Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically
|
|
|
- Maude Davidson
- 9 years ago
- Views:
Transcription
1 Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically Part 1 of 2 When students are trained in classic mechanical engineering, they are taught to construct a system using conventional mechanical components to convert rotary into linear motion. Converting rotary to linear motion can be accomplished by several mechanical means using a rotary motor, rack and pinion, belt and pulley, and other mechanical linkages, which require many components to couple and align. Although these methods can be effective, they each carry certain limitations. Conversely, stepper motor-based linear actuators address all these factors and have fewer issues associated with their use. The reason? Rotary-to-linear motion is accomplished in the motor itself, which translates to fewer components, high force output, and increased accuracy. What Is a Stepper Motor-Based Linear Actuator? A linear actuator is a device that develops a force and a motion through a straight line. A stepper motor-based linear actuator uses a stepping motor as the source of rotary power. Inside the rotor there s a threaded precision nut instead of a shaft; the shaft is replaced by a precision leadscrew. As the rotor turns (as in a conventional stepper motor), linear motion is achieved directly through the nut and threaded screw. It makes sense to achieve the rotary to linear conversion directly inside the motor, as this approach greatly simplifies the design of rotary-to-linear applications. This creates mechanical advantage, high resolution, and accuracy ideal for use in applications where precision motion is required. Basic Components: the Stepper Motor Why use a stepper motor instead of a conventional rotary motor? Unlike other rotary motors, steppers are unique in that they move a given amount of rotary motion for every electrical input pulse. This makes steppers a perfect solution for use in positioning applications. Depending on the type of stepper motor, they can achieve resolutions from 15 rotational degrees per step to 0.9 rotational degrees per step. This unique stepping feature coupled with the characteristics of the lead screw provides a variety of very fine positioning resolutions. 1
2 How Does the Stepper Motor Work? Permanent magnet stepper motors incorporate a permanent magnet rotor, coil windings, and a steel stator capable of carrying magnetic flux. Energizing a coil winding creates an electromagnetic field with a NORTH and SOUTH pole. The stator conducts the magnetic field and causes the permanent magnet rotor to align itself to the field. The stator magnetic field can be altered by sequentially energizing and de-energizing the stator coils. This causes a stepping action and incrementally moves the rotor resulting in angular motion. One-Phase On Stepping Sequence Figure 1 illustrates a typical step sequence for a simplified two-phase motor. In Step 1, phase A of the two-phase stator is energized. This magnetically locks the rotor in the position shown, since unlike poles attract. When phase A is turned off and phase B is turned on, the rotor moves 90 clockwise. In Step 3, phase B is turned off and phase A is turned on but with the polarity reversed from step 1; this causes another 90 rotation. In Step 4, phase A is turned off and phase B is turned on, with polarity reversed from Step 2. Repeating this sequence causes the rotor to move clockwise in 90 steps. 2
3 Figure 1. One-Phase On stepping sequence for two phase motor Two-Phase On Stepping Sequence A more common method of stepping is two-phase on where both phases of the motor are always energized. However, only the polarity of one phase is switched at a time, as shown in Figure 2. With two-phase on stepping, the rotor aligns itself between the average north and average south magnetic poles. Since both phases are always on, this method provides 41.4% more torque than one-phase on stepping. 3
4 Figure 2. Two Phase On stepping sequence for two phase motor Basic Components: the Lead Screw The lead screw is a special screw that provides a linear force using the simple mechanical principle of the inclined plane. Imagine a steel shaft with a ramp (inclined plane) wrapped around it; the mechanical advantage (force amplification) is determined by the angle of the ramp - a function of the lead, pitch, and screw diameter. Lead The axial distance a screw thread advances in a single revolution. Pitch The axial distance measured between adjacent thread forms. Number of Starts The number of independent threads on a screw form optimized for manufacturability. The relationship of lead to pitch depends on the number of starts and is expressed in the following equation. For a single start thread, the lead is equal to the pitch. lead = (pitch) x (number of starts) The threads of the lead screw allow a small rotational force to translate into a large load capability depending on the steepness of the ramp (the thread lead). A small lead will provide a high force and high resolution output. A large lead will provide a lower force, but a correspondingly higher linear speed from the same source of rotary power. 4
5 Pictured above are several examples of different thread configurations Basic Components: Integrated Nut Of equal, if not greater importance to the lead screw is the nut that drives the screw. This nut is often imbedded in the rotor of the stepping motor, which makes this actuator configuration unique from other rotary to linear techniques. The traditional nut material is a bearing grade bronze which lends itself to the required machining of the internal threads. Bronze is a compromise between physical stability and lubricity. Compromise, however, is the key word since it excels at neither. Friction Considerations A much better material for a power nut in the linear actuator is a lubricated thermoplastic material. With the evolution of new engineered plastics, the nut/screw thread interface can now exhibit a much lower coefficient of friction when compared with the traditional bronze nut material. In fact, a change from bronze to an engineered thermoplastic for the nut threads results in a friction reduction of approximately 45%. This results in a higher-efficiency system while allowing a smaller motor footprint for the same amount of force output. Thermal Considerations Given the data, it is clear that a plastic drive nut provides the lower coefficient of friction when compared with bronze. Unfortunately, as good as the plastic is for threads, it is not stable enough for the bearing journals of a hybrid stepper motor, which are critical in the motor design. Under a continuous full-load condition, plastic bearing journals can expand as much as four times compared to brass journals. 5
6 In order to achieve the high performance characteristics of the stepper motor, the design must maintain a stator-to-rotor airgap of only a few thousandths of an inch. This tight design requirement demands thermally stable bearing journals. By injectionmolding plastic threads within a brass rotor assembly, characteristics of low friction and high bearing journal stability are achieved (Figure 3), resulting in a product with quiet operation, higher efficiencies, and higher life expectancies. In fact, motor life is improved by 10 to 100 times over the traditional bronze nut configuration. Figure 3. Power Nut Configuration Embedded in Permanent Magnet Rotor Putting It All Together By combining all components as explained above, the stepper motor-based linear actuator is created. Figure 4 is a schematic of a captive type linear actuator. Captive indicates that there is already an anti-rotation mechanism built into the actuator through the use of a splined anti-rotation shaft and a captive sleeve. The captive configuration is ideal for use in precision liquid drawing/dispensing and proportional valve control. Other forms of linear actuators are non-captive and external linear as pictured in Figures 5 and 6. 6
7 Figure 4. Section view of a hybrid captive linear stepping actuator Hybrid Captive Hybrid Non-Captive Hybrid External Linear Figure 5. Hybrid Linear Actuators: 1.8 and 0.9 Rotational Degrees/Step Canstack Captive Canstack Non-Captive Canstack External Linear Figure 6. Canstack Linear Actuators 15 and 7.5 Rotational Degrees/Step 7
Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically
Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically Part 2 of 2 In Part 1, we discussed the basics of a stepper motor-based linear actuator, one of the most effective
UNIT II Robots Drive Systems and End Effectors Part-A Questions
UNIT II Robots Drive Systems and End Effectors Part-A Questions 1. Define End effector. End effector is a device that is attached to the end of the wrist arm to perform specific task. 2. Give some examples
Selecting and Sizing Ball Screw Drives
Selecting and Sizing Ball Screw Drives Jeff G. Johnson, Product Engineer Thomson Industries, Inc. Wood Dale, IL 540-633-3549 www.thomsonlinear.com [email protected] Fig 1: Ball screw drive is a
BALL & ACME LEAD SCREW TECHNICAL INFORMATION
BALL & ACME LEAD SCEW ECHNCAL NFOMAON PHONE:..00 FAX:.. WWW.SDP-S.COM 0 his section will introduce most of the more common types of drive mechanisms found in linear motion machinery. deally, a drive system
Alternative Linear Motion Systems. Iron Core Linear Motors
Alternative Linear Motion Systems ME EN 7960 Precision Machine Design Topic 5 ME EN 7960 Precision Machine Design Alternative Linear Motion Systems 5-1 Iron Core Linear Motors Provide actuation forces
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
Lab 8: DC generators: shunt, series, and compounded.
Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their
Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance
ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an
LINEAR ACTUATORS. Linear Actuators. Linear Actuators. Linear Actuators are Actuators that creates motion in a straight line, as contrasted
LINEAR ACTUATORS Linear Actuators Linear Actuators Linear Actuators are Actuators that creates motion in a straight line, as contrasted with circular motion of a conventional electric motor. Linear actuators
INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS
INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS This is a stand alone tutorial on electric motors and actuators. The tutorial is of interest to any student studying control systems and in particular
Permanent Magnet Motor Kit, Magnetic Reed Type. (SKY-ReedMotorKit) Instructions
Permanent Magnet Motor Kit, Magnetic Reed Type (SKY-ReedMotorKit) Instructions This kit contains powerful permanent magnets. Exercise caution when handling them as they can pull on iron tools and snap
MACHINE SCREW ACTUATORS 2 to 100 Tons
2 to 100 Tons Top Plate 316 S.S. Must be bolted to lifting member to prevent rotation except when screw is keyed. Lifting Screw 316 S.S. Also available as threaded end or clevis end. Shell Cap 316 S.S.
Why Lead Screws are the Best Fit for Many Linear Motion Applications - and How to Rightly Apply Them
Why Lead Screws are the Best Fit for Many Linear Motion Applications - and How to Rightly Apply Them Robert Lipsett, Engineering Manager, Thomson BSA Thomson Industries, Inc. San Jose, CA 800.882.8857
Chen. Vibration Motor. Application note
Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table
Chapter 2 Lead Screws
Chapter 2 Lead Screws 2.1 Screw Threads The screw is the last machine to joint the ranks of the six fundamental simple machines. It has a history that stretches back to the ancient times. A very interesting
CNC Machine Control Unit
NC Hardware a NC Hardware CNC Machine Control Unit Servo Drive Control Hydraulic Servo Drive Hydraulic power supply unit Servo valve Servo amplifiers Hydraulic motor Hydraulic Servo Valve Hydraulic Servo
Tips For Selecting DC Motors For Your Mobile Robot
Tips For Selecting DC Motors For Your Mobile Robot By AJ Neal When building a mobile robot, selecting the drive motors is one of the most important decisions you will make. It is a perfect example of an
A descriptive definition of valve actuators
A descriptive definition of valve actuators Abstract A valve actuator is any device that utilizes a source of power to operate a valve. This source of power can be a human being working a manual gearbox
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
Working Drawing and Assemblies. Chapter 10
Working Drawing and Assemblies Chapter 10 Objectives 1.Define working drawings. 2. Describe how working drawings are used in industry. 3. List the major components of a complete set of working drawings.
C Standard AC Motors
C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake
Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor
Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,
Stepper motor I/O. Application Note DK9222-0410-0014 Motion Control. A General information on stepper motors
Stepper motor Keywords Stepper motor Fieldbus Microstepping Encoder Phase current Travel distance control Speed interface KL2531 KL2541 Part A of this Application Example provides general information on
10 tips for servos and steppers a simple guide
10 tips for servos and steppers a simple guide What are the basic application differences between servos and steppers? Where would you choose one over the other? This short 10 point guide, offers a simple
MDrive Linear Actuators
MDrive Linear Actuators All-in-one linear motion systems Delivering long life, high accuracy and unsurpassed repeatability, all in a package that is extremely compact and affordable. MDrive Linear Actuators
Miniaturized linear motion
Miniaturized linear motion Test and measurement, semiconductor, and precision medical applications are pushing the envelope of modern motion designs. In these and other applications, compact linear motion
ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS
ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical
Preview of Period 16: Motors and Generators
Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3
DC Motor control Reversing
January 2013 DC Motor control Reversing and a "Rotor" which is the rotating part. Basically there are three types of DC Motor available: - Brushed Motor - Brushless Motor - Stepper Motor DC motors Electrical
MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES
MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential
Sense it! Connect it! Bus it! Solve it! EncoderS
Sense it! Connect it! Bus it! Solve it! EncoderS Incremental encoders Incremental encoders use electrical pulses to measure rotation speed or position. The dual-channel incremental encoders of the Ri series,
Chapter 11 SERVO VALVES. Fluid Power Circuits and Controls, John S.Cundiff, 2001
Chapter 11 SERVO VALVES Fluid Power Circuits and Controls, John S.Cundiff, 2001 Servo valves were developed to facilitate the adjustment of fluid flow based on the changes in the load motion. 1 Typical
How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.
1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has
10. CNC Hardware Basics
CAD/CAM Principles and Applications 10 CNC Hardware Basics 10-1/10-20 by P.N.Rao 10. CNC Hardware Basics 10.1 Structure of CNC machine tools Table 10.1 Some design criteria for CNC machine tool design
Synchronous motor. Type. Non-excited motors
Synchronous motor A synchronous electric motor is an AC motor in which the rotation rate of the shaft is synchronized with the frequency of the AC supply current; the rotation period is exactly equal to
Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie
Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie Motivation The AHPV from VDS 1.0 used an expensive, NGM electric hub motor, costing roughly $8000. (picture on right)
AUTOMATED, FULL LOAD MOTOR TESTING AT PRODUCTION SPEEDS
AUTOMATED, FULL LOAD MOTOR TESTING AT PRODUCTION SPEEDS Abstract: Revolutionary test method coupled with innovative automation yields superior motor performance measurement data without sacrifice of production
Motor Selection and Sizing
Motor Selection and Sizing Motor Selection With each application, the drive system requirements greatly vary. In order to accommodate this variety of needs, Aerotech offers five types of motors. Motors
AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.
Lab 9: Synchronous motor. Objective: to examine the design of a 3-phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the full-load characteristic of
Lab 14: 3-phase alternator.
Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive
Choosing Between Electromechanical and Fluid Power Linear Actuators in Industrial Systems Design
Choosing Between Electromechanical and Fluid Power Linear Actuators in Industrial Systems Design James Marek, Business Unit Director, Thomson Systems Thomson Industries, Inc. 540-633-3549 www.thomsonlinear.com
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS
LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS HONCŮ JAROSLAV, HYNIOVÁ KATEŘINA, STŘÍBRSKÝ ANTONÍN Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University Karlovo
Unit 24: Applications of Pneumatics and Hydraulics
Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 3 HYDRAULIC AND PNEUMATIC MOTORS The material needed for outcome 2 is very extensive
UNIT 1 INTRODUCTION TO NC MACHINE TOOLS
UNIT 1 INTRODUCTION TO NC MACHINE TOOLS Structure 1.1 Introduction Objectives 1.2 NC Machines 1.2.1 Types of NC Machine 1.2.2 Controlled Axes 1.2.3 Basic Components of NC Machines 1.2.4 Problems with Conventional
"AC2EC" - Replacement made easy New EC motor design Compact and efficient
"AC2EC" - Replacement made easy New EC motor design Compact and efficient The efficiency of the fans used is a central issue in ventilation and airconditioning technology. This is encouraged not only by
MDrive Linear Actuator
MDrive Linear Actuator Compact, integrated all-in-one linear motion systems Hybrid Linear Actuator Description MDrive Hybrid Linear Actuator Presentation The MDrive Hybrid Linear Actuator is a very compact,
DIAMOND Gear Company, LTD. an ERIKS Company. Installation, Maintenance, & Operation Manual Declutchable Worm Gear
DIAMOND Gear Company, LTD. an ERIKS Company Installation, Maintenance, & Operation Manual Declutchable Worm Gear 2016 DECLUTCHABLE WORM GEAR INSTRUCTIONS This is an instructional manual which provides
GEAROLOGY 4-1 WORMS AND WORM GEARS WORMS AND WORM GEARS
GEAROLOGY 4-1 4 4-2 GEAROLOGY COMMON APPLICATIONS: Worm and worm gear sets are used in many, everyday products including: electrical mixers, hubometers, right Now that you have an understanding of two
Pipe Thread Types and Designations
Pipe Thread Types and Designations Overview: Different types of screw threads have evolved for fastening, and hydraulic systems. Of special concern are plastic-to-metal, taper/parallel threaded joints
Miniature High-Torque, DC Servomotors and DC Gearmotors
typical applications Robotics Factory automation Medical equipment Computer peripherals and office equipment Portable, battery-operated equipment Textile machinery Packaging machinery Actuators Miniature
Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.
Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine
Digital vs. Analogue Control Systems
Digital vs. Analogue Control Systems Presented at the 2011 Annual Meeting of the American College of Medical Physics, Chattanooga, TN, May 1, 2011 Ivan A. Brezovich, PhD, Dept. of Rad Onc, Univ of Alabama
BRUSHLESS DC MOTORS. BLDC 22mm. BLDC Gearmotor Size 9. nuvodisc 32BF. BLDC Gearmotor Size 5
BRUSHLESS DC MOTORS BLDC Gearmotor Size 9 BLDC 22mm nuvodisc 32BF BLDC Gearmotor Size 5 Portescap Brushless DC motors are extremely reliable and built to deliver the best performances. Their high power
BULLETIN STP MAE Stepper Motors
ULLETIN STP E Stepper otors Stepper otors PennEngineering otion Technologies offers a wide range of E brand stepper motor solutions. The HY series hybrid stepper motors feature low rotor inertia for maximum
Technical Information
tapping Technical Information Troubleshooting Guide 115 TAP DOES NOT START Program depth: Tap drill size: Tap sharpness: Compression stroke may use up the entire program depth. Check for tap drill size.
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
Electrical Machines in the Power Engineering and Automatics
dr inż. Adam Biernat Electrical Machines in the Power Engineering and Automatics Section I Electrical Machines in Automatics 1. Switched Reluctance Motors...2 - Introduction application, parameters; -
Belt Drives and Chain Drives. Power Train. Power Train
Belt Drives and Chain Drives Material comes for Mott, 2002 and Kurtz, 1999 Power Train A power train transmits power from an engine or motor to the load. Some of the most common power trains include: Flexible
Chapter. 4 Mechanism Design and Analysis
Chapter. 4 Mechanism Design and Analysis 1 All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints
SET-UP AND INSTALLATION FOR LEAD SCREW CARTRIDGE ASSEMBLY
SET-UP AND INSTALLATION FOR LEAD SCREW CARTRIDGE ASSEMBLY 82-13-1 O-Ring (Rear) The Lead Screw Assembly is shipped separately. Note: Install Electrical and Pneumatic Circuitry. Be Sure electrical and pneumatic
Torque motors. direct drive technology
Torque motors direct drive technology Why Direct Drive Motors? Fast and effective Direct-drive technology in mechanical engineering is defined as the use of actuators which transfer their power directly
Three Channel Optical Incremental Encoder Modules Technical Data
Three Channel Optical Incremental Encoder Modules Technical Data HEDS-9040 HEDS-9140 Features Two Channel Quadrature Output with Index Pulse Resolution Up to 2000 CPR Counts Per Revolution Low Cost Easy
Directed Reading A. Section: Types of Machines LEVERS
Skills Worksheet Directed Reading A Section: Types of Machines 1. A knife is actually a very sharp. 2. What are the six simple machines that all other machines are made from? LEVERS 3. A simple machine
Contactless Encoder RI360P0-QR24M0-INCRX2-H1181
Compact, rugged housing Many mounting possibilities Status displayed via LED Immune to electromagnetic interference 1024 pulses per revolution (default) 360, 512, 1000, 1024, 2048, 2500, 3600, 4096, parametr.
Electric Motors and Drives
EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,
Solenoids. Principle of Operation. Why use solenoids?
Why use solenoids? Actuation for machine and process automation must range from the most basic on-off function to extremely complex sequencing. When the process involves linear or rotary motion, solenoids
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The
STAR Linear Bushings and Shafts Supplement RE 83 117/2001-08. Linear Motion and Assembly Technologies
STAR Linear Bushings and Shafts Supplement RE 83 117/2001-08 Linear Motion and Assembly Technologies STAR Linear Motion Technology Ball Rail Systems Standard Ball Rail Systems Ball Rail Systems with Aluminum
Field and Service Robotics. Odometry sensors
Field and Service Robotics Odometry sensors Navigation (internal) Sensors To sense robot s own state Magnetic compass (absolute heading) Gyro (angular speed => change of heading) Acceleration sensors (acceleration)
Motors and Generators
Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed
CNC HARDWARE & TOOLING BASICS
Computer Aided Manufacturing (CAM) CNC HARDWARE & TOOLING BASICS Assoc. Prof. Dr. Tamer S. Mahmoud 1. Parts of CNC Machine Tools Any CNC machine tool essentially consists of the following parts: Part Program,
MDM-5000 DIRECT DRIVE SETS
MDM-5000 DIRECT DRIVE SETS PRODUCT GUIDELINES REVISION AA This documentation may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable format without
Application Information
Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application
NECOCAR. International CATIA Project
NECOCAR International CATIA Project 2008 GOAL The goal of this project is to design an electrocar for the Japanese public. Cute Comfortable Modern Ecological ORGANIZATION Russe-Français CATIA V5 R18 Sharing
Cerobear Spindle Bearings for Machine Tool Applications
Cerobear Spindle Bearings for Machine Tool Applications Cerobear Spindle Bearings About CEROBEAR Committed to the abbreviation CEramic in ROlling BEARings, CEROBEAR GmbH is the renowned world leader in
Torque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
Horizontal Jet Pumps 1/3-1-1/2 HP
Horizontal Jet s 1/3-1-1/2 FW01 0909 Supersedes 0409 The CPJ, CPH and EK models feature the famous Flint and Walling Service Plus motor, available in either NEMA J or Uni-frame flange construction. The
Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors
Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles
Q&A Session for Advanced Ball Screws 102: Troubleshooting for Design Engineers
Q&A Session for Advanced Ball Screws 102: Troubleshooting for Design Engineers Topic: Noise Q: Is there a way to predict/calculate noise on a ball screw? A: No, there is no way to calculate the noise of
DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR
1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.
LOW VOLTAGE D.C. MOTORS & GEARBOX UNITS
LOW D.C. MOTORS & GEARBOX UNITS Printed on 100% recycled paper. 918D SERIES SINGLE RATIO METAL GEARBOX (RE280 MOTOR/RE 280/1 MOTOR) NEW! NEW! NEW! NEW! NEW! WITH 2mm OUTPUT SHAFT (15:1 ONLY) WITH 4mm OUTPUT
Brush DC Motor Basics. by Simon Pata Business Unit Manager, Brushless DC
thinkmotion Brush DC Motor Basics by Simon Pata Business Unit Manager, Brushless DC Ironless DC Motor Basics Technical Note Brushed DC ironless motors are found in a large variety of products and applications
Competence gives security. A competitive edge in rotary axes through experience, simulation, calculation, testing
Competence gives security A competitive edge in rotary axes through experience, simulation, calculation, testing Bearings for rotary axes Competence gives security Figure 1: Axial/radial bearing YRTSM
due to uncertainty. This, in turn, has a direct impact on equipment availability and maintenance costs. Unfortunately, due to misconceptions and
due to uncertainty. This, in turn, has a direct impact on equipment availability and maintenance costs. Unfortunately, due to misconceptions and pressure from plant operators to get "back on line", it
AC Induction Motor Slip What It Is And How To Minimize It
AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because
WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page
DC Motors Explained: White Paper, Title Page DC Motors Explained By Joe Kimbrell, Product Manager, Drives, Motors & Motion, AutomationDirect DC Motors Explained: White Paper, pg. 2 How many types of DC
TBG-25 OPTIONS X AXIS TRAVEL (MM) Z AXIS TRAVEL (MM) OPTIONS FOR: SPECIFICATIONS. Specifications. Configuration. Belt Type 25.
LINEAR ROBOTICS > T-BOT GANTRY ROBOTS T-BOT GANTRY ROBOTS TBG-25 OPTIONS X AXIS TRAVEL (MM) 500 1000 2000 Custom Z AXIS TRAVEL (MM) 250 500 Custom Controls Motor Gearbox HOW TO BUILD YOUR TBG-25: Features
System 8. ü www.nassmagnet.com ( +49 511 6746-0. System 8
System 8 ü www.nassmagnet.com ( +9 11 7-0 System 8 The name System 8 stands for a modular system of solenoid coils, armature systems, solenoid operators and solenoid valves. The diameter of the armatures
WIND TURBINE TECHNOLOGY
Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems
NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR
INDEX NO. : M-142 TECHNICAL MANUAL FOR NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil
Understanding the Alternator
http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED
Induction Motor Theory
PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org
Chapter 5. Components, Symbols, and Circuitry of Air-Conditioning Wiring Diagrams
Chapter 5 Components, Symbols, and Circuitry of Air-Conditioning Wiring Diagrams Objectives Upon completion of this course, you will be able to: Explain what electrical loads are and their general purpose
STEERING SYSTEM - POWER
STEERING SYSTEM - POWER 1990 Nissan 240SX 1990 STEERING Nissan - Power Rack & Pinion Axxess, Maxima, Pulsar NX, Sentra, Stanza, 240SX, 300ZX DESCRIPTION The power steering system consists of a rack and
Hidetsugu KURODA 1, Fumiaki ARIMA 2, Kensuke BABA 3 And Yutaka INOUE 4 SUMMARY
PRINCIPLES AND CHARACTERISTICS OF VISCOUS DAMPING DEVICES (GYRO-DAMPER), THE DAMPING FORCES WHICH ARE HIGHLY AMPLIFIED BY CONVERTING THE AXIAL MOVEMENT TO ROTARY ONE 0588 Hidetsugu KURODA 1, Fumiaki ARIMA,
TOYOTA ELECTRONIC CONTROL TRANSMISSION
Electronic Control Transmission (ECT) The Electronic Control Transmission is an automatic transmission which uses modern electronic control technologies to control the transmission. The transmission itself,
