchord point and a radial line going through the midchord of the section of interest and projected Figure 2. Propeller blade cross section is similar to an airfoil version 1.0 updated 11/30/2004-8- 2003, 2004, aht

version 1.0 updated 11/30/2004-9- 2003, 2004, aht

version 1.0 updated 11/30/2004-10- 2003, 2004, aht

version 1.0 updated 11/30/2004-11- 2003, 2004, aht

Propeller Performance Characterization Dimensional Attributes: Diameter D Overall diameter of the propeller Rotation rate N Rotational speed of the propeller in rev/sec Density ρ Fluid density Thrust T Propeller axial thrust force Torque Q Propeller shaft torque Ship Speed V s Ship velocity Inflow Velocity V a Mean inflow velocity Non-Dimensional Characterization of propeller performance: Advance Coef: J = V a /(ND) Thrust Coef.: K t = T/( ρ N 2 D 4 ) Thrust Coef.: C t = 2T/( ρav 2 a ) (A= Propulsor area) Torque Coef.: K q = Q/( ρ N 2 D 5 ) Propeller Efficiency: η 0 = (T * V a )/(2π N Q) Propulsive Efficiency: η t = (R t * V s )/(2π N Q) R t = Total Ship resistance version 1.0 updated 11/30/2004-12- 2003, 2004, aht

Ideal Propellers and the Kramer Diagram Unlike the actuator disc a propeller requires that the power be input into the fluid via a shaft and thus must apply a torque to the fluid. To balance this torque the flow must contain tangential velocity, or swirl, to counteract this torque. The kinetic energy in the swirl velocity, if not recovered by a stator or downstream blade row, is lost. Therefore the efficiency of an ideal propeller will be less than an actuator disc efficiency. For a propeller in uniform flow this ideal efficiency can be computed given the advance coefficient, J, and the thrust coefficient, C t. The graphical chart of these results is depicted in the Kramer diagram, which also has correction for losses due to finite blade number. This chart does NOT include viscous losses and gives the maximum achievable efficiency for a real propeller in uniform inflow. To use Kramer s diagram: Need to Know: T = thrust to propel ship (need to know ship s total resistance) Find C t based on your chosen propeller area. Choose the number of blades Know Va, D, N Use chart: o Start with λ = Absolute advance coefficient (λ = Va/ (π n D) = J/π) o Follow up diagonal line until you hit the horizontal line that corresponds to your number of blades. o Next go DIRECTLY up to the next horizontal line that corresponds to your known value of C t which you calculated earlier. o Then choose the closest efficiency curve or interpolate between curves for η. version 1.0 updated 11/30/2004-13- 2003, 2004, aht

13.012 Hydrodynamics for Ocean Engineers version 1.0 updated 11/30/2004 Reading: Propellers -14-2003, 2004, aht

Propeller Series A common way to choose propellers as a first cut at a design is to choose propellers from a standard propeller series such as the B-series propellers shown below. These are essentially propeller curves for a variety of propellers of varying loading indicated in the form of pitch. If J and K t are known then one can pick the propeller in the series that gives the best efficiency, for example, by reading directly off the chart. Example: Suppose one has a propeller application with the following requirements: Thrust = 14,000 N Ship speed Vs= 10 m/s Density water = 1000kg/m 3 Diameter = 1.0 meters Max. Shaft RPM =600 4-bladed propeller Compute the ideal (actuator disc) efficiency: Ct= 2 (14,000) / (1000* 3.1415 * (1 2 / 4)* 10 2 ) = 0.357 Ideal efficiency = 2 / (1 + (1.357) ½ ) = 0.923 or 92.3% Given a maximum Shaft speed of 600 RPM (10 rps) J = 10/10/1 =1 (Lambda=0.318) Ideal prop. Eff. = 0.86 or 86 % Kt= 14000/1000/10/10/1 =0.14 From the B-series Data: J = 1.0 and Kt = 0.14 Gives a P/D= 1.2 and a propeller efficiency of 0.75 or 75% You can see the actual propeller is much less efficient than either the ideal propeller or the actuator disc result. version 1.0 updated 11/30/2004-15- 2003, 2004, aht

B-Series Propeller Data for Wageningen B 4-55 type propeller series (From Harvald; Resistance and Propulsion of Ships, 1983 ed. Wiley) version 1.0 updated 11/30/2004-16- 2003, 2004, aht

Interaction with hull on performance: An actual ship propeller often operates in the wake of a ship as shown below. Therefore the "freestream" velocity as seen by the propeller is lower than the ship speed. The Wake fraction is defined as w= 1 V / V a s and is the percentage of the ship velocity seen at the propeller The propeller, if close to the hull can also induce a low pressure on the hull which increases its drag. Thus the propeller thrust must be higher to overcome this additional drag. The thrust deduction coefficient is defined as: t = 1 R / T t where R t is the total ship resistance and T is the propeller thrust. Note that prop efficiency is simply η 0 = (T * V a )/(2π NQ) version 1.0 updated 11/30/2004-17- 2003, 2004, aht

and the propulsive efficiency is η t = (R t * V s )/(2π NQ) If the torque in each equation is assumed the same then we can show that η t = (1-t)/(1-w) *η 0 From this result we can see that the propulsive efficiency can increase if the propeller is put in the wake of the ship (if t is small). In fact it is possible to have a propulsive efficiency for a propeller system of greater than 1.0! This doesn't violate any physical laws but merely states that the propeller has "reduced" the ship resistance by taking advantage of its wake. version 1.0 updated 11/30/2004-18- 2003, 2004, aht

Propeller Cavitation Cavitation occurs when the local absolute pressure is less than local vapor pressure for the fluid medium. Cavitation Number (Inflow Velocity Based) is defined as: σ v = 2 (P Pvap)/ ρav a 2 Sometimes Propeller Cavitation Number is defined based on Propeller tip Speed: σ ND = (P Pvap)/ ( ρ N 2 D 2 ) The Critical measurement for cavitation performance is the cavitation inception point which is the conditions (i.e. Cavitation number) for which cavitation is first observed anywhere on the propeller. Typically the Inception cavitation number as a function of Kt or J is plotted for a given propeller which defines the cavitation free operation boundary. This boundary typically has a bucket shape which is referred to as the cavitation bucket. version 1.0 updated 11/30/2004-19- 2003, 2004, aht

version 1.0 updated 11/30/2004-20- 2003, 2004, aht