ROBATIC, ROBA -quick ROBA -takt Electromagnetic Clutches and Brakes, Clutch Brake Units www..com High torque capacity Low wear Compact construction Easy assembly and maintenance K.500.V09.GB your reliable partner
Largest variety in selection of standard products Market leader s competence arising from decades of experience in the development, production and application of power transmission products Optimum product selection due to our expertise in design and calculation Reliable component dimensioning Intelligent platform (modular construction) High flexibility for individual requests and customer-tailored solutions Quality-inspected suppliers Modern, highly robust materials In-house production 00 % quality control your reliable partner What is your definition of reliability? We define reliability as the highest product quality and competent service from the initial contact right up to the after-sale service Certified according to DIN EN ISO 900:2000 Personal supervision from the first contact right up to the after-sale service Worldwide local service network CAD-files available online to save time and costs during construction 24-hour delivery service for preferred products Short delivery times and on-time delivery Unlimited replacement part availability worldwide
Your advantages when using electromagnetic ROBATIC -clutches, ROBA -quick brakes and ROBA -takt clutch brake units Easy integration into your machine: The optimised magnetic circuit minimises the magnetic leakage flux. The high power density and torque security based on it allow compact dimensions and an easy integration in your construction. High reliability and operational safety: The switching behaviour is constant during the entire service lifetime. Therefore, the positioning accuracy and reliability of the clutches or brakes respectively and herewith the operational security of your machine are increased. Less operating expenses and maintenance charges: The large friction surface and the smooth switching behaviour increase the wear resistance. Therefore, the clutches and brakes are maintenance-free until the friction surfaces are worn down. There is no re-adjustment work and the resulting operational interruptions. Therefore, the operating expenses and maintenance charges are very low. Increase of productivity: Short switching times allow high switching frequencies and increase the productivity of your machine. Total Quality Management Product Quality Every delivery which leaves our firm has been subjected to a careful quality inspection, meaning that you are able to rely 00 % on mayr products. If required, we pre-adjust our clutches and brakes accurately to the requested values and confirm the product characteristics with an Inspection Report. Quality Management mayr uses the term quality to describe its products and services. Certification of our quality management confirms the qualityconsciousness of our colleagues at every level of the company. Our integrated management system is certified according to DIN EN ISO 900:2000 (Quality) and DIN EN ISO 400 (Environment) and complies with the OHSAS 800/OHRIS (Occupational Health and Safety) demands. All products are subject to comprehensive inspections and tests regarding loads. Only after having passed the strongest long-time tests and when they fully meet all the technical requirements and proof their reliability they are included in our delivery programme. Please Observe: According to german notation, decimal points in this document are represented with a comma (e.g. 0,5 instead of 0.5).
Electromagnetic Clutches and Brakes Guidelines Description and Operating Conditions. The catalogue values, in particular the values for the nominal torque, are reference values and may deviate in individual cases. 2. During dimensioning, please contact the manufacturers for consultation on installation conditions, torque fluctuations, permitted friction work, run-in behaviour, wear and ambient conditions. 3. The clutches and brakes are designed for dry running. If the friction surfaces come into contact with oil, grease or similar substances, there may be a severe decrease in torque. 4. When the devices are switched off, voltage peaks may occur due to the counter-induction on the magnetic coils, causing in extreme cases damage to the magnetic coil and therefore to the components. For this reason, excess voltage must be damped using a suitable protective circuit (e.g. using a varistor). 5. The surfaces on the clutches and the brakes are corrosionprotected except for the friction surfaces. However, in operation in extreme ambient conditions or in outdoor conditions with direct weather influences, additional protective measures are necessary. 6. The connection cable or connection strands on the clutches and brakes have a surface coating which is not resistant against all influences. After contact with chemical substances, please check compatibility. 7. The clutches and brakes are designed for a relative duty cycle of 00 %. Torque Characteristics In new condition, c. 50 % of the catalogue nominal torque (M 2 ) is transmitted. The components reach the catalogue nominal torque when the friction surfaces are run in. As a rough guideline value, c. 00 200 switchings in dynamic operation, a typical speed (c. 50 to 000 rpm) and a medium friction work (see Table ) can be given. Longer slipping of the clutch or brake is to be avoided, especially at low speeds, as this can cause scoring formation and therefore damage to the friction surfaces. Clutches or brakes used in static or virtually static operation do not reach the nominal torque (M 2 ). If requested, the clutches or brakes can also be run in at the place of manufacture. This is most expedient for Type 540.40 with complete bearing. However, Types 500. and 520. can also be run in under certain conditions. For this, please ensure exact installation customer-side according to the regulations in order to reproduce the friction conditions as precisely as possible. At the same time, the friction carbon produced must not be rubbed off. If the clutch is run in to the nominal torque at the place of manufacture and then operated in static or virtually static mode, please allow for a drop to c. 60 70 % of the nominal torque. This is the case if the clutch or brake falls below the speed or friction work (Q a ) stated in Table. For static and virtually static applications, we therefore recommend our double-flow designs construction series 500. 3.0 (see pages 2/3). Friction work Q a [J] Clutch or brake speed n min. [rpm] 3 6 300 4 29 250 5 55 200 6 05 60 7 200 30 8 380 20 9 600 00 Run-in Conditions For running in, different procedures can be used according to the Type design. An artificial run-in is to be carried out if a run-in procedure is not possible in the machine due to the type of application (see section Torque Characteristics ), e.g. due to insufficient friction work, speed or switching frequencies. For the run-in conditions of the individual clutch and brake types, please see the respective Installation and Operational Instructions on our website www.mayr.com Electrical Connection and Wiring DC current is necessary for the operation of the brake. The coil voltage is indicated on the Type tag as well as on the brake body and is designed according to the DIN IEC 60038 (± 0 % tolerance). Operation is possible both via alternating voltage in connection with a rectifier or with another suitable DC supply. Dependent on the brake equipment, the connection possibilities can vary. Please follow the exact connections according to the Wiring Diagram. The manufacturer and the user must observe the applicable directives and standards (e.g. DIN EN 60204- and DIN VDE 0580). Their observance must be guaranteed and double-checked. Electrical Wiring 24 VDC and 04 VDC can be selected as standard voltages. 24 VDC: Operation with a power supply unit of 24 VDC 04 VDC: Half-wave recifier with 230 VAC mains voltages Earthing Connection The brake is designed for Protection Class I. This protection covers not only the basic insulation but also the connection of all conductive parts to the PE conductor on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardized inspection of the PE conductor connections to all contactable metal parts. Device Fuses To protect against damage from short circuits, please add suitable device fuses to the mains cable. Protection Circuit When using DC-side switching, the coil must be protected by a suitable protective circuit according to VDE 0580. This is achieved by using a sufficiently dimensioned varistor, which has already been integrated into the mayr rectifier. To protect the switching contact from consumption when using DCside switching, additional protective measures may be necessary (e.g. series connection of switching contacts). The switching contacts used should have a minimum contact opening of 3 mm and should be suitable for inductive load switching. Please make sure on selection that the rated voltage and the rated operation current are sufficient. Depending on the application, the switching contact can also be protected by other protective circuits (e.g. mayr spark quenching units), although this may of course then alter the switching times. 4 Table
Electromagnetic Clutches and Brakes Table of Contents Page ROBATIC Electromagnetic, energise to engage pole face clutches ROBA -quick Electromagnetic, energise to engage pole face brakes ROBATIC Description 6 Summary of structural designs 7 Data sheets ROBATIC -standard s 3 7 8 9 ROBATIC -standard s 8 9 0 ROBATIC double-flow design s 3 7 2 3 ROBATIC small mounting diameter s 3 7 4 5 ROBATIC small mounting diameter s 8 9 6 7 ROBATIC with bearing-supported coil carrier s 3 9 8 9 ROBATIC with bearing-supported flange s 3 9 20 2 Technical explanations 22 25 Electronic accessories 26 27 ROBA -quick Description 28 Summary of structural designs 29 Data sheets ROBA -quick standard s 3 7 30 3 ROBA -quick standard s 8 9 32 33 ROBA -quick small mounting diameter s 3 7 34 35 Technical explanations 36 39 Electronic accessories 40 4 ROBA -takt clutch brake module Clutch-brake unit ROBA -takt clutch brake module Description 42 Summary of structural designs 43 Data sheets ROBA -takt 44 5 Technical explanations 52 55 Electronic accessories 56 58 5
ROBATIC -electromagnetic clutch Constant switching performance throughout the entire service lifetime High torque security due to an optimised magnetic circuit and the new design of the ROBATIC -clutch. Therefore, higher capacities due to less magnetic leakage flux. Half the wear due to large friction surfaces and smooth switching behaviour, the ROBATIC -clutch has a higher wear resistance (approx. 00 %). Large internal diameters of the magnetic coil bodies therefore large permitted shaft diameters Low noise Short switching times/high switching frequencies Correct function up to wear limit wear, air gap max. adjusting interval conventional electromagnetic clutches number of switchings Functional principle ROBATIC -clutches are energise to engage, electromagnetic pole face units. When DC voltage is applied to the magnetic coil (), a magnetic field is build up, the armature disk (3) is attracted to the rotor (2) and the friction lining (4). The torque is transmitted via friction locking. The torque is transmitted from the drive element (6) via the armature disk (3) and the rotor (2) to the output shaft (7). After having de-energised the coil, the membrane spring (5) draws back the armature disk (3) to the drive element (e.g. belt pulley), and the torque transmission is then disconnected. wear, air gap max. ROBATIC 7 3 2 adjusting interval number of switchings 4 6 5 6
ROBATIC -electromagnetic clutch Summary of structural designs ROBATIC ROBATIC -standard s 3 to 9 Type 500. _._ s 3 to 7 Type 500.20_.0 s 8 to 9 Type 500. without accessories Type 500.200.0 flange hub Type 500.20.0 without accessories Type 500.0_ flange hub Type 500._ Pages 8 ROBATIC double-flow design s 3 to 7 Type 500.30_ without accessories Type 500.300.0 flange hub Type 500.30.0 Pages 2 3 ROBATIC small mounting diameter s 3 to 7 Type 500.2_.0 s 8 to 9 Type 580._0 with small bolt circle without accessories Type 500.20.0 flange hub Type 500.2.0 without accessories Type 580.00 flange hub Type 580.0 Pages 4 7 ROBATIC with bearing-supported coil carrier s 3 to 9 Type 540. without accessories Type 540.0_ flange hub Type 540._ Pages 8 9 ROBATIC with bearing-supported flange s 3 to 9 Type 540.4_ Type 540.4_ Pages 20 2 7
ROBATIC -electromagnetic clutch Standard s 3 7 Type 500.20_.0 L O l L a L 2 l2 ØH ØM ØZ Øs l køk Ød ØG ØM ØD ØD W Ød Øg ØD 2 z Øs V V strand length: 400 mm; 45 offset to screw-on bores b t t Type 500.200.0 Standard Type 500.20.0 Standard with flange hub Order Number / 5 0 0. 2 0. 0 / / / / s 3 to 7 without accessories flange hub 0 Coil voltage [VDC] 24 04 Rotor bore Ø d H7 Flange hub bore Ø d H7 Keyway acc. DIN 6885/ or DIN 6885/3 Example: 6 / 500.20.0 / 24 / 35 / 40 / DIN 6885/ 8
ROBATIC -electromagnetic clutch Standard s 3 7 Type 500.20_.0 Technical Data Nominal torque ) Type 500.20_.0 M 2 [Nm] 0 20 45 80 60 Electrical power P 20 [W] 8 26 37 53 79 Maximum speed n max [rpm] 8600 7000 600 5800 4500 Weight Mass moment of inertia without accessories m [kg] 0,68 2,5 3,48 6,6 with flange hub m [kg] 0,75,3 2,35 4,03 7,5 Rotor 2) I own [0-4 kgm 2 ] 2 5,4 3,25 29,85 86,75 Armature disk I own [0-4 kgm 2 ] 0,76,92 6,86 7,56 52,86 Flange hub 2) + Armature disk I own [0-4 kgm 2 ],02 2,75 8,63 24,66 70,63 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores Ød H7 min. [mm] 9 3 3 20 Preferred bores [mm] 0; 5 7; 20 20; 25; 30 25; 30; 35 30; 40; 50 Ød H7 max. [mm] 25 35 42 55 65 Preferred bores [mm] 7; 20 20; 25 25; 30 30; 40 40; 50 3) Up to Ø 32 keyway acc. DIN 6885/, above Ø 32 keyway acc. DIN 6885/3 min. [mm] 9 3 5 20 23 max. [mm] 20 30 35 3) 45 60 [mm] a 0,2 0,2 0,2 0,3 0,3 b 4,5 4 5,5 5,5 7,5 D 73,5 92 5 40 77 D 80 00 25 50 90 D 2 70 88 0 40 70 G 36 49 57,5 74 95 g 29,5 44 47 66 84 H h9 80 00 25 50 90 K 3 x 4,6 3 x 6,4 3 x 7,0 3 x 0,4 3 x 0,2 k,7,7 2,5 2,8 2,7 L 28, 3,2 36,0 40,8 46, L 24 26,5 30 33,5 37,5 L 2 20 22 28 32 36 l 20,5 22 25 27,5 3,5 [mm] Permitted shaft misalignm. and centre offset l 3,5 4,3 5,2 6 7 l 2 6 7 22 25 27 M 60 76 95 20 50 M 72 90 2 37 75 O 48, 53,2 64, 72,9 82,2 s 4 x 4,8 4 x 5,7 4 x 6,8 4 x 6,8 4 x 9,2 s 3 x M4 3 x M5 3 x M6 3 x M8 3 x M8 t 3,9 4,5 5,8 7,0 8,3 t 5,2 7,2 8,7 8,0 9,7 V 0,05 0,05 0,05 0,05 0, V 0, 0,5 0,5 0,5 0,2 W 5 5 6 8 8 Z H8 42 52 62 80 00 z 3,5 4,5 5 6 6 We reserve the right to make dimensional and constructional alterations. 9
L l b a t Øs z l ØH ØM ØZ ØN ØF Ød ØG ØM ØD ØD 90 º Øs Øs ROBATIC -electromagnetic clutch Standard s 8 9 Type 500. strand length: 400 mm; 45 offset to screw-on bores O L 2 l2 W Ød Øg ØD 2 V 45 º ØK V V l 4 Øs k i t Type 500.00 Standard with connection strand ØM Type 500.0 Standard with flange hub with connection strand 45 º Øs Ød ØK ØG ØM ØD ØD 90 º Type 500._2 Standard with connecting terminal ØM Order Number without accessories flange hub 0 / 5 0 0. / / / / 8 9 connection strand connecting terminal 0 2 Coil voltage [VDC] 24 04 Rotor bore 3) Ø d H7 Flange hub bore Ø d H7 Keyway acc. DIN 6885/ or DIN 6885/3 0 Example: 8 / 500.00 / 24 / 40 / DIN 6885/
ROBATIC -electromagnetic clutch Standard s 8 9 Type 500. Technical Data 8 9 Nominal torque ) Type 500. M 2 [Nm] 320 640 Electrical power P 20 [W] 6 82 Maximum speed n max [rpm] 3000 2200 Weight Mass moment of inertia without accessories m [kg] 0, 20,5 with flange hub m [kg] 3 25 Rotor 2) I own [0-4 kgm 2 ] 65 450 Armature disk I own [0-4 kgm 2 ] 8 35 Flange hub 2) + Armature disk I own [0-4 kgm 2 ] 07 38 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores 8 9 Ød H7 min. [mm] 24 34 Preferred bores [mm] 40; 50; 60 50; 60; 70 Ød H7 max. [mm] 70 80 Preferred bores [mm] 40; 50 50; 60 min. [mm] 24 27 max. [mm] 60 80 [mm] 8 9 a 0,5 0,5 b 8 9 D 93 25 D 200 25 D 2 85 242 F 3) - - G 9 g 84 04 H h9 230 290 i 8 9,5 K 3 x 4 x 20 k 2 4,2 L 55, 63,9 L 2 45,3 53,9 l 44 5 l 40 47 3) Turning for RS-ball bearing according to order regulations no turning is allowed for in the standard range. [mm] Permitted shaft misalignm. and centre offset 8 9 l 2 36,3 42,9 l 4 5 6 M 58 20 M 25 270 N 93,9 6,8 O 00,4 7,8 s 4 x 9 4 x s 3 x M0 4 x M2 t 0,6 2,4 t 8,5,8 V 0, 0, V 0,2 0,25 W 5 20 Z H8 00 25 z 4 4 We reserve the right to make dimensional and constructional alterations.
ROBATIC -electromagnetic clutch Double-flow design s 3 7 Type 500.30_.0 strand length: 400 mm; 45º offset to screw-on bores l L b a t k O L 2 l 2 ØH ØM ØZ Øs ØF l z Ød ØG ØK ØM ØD ØD W Ød Øg ØD 2 V Øs V L t Type 500.300 Double-flow design Type 500.30 Double-flow design with flange hub Performance Characteristics Preferred for static or virtually static applications High torque security with low friction work No organic friction lining installed (environmentally friendly) Order Number / 5 0 0. 3 0. 0 / / / / s 3 to 7 without accessories flange hub 0 Coil voltage [VDC] 24 04 Rotor bore Ø d H7 Flange hub bore Ø d H7 Keyway acc. DIN 6885/ Example: 6 / 500.30 / 24 / 35 / 40 / DIN 6885/ 2
ROBATIC -electromagnetic clutch Double-flow design s 3 7 Type 500.30_.0 Technical Data Nominal torque ) 2) (+50% /-2%) Type 500.30_.0 M 2 [Nm] 20 40 90 60 320 Electrical power P 20 [W] 7 25 37 50 79 Maximum speed 3) n max [rpm] 8600 7000 600 5800 4500 Weight Mass moment of inertia without accessories m [kg] 0,65,6 2,02 3,3 6,22 with flange hub m [kg] 0,76,5 2,53 4,46 8,09 Rotor 4) I own [0-4 kgm 2 ] 2,02 5,56 4,08 32,26 06,36 Armature disk I own [0-4 kgm 2 ],08 2,69 7,34 9,92 6,57 Flange hub 4) + Armature disk I own [0-4 kgm 2 ],46 3,98 0,26 30,43 89,0 ) Please observe run-in regulations or minimum speed (see page 4). 2) During permanent synchronisation without friction work, the torque may drop to 50 % - 60 % of the nominal torque. 3) Max. switching speed is dependent on friction work and switching frequency - if necessary, please contact the manufacturer. 4) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores Ød H7 min. 5) [mm] 4 9 30 42 55 Preferred bores [mm] 5, 20 20, 25, 28 30, 35, 40 45, 50 55, 60 Ød H7 max. [mm] 25 35 42 55 65 Preferred bores [mm] 5, 7, 20 20, 25, 28 25, 30 35, 40, 45 50, 55, 60 min. 5) [mm] 4 9 24 32 50 max. [mm] 20 30 32 45 60 5) For torques smaller than the nominal torque M 2, bores below d min are possible on request. [mm] a 0,2 0,2 0,2 0,3 0,3 b 4,5 4 5,5 5,5 7,5 D 79 99 23,5 48 88 D 80 00 25 50 90 D 2 70 88 0 40 70 F 6) - - - - - G 32 49 55 73 95 g 29,5 44 47 66 84 H h9 80 00 25 50 90 K 3x8 3x0 3x2 3x6 3x4 k 3,2 3,8 4,3 6 4,4 L 28, 3,25 35,7 40,7 46, L 23,5 26,5 30 33,5 37,5 L 2 20 22 28 32 36 I 20 22 25 27,5 3,5 6) Turning for RS-ball bearing according to order regulations no turning is allowed for in the standard range. [mm] Permitted shaft misalignm. and centre offset I 3,5 4,3 5,2 6 7 I 2 6 7 22 25 27 M 60 76 95 20 50 M 72 90 2 37 75 O 48, 53,25 63,7 72,7 82,2 s 4x4,8 4x5,7 4x6,8 4x6,8 4x9,2 s 3xM4 3xM5 3xM6 3xM8 3xM8 t 4,3 4,45 5,5 6,9 8,3 t 5 7,2 8,7 4 3,7 V 0,05 0,05 0,05 0,05 0, V 0, 0,5 0,5 0,5 0,2 W 5 5 6 8 8 Z H8 42 52 62 80 00 z 3,5 4,5 5 6 6 We reserve the right to make dimensional and constructional alterations. For detailed information, please see our brochure P.500.V._GB 3
ROBATIC -electromagnetic clutch Small mounting diameter s 3 7 Type 500.2_.0 L O l L a L 2 l2 ØH ØM ØZ Øs z l køk Ød ØG ØM ØD ØD W Ød Øg ØD 2 V Øs V strand length: 400 mm; 45 offset to screw-on bores b t t Type 500.20.0 Small mounting diameter Type 500.2.0 Small mounting diameter with flange hub Order Number / 5 0 0. 2. 0 / / / / s 3 to 7 without accessories flange hub 0 Coil voltage [VDC] 24 04 Rotor bore Ø d H7 Flange hub bore Ø d H7 Keyway acc. DIN 6885/ or DIN 6885/3 Example: 6 / 500.2.0 / 24 / 40 / 30 / DIN 6885/ 4
ROBATIC -electromagnetic clutch Small mounting diameter s 3 7 Type 500.2_.0 Technical Data Nominal torque ) Type 500.2_.0 M 2 [Nm] 0 20 45 80 60 Electrical power P 20 [W] 8 26 37 53 79 Maximum speed n max [rpm] 8600 7000 600 5800 4500 Weight Mass moment of inertia without accessories m [kg] 0,65, 2, 3,4 6,4 with flange hub m [kg] 0,7,6 2,25 3,6 6,95 Rotor 2) I own [0-4 kgm 2 ] 2,2 5,3 3,47 32,3 90,3 Armature disk I own [0-4 kgm 2 ] 0,7,79 6,28 5,77 48, Flange hub 2) + Armature disk I own [0-4 kgm 2 ] 0,8,97 7,9 7,45 55,2 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores Ød H7 min. [mm] 9 3 3 20 Preferred bores [mm] 0; 5 7; 20 20; 25; 30 25; 30; 35 30; 40; 50 Ød H7 max. [mm] 20 28 35 42 55 Preferred bores [mm] 0; 5 7; 20 20; 25 25; 30 30; 40 3) Up to Ø 32 keyway acc. DIN 6885/, above Ø 32 keyway acc. DIN 6885/3 min. [mm] 8 9 3 5 20 max. [mm] 7 20 30 35 3) 45 [mm] a 0,2 0,2 0,2 0,3 0,3 b 4,5 4 5,5 5,5 7,5 D 73,5 92 5 40 77 D 80 00 25 50 90 D 2 54 70 88 0 40 G 36 49 57,5 74 95 g 27 29,5 44 47 66 H h9 80 00 25 50 90 K 3 x 4,3 3 x 4,6 3 x 6,4 3 x 7 3 x 0,4 k,5,7,5 2,2 2,7 L 28, 3, 36,0 40,4 45,8 L 24 26,5 30 33,5 37,5 L 2 5 20 22 28 32 l 22 24 27 30 34 [mm] Permitted shaft misalignm. and centre offset l 3,5 4,3 5,2 6 7 l 2,5 6 7 22 25 M 46 60 76 95 20 M 72 90 2 37 75 O 43, 5, 58, 68,8 77,9 s 4 x 4,5 4 x 5,7 4 x 6,8 4 x 6,8 4 x 9,2 s 3 x M3 3 x M4 3 x M5 3 x M6 3 x M8 t 3,9 4,4 5,8 6,6 8,0 t 4, 5,2 6,7 8,7 8,0 V 0,05 0,05 0,05 0,05 0, V 0, 0,5 0,5 0,5 0,2 W 5 5 6 8 8 Z H8 35 42 52 62 80 z 2 2,5 3 3,5 3,5 We reserve the right to make dimensional and constructional alterations. 5
l L t O a L 2 l2 ROBATIC -electromagnetic clutch Small mounting diameter s 8 9 Øs W Type 580._0 L L t t O ØM 2 ØZ ØN ØF z l l a l Ød a ØG ØM ØD ØD Ød L 2 l2 Øg ØD 2 strand length: 400 mm ØS ØS ØK Øs Øs V W B k ØM 2 ØZ V ØN ØM 2 ØF ØZ z l z l t ØN ØF Ød ØG ØM Ød ØD ØG ØD ØM ØD ØD Ød Øg ØD 2 ØS ØS ØS ØS ØK ØK V B B k k V V t t Type 580.00 Coil carrier with small bolt circle Type 580.0 Coil carrier with small bolt circle and flange hub Bore for screws DIN 692, 7984 with spring ring DIN 7980 Order Number / 5 8 0. 0 / / / / 8 9 without accessories flange hub 0 Coil voltage [VDC] 24 04 Rotor bore Ø d H7 Flange hub bore Ø d H7 Keyway acc. DIN 6885/ or DIN 6885/3 Example: 8 / 580.0 / 24 / 40 / 40 / DIN 6885/ 6
ROBATIC -electromagnetic clutch Small mounting diameter s 8 9 Type 580._0 Technical Data 8 9 Nominal torque ) Type 580._0 M 2 [Nm] 320 640 Electrical power P 20 [W] 74 77 Maximum speed n max [rpm] 3000 2200 Weight Mass moment of inertia without accessories m [kg] 0, 20,5 with flange hub m [kg] 3 23,5 Rotor 2) I own [0-4 kgm 2 ] 65 450 Armature disk I own [0-4 kgm 2 ] 8 35 Flange hub 2) + Armature disk I own [0-4 kgm 2 ] 07 38 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores 8 9 Ød H7 min. [mm] 24 34 Preferred bores [mm] 40; 50; 60 50; 60; 70 Ød H7 max. [mm] 70 80 Preferred bores [mm] 40; 50 50; 60 min. [mm] 24 27 max. [mm] 60 80 [mm] 8 9 a 0,5 0,5 B 3 3 D 93 25 D 200 25 D 2 85 242 F 3) - - G 9 g 84 04 H h9 230 290 i 8 9,5 K 3 x 4 x 20 k 2 4,2 L 55, 63,9 L 2 45,3 53,9 l 44 5 l 40 47 3) Turning for RS-ball bearing according to order regulations no turning is allowed for in the standard range. [mm] Permitted shaft misalignm. and centre offset 8 9 t 0,6 2,4 l 2 36,3 42,9 M 58 20 M 2 84 235 N 93,9 6,8 O 00,4 7,8 S 3,5 3,5 S 3 x 8,4 3 x 8,4 s 3 x M0 4 x M2 t 8,5,8 V 0, 0, V 0,2 0,25 W 5 20 Z H8 00 25 z 4 4 We reserve the right to make dimensional and constructional alterations. 7
ROBATIC -electromagnetic clutch With bearing-supported coil carrier s 3 9 Type 540. strand length: 400 mm; 45º offset to screw-on bores n O L a k O L 2 l2 W l 6 Øs ØP Øp Ød 2 ØG ØM ØD ØD Ød Øg ØD 2 ØK V t t Type 540.00 With bearing-supported coil carrier Type 540.0 With bearing-supported coil carrier and flange hub O n L a k 5 Y Y 3 U u Keyway for friction support ØK l 6 Øp Ød 2 ØG ØM ØD ØD Type 540._2 With connecting terminal Order Number Øs without accessories flange hub 0 V t t / 5 4 0. / / / / s 3 to 9 connecting strand connecting terminal 0 2 Coil voltage [VDC] 24 04 Rotor bore Ø d 2 Keyway acc. DIN 6885/ or DIN 6885/3 Flange hub bore Ø d 8 Example: 5 / 540.00 / 24 / 20 / DIN 6885/
ROBATIC -electromagnetic clutch With bearing-supported coil carrier s 3 9 Type 540. Technical Data 8 9 Nominal torque ) Type 540. M 2 [Nm] 0 20 45 80 60 320 640 Electrical power P 20 [W] 8 9 28 38 46 6 82 Maximum speed n max [rpm] 8000 6000 5000 4200 3600 3000 2200 Weight Mass moment of inertia without accessories m [kg] 0,73,22,85 3,6 5,54,6 22,2 with flange hub m [kg] 0,78,29 2,0 3,38 6, 2,86 23,93 Rotor 2) I own [0-4 kgm 2 ],37 3,35 9,36 20,8 54,4 78 462 Armature disk I own [0-4 kgm 2 ] 0,35,05 2,97 7,04 4 8 35 Flange hub 2) + Armature disk I own [0-4 kgm 2 ] 0,5,5 4,5 0,9 37, 07 38 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores 8 9 Preferred bores [mm] 0; 5 7; 20 20; 25; 30 20; 25; 30 25; 30; 40 40; 45; 50 40; 50; 60 Ød H7 2 min. [mm] 7 8 2 2 9 22 30 Ød H7 max. [mm] 20 3) 25 3) 30 40 50 60 65 Preferred bores [mm] 0; 5 7; 20 20; 25 25; 30 30; 40 40; 50 50; 60 3) With max. bore keyway to DIN 6885/3 4) Up to Ø 32 keyway acc. DIN 6885/, above Ø 32 keyway acc. DIN 6885/3 min. [mm] 8 9 3 5 20 24 27 max. [mm] 7 20 30 35 4) 45 60 80 [mm] 8 9 a 0,2 0,2 0,2 0,3 0,3 0,5 0,5 D 64,5 8,5 99 8 5 93 25 D 70 87 06 25 57 200 25 D 2 55 70 88 0 40 85 242 G 29,5 30,5 45,5 48 69 9 g 27 29,5 44 47 66 84 04 K 3 x 4,3 3 x 4,6 3 x 5,8 3 x 7 3 x 9,4 3 x,5 4 x 20 k 0,8,7,0,0 2,0 2,0 4,2 L 28 3 35,9 40,5 46,5 55,4 63,9 L 2 5 20 25 29,5 38 45,3 53,9 l 2,5 6 20 23,5 3 36,3 42,9 l 6 40 43,5 49 55 6,5 74 8 M 46 60 76 95 20 58 20 n 9 9 0 0,5 2 3 5,5 [mm] 8 9 O 59 68 79,9 9,5 08,5 30,4 47,8 O 44 48 54,9 62,0 70,5 85, 93,9 P 70 79,7 98,2 5,4 50,4 89,4 235,8 p 64 72 85 05 20 45 50 s Permitted shaft misalignment 3 x M3 3 x M4 3 x M5 3 x M6 3 x M8 3 x M0 3 x M2 t 3,8 4,3 5,7 6,7 8,7 0,6 2,4 t 4, 5,0 6,9 6,7 8,2 8,5,8 U 6 8 8 0 2 4 4 u 2 2,5 2,5 2,5 3 4,5 6 V 0,05 0,05 0,05 0,05 0, 0, 0, W 5 5 6 0 0 5 20 Y [ ] 45 45 30 30 30 30 30 Y [ ] 30 30 22,5 22,5 5 5 5 We reserve the right to make dimensional and constructional alterations. 9
With bearing-supported flange ) s 3 9 Y 2 n 3 n L a L 7 l 8 W ROBATIC -electromagnetic clutch Type 540.4_ ØD ØP O 5 n Ln n 3 L a L 7 L 7 l 8 W W ØD ØP ØD Øp ØP Ød 3 Øp Ød 3 AS O 5 AÜ Øs 2 Øs 2 x x 3x20º Y 2 Øp strand length: 400 mm; 45º offset to screw-on l bores 3 Ød 3 n 3 a l 8 Ød 4 Øe ØM 3 ØD 3 Keyway for key x O 5 Ød 4 Øe Ød ØM 4 3 Øe ØD 3 ØM 3 ØD 3 l 3 l 3 Øs 2 x 3x20º Keyway for friction support Y Type 540.40 With bearing-supported flange U u Y U u Order Number / 5 4 0. 4 / / / / s 3 to 9 connecting strand connecting terminal 0 2 Coil voltage [VDC] 24 04 Hub bore Ø d 4 Keyway acc. DIN 6885/ or DIN 6885/3 AS AÜ Counterbore: coil carrier side transmission flange side Example: 5 / 540.40 / 24 / 24 / 6885/ / AS 20
ROBATIC -electromagnetic clutch With bearing-supported flange ) s 3 9 Type 540.4_ Technical Data *) 8 *) 9 *) Nominal torque 2) Type 540.4_ M 2 [Nm] 0 20 45 80 60 320 640 Electrical power P 20 [W] 8 9 28 38 46 6 82 Maximum speed n max [rpm] 8000 6000 5000 4200 3600 3000 2200 Weight with max. bore m [kg],2,85 2,95 4,7 8,25 6,6 29,2 Mass moment of inertia Rotor (max. bore) I own [0-4 kgm 2 ],59 3,82 0,24 23,22 52,05 97,66 497 Armature disk + driver flange I own [0-4 kgm 2 ],97 4,06 9,95 22,93 50,53 47,83 533,7 ) 2-shaft connection on request 2) Please observe run-in regulations or minimum speed (see page 4). *) From 7 on, the installation of a key in the driver flange is necessary in order to ensure torque transmission. Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores 8 9 Ød 4 maximum [mm] 5 9 3) 24 33 46 58 65 Ød 3 [mm] 6 20 26 6) 37 26 4) 47 37 7) / 5) _ 8) 37 6) 47 7) 59 8) 47 9) 67 8) _ 0) 3) Above Ø 8 keyway to DIN 6885/3 with d 4 max depth of hub keyway,2 +0, 4) above Ø d 4 to 9 5) above Ø d 4 over 9 6) above Ø d 4 to 28 7) above Ø d 4 over 28 8) above Ø d 4 over 38 9) above Ø d 4 to 38 0) above Ø d 4 over 55 [mm] 8 9 a 0,2 0,2 0,2 0,3 0,3 0,5 0,5 D 70 87 06 25 57 200 25 D 3 7 82 02 22 56 99 250 G 29,5 30,5 45,5 48 69 9 e h6 56 64 75 90 0 35 60 L 28 3 35,9 40,5 46,5 55,4 63,9 L 7 25,8 29,7 38,7 43,5 48,9 53,9 57, l 3 35 4) 60 45 ) 50 4) 40 35 2) 40 5) 5) 20 7) 55 6) 35 7) _ 8) 75 6) 55 7) 25 8) 70 9) 40 8) _ 0) l 8 2,5 24 30 34 39 44 46 M 3 66 75 94 2 45 84 235 n 9 9 0 0,5 2 3 5,5 n 3 6 7 9 2,5 24 30 30 ) above Ø d 4 to 4 2) above Ø d 4 over 4 3) From 7 on, the installation of a key in the driver flange is necessary in order to ensure torque transmission. [mm] 8 9 O 5 70 78 94 06 20 40 52 P 70 79,7 98,2 5,4 50,4 89,4 235,8 p 64 72 85 05 20 45 50 s 2 3 x M4 3 x M5 3 x M5 3 x M6 3 x M8 3 x M8 3 x M8 U 6 8 8 0 2 4 4 u 2 2,5 2,5 2,5 3 4,5 6 W 7,5 9 24,5 28 3 36 38 Key X 3) 6x6 x6 6x6 x8 8x7 x22 0x8 x25 0x8 x28 4x9 x32 6x0 x36 x 3,5 3,5 4 5 5 5,5 6 Y [ ] 75 75 52,5 52,5 45 45 45 Y 2 [ ] 90 90 90 90 90 90 35 We reserve the right to make dimensional and constructional alterations. 2
e Technical Explanations ROBATIC -electromagnetic clutch Installation Guidelines a e V Fig. Fig. 2 8 9 a 0,2 +0, -0,05 0,2 +0,5-0,05 0,2 +0,5-0,05 0,3 +0,5-0,05 0,3 +0,5-0,05 0,5 +0,5-0, 0,5 +0,5-0, e 0,25 0,3 0,2 0,35 0,5 0,55 0,6 8 9 V 0,05 0,05 0,05 0,05 0, 0, 0, Table 2 Permitted shaft misalignments Table Adjustment of the air gaps The dimension a (Fig. ) must be adjusted according to Table. Please ensure that the shaft is fastened axially, since otherwise the dimension a will change and cause the rotor to brush against the armature disk or the coil carrier. The air gap e is selected so that a brushing of the rotor against the coil carrier is not possible when keeping to the permitted centre offsets V and V (see Table ). 22 Design: ROBATIC -electromagnetic clutches are manufactured according to the electric protection IP 54 specification and the insulation material class F up to 55 C for coil, moulding compound and connection strands as well as insulation class B +30 C for the magnetic coil plastic-coated. The friction linings are asbestos-free, the surfaces of coil carrier, rotor and flange hub are phosphated. The armature disk is gas nitro-carburized and the transmission spring is made of stainless steel. The drive elements should be made of magnetically poorly transmitting material to avoid magnetic leakage flux and subsequent power reduction. ROBATIC -electromagnetic clutches are used for dry running. The torque is transmitted via the connection of the armature disk on the iron poles and the friction lining of the rotor (except the double-flow ROBATIC clutch without friction lining, Type 500.30_.0). When coupling two shafts, the eccentricity V of the shafts according to Table 2 must not be exceeded. The larger the misalignment V the more the torque decreases and the hotter the friction surface becomes. In the case of this arrangement care must be taken that both shafts have no axial backlash since, otherwise, a brushing of the rotor would also be possible. The flange hub is kept axially by means of a set screw (on set 90 to the key). The V -values are indicated again in the Technical Data of the individual clutches. Please observe: The run-in conditions or the minimum speed must be observed (see page 4). The friction surfaces have to be absolutely free of oil and grease, as otherwise, the torque drops significantly. The air gap a (Fig. ) has to be checked periodically. The clutch does not function correctly, if the max. working air gap is exceeded (see Table 4, page 25). Assembly and maintenance should be carried out by well trained specialists.
Technical Explanations ROBATIC -electromagnetic clutch Clutch size calculation Formulas. Drive torque M A 9550 x P A [Nm] n 2. Required torque M req. K x M A [Nm] 3. Switchable torque of the clutch (acc. to diagram, page 24) M S M req. [Nm] 4. Mass moment of inertia I I own + I add. [kgm 2 ] 5. Acceleration torque of the clutch M a M S M L [Nm] 6. Acceleration time t a I x n 9,55 x M a + t [sec] 7. Max. switching frequency per hour (dependent on time) S h max t vm + (t a + t 2 ) x,2 x 3600 [h - ] Key: P A [kw] drive power M A [Nm] drive torque M a [Nm] acceleration torque of the clutch M req. [Nm] required torque M L [Nm] load torque (+ drop load) (- lift load) M S [Nm] switchable torque of the clutch (diagram, page 24) n [rpm] drive speed K safety factor > 2 I [kgm 2 ] mass moment of inertia I own [kgm 2 ] own mass moment of inertia ( Technical data ) I add. [kgm 2 ] additional mass moment of inertia t a [sec] acceleration time t vm [sec] braking time of the machine t [sec] switch-on time of the clutch Table 3, t 2 [sec] switch-off time of the clutch page 25 S h max [h - ] max. switching frequency per hour (dependent on time) Q tot. [J] total friction work (acc. Table 4, page 25) Q a [J] total friction work per acceleration Q E [J] perm. friction work for single switching Table 4, Q [J/mm] friction work until mm wear page 25 Z n Z number of switchings until re-adjustment number of switchings until wear limit a [mm] nominal air gap Table 4, a n [mm] max. working air gap page 25 8. Friction work per acceleration I x n 2 M s Q a x 82,4 M a [J] 9. Examination of the selected clutch size in diagram 2 (page 24 friction power diagram). Intersection friction work / switching frequency must be below the friction power curve! If it is above, the next size has to be selected and re-calculated from point 3 on. Q a < Q E [J] 0. Number of switchings until re-adjustment Z n Q x (a - a) [-] n Q a. Number of switchings until wear limit Z Q tot. [-] Q a 23
Technical Explanations ROBATIC -electromagnetic clutch Calculation example Data: Input power P A 3 kw Input speed n 400 rpm Load torque output M L 5 Nm Additional mass moment of inertia I add. 0,5 kgm² Braking time of the machine t vm,5 [sec] 80 switchings per hour 000 Switchable torque Drive torque 9550 x P A 9550 x 3 M A 20,5 [Nm] n 400 Required torque M req. K x M A 2 x 20,5 4 [Nm] Determined clutch size (acc. to diagram ) 6 M S M req. 47 [Nm] Selected clutch 6, type 500.200.0 ** Switchable torque M s [Nm] 00 0 Mass moment of inertia I I own + I add. 0,00756 + 0,5 0,5756 [kgm²] Acceleration torque of the clutch M a M S - M L 47-5 32 [Nm] Acceleration time of the clutch t a I x n + t * 0,5756 x 400 + 0,5 0,845 [sec] 9,55 x M a 9,55 x 32 * Switching times t and t 2 from Table 3, page 25 without overexcitation Max. switching frequency per hour S h max S h max t vm + (t a + t 2 *) x,2,5 + (0,845 + 0,060) x,2 Friction work per acceleration Q a Q a I x n 2 M S x 82,4 M a 0,5756 x 400 2 47 x 82,4 32 x 3600 x 3600 392 [h - ] 2395 [J] Q E The point of intersection determined in diagram 2 must be located in or under the characteristic curve of the selected clutch. Switching frequency: 80 switchings per hour permitted Number of switchings until adjustment Z n Q Q a x (a n - a) 0 5 0 4 0 3 0 2 0 500 000 500 2000 2500 3000 3500 4000 Speed n [rpm] Diagram (not valid for Type 500.30_) Q a Switching work [J] Friction power diagram valid for speed 500 rpm ** Friction surfaces have been run in 9 8 7 6 5 4 3 Calculation example 24 Z n 57 x 07 x (,2-0,3) 2496 switchings 2395 Number of switchings until wear limit Z Q tot. 00 x 07 47536 switchings Q a 2395 0 0 2 0 3 0 4 0 5 Switching frequency S h [h - ] Diagram 2 (not valid for Type 500.30_)
Technical Explanations ROBATIC -electromagnetic clutch Switching times The switching times stated in Table 3 have been determined by comprehensive series of tests. They are valid for switching DC-side with nominal air gap and warm coil. Deviations depend on the respective installation situation, ambient temperatures, release path and the type of rectification with which the corresponding clutch is operated. Switching times 8 9 t [sec] 0,00 0,05 0,020 0,030 0,045 0,050 0,060 Without Type 500. _._ t overexcitation [sec] 0,045 0,065 0,080 0,50 0,200 0,350 0,400 t 2 [sec] 0,02 0,020 0,045 0,060 0,090 0,095 0,30 With Type 500. _._ t [sec] 0,003 0,005 0,007 0,00 0,05 0,020 0,035 overexcitation t [sec] 0,025 0,035 0,040 0,075 0,00 0,70 0,235 t [sec] 0,00 0,02 0,02 0,020 0,025 0,050 0,060 Without Type 540. _._ t overexcitation [sec] 0,050 0,072 0,2 0,60 0,200 0,350 0,460 t 2 [sec] 0,04 0,020 0,030 0,050 0,075 0,095 0,30 With overexcitation Without overexcitation With overexcitation Table 3 Type 540. _._ t [sec] 0,004 0,005 0,006 0,00 0,03 0,020 0,035 t [sec] 0,024 0,035 0,056 0,080 0,00 0,70 0,235 t [sec] 0,07 0,026 0,035 0,052 0,079 - - Type 500.3._ t [sec] 0,079 0,3 0,40 0,262 0,350 - - t 2 [sec] 0,00 0,06 0,036 0,048 0,072 - - Type 500.3._ t [sec] 0,005 0,009 0,02 0,07 0,026 - - t [sec] 0,044 0,06 0,070 0,3 0,75 - - M Key: P ON M 2 M L t t 3 t t 2 t a 0, M 2 t M 2 M L P t a t t t 2 t 3 Nominal torque of the clutch Load torque of the drive Electrical power Acceleration time Connection time Response delay on connection Disconnection time Slip time OFF t Diagram 3: Torque-time Friction work ) and air gap Friction work up to mm wear Total friction work 8 9 Type 500. _._ Q [0 7 J/mm] 2,5 20 33 57 00 05 70 Type 540. _._ Q [0 7 J/mm] 8,8 3,4 24 36 60 05 70 Type 500. _._ Q tot. [0 7 J] 2,5 25 50 00 200 85 340 Type 540. _._ Q tot. [0 7 J] 8 6 35 68 35 85 340 Permitted friction work with a single switching Q E [0 3 J] 3,8 6,2 9 5 25 42 65 Nominal air gap a [mm] 0,2 0,2 0,2 0,3 0,3 0,5 0,5 Max. working air gap a n [mm] 0,6 0,8,0,2,5,8 2,0 Table 4 ) The friction work data are not valid for Type 500.30_.0 double-flow design. Please Observe! Wear values can only be recommended values due to operating parameters, such as sliding speed, pressing or temperature. 25
Application Rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop, ROBA-quick, ROBATIC ), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc. Function The AC input voltage (VAC) is rectified (VDC) in order to operate DC voltage units. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced. Half-wave Rectifiers and Bridge Rectifiers Type 02_.000.6 Electrical Connection (Terminals) + 2 Input voltage 3 + 4 Connection for an external switch for DC-side switching 5 + 6 Coil 7-0 Free nc terminals (only for 2) (mm) ØD A C E 9 5 Order Number B / 0 2. 0 0 0. 6 up to 4 4 5 Half-wave rectifier Bridge rectifier A B C ØD E 34 30 25 3,5 4,5 2 54 30 44 4,5 5,0 3/4 64 30 54 4,5 5,0 Accessories: Mounting bracket set for 35 mm rail acc. EN 6075: Article-No. 80320 26 Technical Data Bridge rectifier Half-wave rectifier Calculation output voltage VDC VAC x 0,9 VDC VAC x 0,45 Type /025 2/025 /024 2/024 3/024 4/024 Max. input voltage ± 0 % U AC [VAC] 230 230 400 400 500 600 Max. output voltage U DC [VDC] 207 207 80 80 225 270 Output current at 50 C I RMS [A] 2,5 2,5 3,0 4,0 4,0 4,0 max. 85 C I RMS [A],7,7,8 2,4 2,4 2,4 Max. coil nominal capacity at U AC 5 VAC 50 C P nom [W] 260 260 - - - - up to 85 C P nom [W] 77 77 - - - - U AC 230 VAC 50 C P nom [W] 57 57 32 46 46 46 up to 85 C P nom [W] 352 352 87 250 250 250 U AC 400 VAC 50 C P nom [W] - - 540 720 720 720 up to 85 C P nom [W] - - 324 432 432 432 U AC 500 VAC 50 C P nom [W] - - - - 900 900 up to 85 C P nom [W] - - - - 540 540 U AC 600 VAC 50 C P nom [W] - - - - - 080 up to 85 C P nom [W] - - - - - 648 Peak reverse voltage [V] 600 600 2000 600 2000 2000 Rated insulation voltage U RMS [V RMS] 320 320 500 500 630 630 Pollution degree (insulation coordination) Device fuses To be included in the input voltage line. Recommended microfuse switching capacity H The microfuse corresponds to the max. possible connection capacity. If fuses are used corresponding to the actual capacities, FF 3,5 A FF 3,5 A FF 4 A FF 5 A FF 5 A FF 5 A the permitted limit integral I²t must be observed on selection. Permitted limit integral l 2 t [A 2 s] 40 40 50 00 50 50 Protection IP65 components, encapsulated / IP20 terminals Terminals Cross-section 0,4 -,5 mm 2 (AWG 26-4) Ambient temperature [ C] - 25 up to + 85 Storage temperature [ C] - 25 up to + 05 Conformity markings UL, CE UL, CE UL, CE UL, CE UL, CE CE The installation position can be user-defined. Please ensure sufficient Installation conditions heat dissipation and air convection! Do not install near to sources of intense heat!
Spark Quenching Unit Type 070.000.6 Application Reduces spark production on the switching contacts occurring during DC-side switching-off of inductive loads. Voltage limitation according to VDE 0580 2000-07, Item 4.6. Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks. Reduction of brake engagement times by a factor of 2-4 compared to free-wheeling diodes. Function The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact opening distance of > 3 mm are suitable for this purpose. Electrical Connection (Terminals) (mm) (+) Input voltage 2 ( ) Input voltage 3 ( ) Coil 4 (+) Coil 5 Free nc terminal 6 Free nc terminal Ø3,5 34 25 4,5 9 5 Technical Data 30 Input voltage max. 300 VDC, max. 65 V peak (rectified voltage 400 VAC, 50 / 60 Hz) Switch-off energy max. 9 J / 2 ms Power dissipation max. 0, Watt Max. voltage nc terminals 250 V Protection IP65 / IP20 terminals Ambient temperature -25 C up to +85 C Storage temperature -25 C up to +05 C Max. conductor connection diameter 2,5 mm 2 / AWG 26-2 Max. terminal tightening torque 0,5 Nm Accessories Mounting bracket set for 35 mm rail acc. EN 6075: Article-No. 80320 Order Number / 0 7 0. 0 0 0. 6 27
ROBA -quick electromagnetic brake Exact positioning over the entire service lifetime High torque security due to an optimised magnetic circuit and new design of the ROBA -quick. Therefore higher capacities due to less magnetic leakage flux. Exact positioning until wear limit ideal for positioning operations Large internal diameters of the magnetic coil bodies Therefore large permitted shaft diameters and few magnetic field losses Low noise Short switching times/high switching frequency wear, air gap max. adjusting interval wear, air gap max. adjusting interval conventional electromagnetic brakes number of switchings ROBA -quick number of switchings Functional principle ROBA -quick are energise to engage, electromagnetic pole face brakes. When DC voltage is applied to the magnetic coil (), a magnetic field is built up. The armature disk (3) is attracted to the brake coil carrier with friction lining (4). The brake torque runs from the coil carrier (2) via friction lining (4), armature disk (3) and membrane transmission spring (5) to the flange (6) and the shaft. If the magnetic coil is de-energised, the membrane transmission spring (5) draws the armature disk (3) back to the flange (6). The brake is released and the shaft (7) can run freely. 3 6 7 4 5 2 28
ROBA -quick electromagnetic brake Summary of structural designs ROBA -quick ROBA -quick standard s 3 to 7 Type 520.20_.0 without accessories Type 520.200.0 flange hub Type 520.20.0 internal hub Type 520.202.0 Pages 30 3 ROBA -quick standard s 8 to 9 Type 520._0 without accessories Type 520.00 flange hub Type 520.0 internal hub Type 520.20 Pages 32 33 ROBA -quick small mounting diameter s 3 to 7 Type 520.2_.0 without accessories Type 520.20.0 flange hub Type 520.2.0 internal hub Type 520.22.0 Pages 34 35 29
ROBA -quick electromagnetic brake Standard s 3 7 Type 520.20_.0 L O ØH ØM ØZ Øs l z a t ØG Øs ØM ØD L2 W l 2 O 2 Ød Øg ØD 2 Øg n 2 L 2 Ød ØK ØD 2 V V strand length: 400 mm; 45º offset to screw-on bores b t k Type 520.200.0 Standard Type 520.20.0 Standard with flange hub Type 520.202.0 Standard with internal hub Order Number / 5 2 0. 2 0. 0 / / / s 3 to 7 without accessories flange hub internal hub 0 2 Coil voltage [VDC] 24 04 Hub * bore Ø d H7 Keyway * acc. DIN 6885/ or DIN 6885/3 Example: 5 / 520.202.0 / 24 / 30 / DIN 6885/ * Indication only with flange hub design or internal hub design. 30
ROBA -quick electromagnetic brake Standard s 3 7 Type 520.20_.0 Technical Data Nominal torque ) Type 520.20_.0 M 2 [Nm] 8,5 7 45 80 60 Electrical power P 20 [W] 3 20 3 47 7 Maximum speed n max [rpm] 8600 7000 600 5800 4500 Weight Mass moment of inertia without accessories m [kg] 0,38 0,55,25,88 3,5 with flange hub m [kg] 0,42 0,86,40 2,35 7,5 Armature disk I own [0-4 kgm 2 ] 0,76,92 6,86 7,56 52,86 Flange hub 2) + Armature disk I own [0-4 kgm 2 ],02 2,75 8,63 24,66 70,63 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores Ød H7 Preferred bores [mm] 7; 20 20; 25 25; 30 30; 40 40; 50 min. [mm] 9 3 5 20 23 max. [mm] 20 30 35 3) 45 60 3) Up to Ø 32 keyway acc. DIN 6885/, above Ø 32 keyway acc. DIN 6885/3 [mm] a 0,2 0,2 0,2 0,3 0,3 b 4,5 4 5,5 5,5 7,5 D 73,5 92 5 40 77 D 2 70 88 0 40 70 G 36 49 57,5 74 95 g 29,5 44 47 66 84 H h9 80 00 25 50 90 K 3 x 4,5 3 x 5,5 3 x 6,6 3 x 8,7 3 x 8,8 k,6,7,7 2,2 2,2 L 22, 24,7 28, 3,4 34,7 L 2 20 22 28 32 36 l 3,5 4,3 5,2 6 7 l 2 6 7 22 25 27 M 60 76 95 20 50 [mm] Permitted shaft misalignm. and centre offset M 72 90 2 37 75 n 2 2,6 3,2, 0,3,7 O 42, 46,7 56, 63,4 70,7 O 2 26, 29,7 34, 38,3 43,7 s 4 x 4,8 4 x 5,7 4 x 6,8 4 x 6,8 4 x 9,2 s 3 x M4 3 x M5 3 x M6 3 x M8 3 x M8 t 3,9 4,5 5,8 7, 8,3 t 5,2 7,2 8,7 8,0 9,7 V 0,05 0,05 0,05 0,05 0, V 0, 0,5 0,5 0,5 0,2 W 5 5 6 8 8 Z H8 42 52 62 80 00 z 3,5 4,5 5 6 6 We reserve the right to make dimensional and constructional alterations. 3
ROBA -quick electromagnetic brake Standard s 8 9 Type 520._0 strand length: 400 mm; 45º offset to screw-on bores b l 7 L 6 a O 2 O 3 k ØK W L 2 ØH ØM ØZ Øf ØG ØM ØD V Øs Ød Øg ØD 2 Øg Ød ØD 2 n 2 l 2 V Øs l 4 t L 2 V Type 520.00 Standard Type 520.0 Standard with flange hub Type 520.20 Standard with internal hub Order Number / 5 2 0. 0 / / 8 9 without accessories flange hub internal hub 0 2 Coil voltage [VDC] 24 04 Hub * bore Ø d H7 Example: 8 / 520.0.0 / 24 / 40 * Indication only with flange hub design or internal hub design. 32
ROBA -quick electromagnetic brake Standard s 8 9 Type 520._0 Technical Data 8 9 Nominal torque ) Type 520. _0 M 2 [Nm] 320 640 Electrical power P 20 [W] 40 77 Maximum speed n max [rpm] 3000 2200 Weight Mass moment of inertia without accessories m [kg] 5,64 6,90 with flange hub m [kg] 3,9 5,63 Armature disk I own [0-4 kgm 2 ] 8 35 Flange hub 2) + Armature disk I own [0-4 kgm 2 ] 07 38 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores Ød H7 8 9 Preferred bores [mm] 40; 50 50; 60 min. [mm] 24 27 max. [mm] 60 80 [mm] 8 9 a 0,5 0,5 b 6 6 D 93 25 D 2 85 242 f 92 2 G 9 g 84 04 H h9 230 290 K 3 x,5 4 x 20 k 2 4,2 L 2 45,3 53,9 L 6 40, 47,9 l 2 36,3 42,9 l 4 5 6 [mm] Permitted shaft misalignm. and centre offset 8 9 l 7 30 35 M 58 20 M 25 270 n 2 0,8,0 O 2 86,4 0,8 O 3 50, 58,9 s 4 x 9 4 x s 3 x M0 4 x M2 t 8,5,8 V 0, 0, V 0,2 0,25 W 5 20 Z H8 00 25 z 4 4 We reserve the right to make dimensional and constructional alterations. 33
ROBA -quick electromagnetic brake Small mounting diameter s 3 7 Type 520.2_.0 L O l a L 2 l2 O 2 L2 t ØH ØM ØZ Øs ØG Øs ØM ØD W Ød Øg ØD 2 Øg Ød ØD 2 z n 2 V ØK V strand length: b t 400 mm; 45º offset to screw-on bores k Type 520.20.0 Small mounting diameter Type 520.2.0 Small mounting diameter and flange hub Type 520.22.0 Small mounting diameter and internal hub Order Number / 5 2 0. 2. 0 / / / s 3 to 7 without accessories flange hub internal hub 0 2 Coil voltage [VDC] 24 04 Hub * bore Ø d H7 Keyway * acc. DIN 6885/ or DIN 6885/3 Example: 6 / 520.22.0 / 24 / 35 / DIN 6885/3 * Indication only with flange hub design or internal hub design. 34
ROBA -quick electromagnetic brake Small mounting diameter s 3 7 Type 520.2_.0 Technical Data Nominal torque ) Type 520.2_.0 M 2 [Nm] 8,5 7 45 80 60 Electrical power P 20 [W] 3 20 3 47 7 Maximum speed n max [rpm] 8600 7000 600 5800 4500 Weight Mass moment of inertia without accessories m [kg] 0,35 0,58,2,8 3,3 with flange hub m [kg] 0,4 0,65,35 2 3,85 Armature disk I own [0-4 kgm 2 ] 0,7,79 6,28 5,77 48, Flange hub 2) + Armature disk I own [0-4 kgm 2 ] 0,8,97 7,9 7,54 55,2 ) Please observe run-in regulations or minimum speed (see page 4). 2) With max. bore Standard voltages 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. Bores Ød H7 Preferred bores [mm] 0; 5 7; 20 20; 25 25; 30 30; 40 min. [mm] 9 0 3 5 20 max. [mm] 7 20 30 35 3) 45 3) Up to Ø 32 keyway acc. DIN 6885/, above Ø 32 keyway acc. DIN 6885/3 [mm] a 0,2 0,2 0,2 0,3 0,3 b 4,5 4 5,5 5,5 7,5 D 73,5 92 5 40 77 D 2 55 70 88 0 40 G 36 49 57,5 74 95 g 27 29,5 44 47 66 H h9 80 00 25 50 90 K 3 x 3,5 3 x 4,5 3 x 5,5 3 x 6,6 3 x 8,8 k,6,7 2,3 2,7 2,7 L 22, 24,6 28, 30,9 34,4 L 2 5 20 22 28 32 l 3,5 4,3 5,2 6 7 l 2,5 6 7 22 25 M 46 60 76 95 20 [mm] Permitted shaft misalignm. and centre offset M 72 90 2 37 75 n 2 8,5 6, 7,9 5,5 5,7 O 37, 44,6 50, 58,9 66,4 O 2 25,6 28,6 33, 36,9 4,4 s 4 x 4,8 4 x 5,7 4 x 6,8 4 x 6,8 4 x 9,2 s 3 x M3 3 x M4 3 x M5 3 x M6 3 x M8 t 3,9 4,4 5,9 6,6 8, t 4,0 5,2 6,7 8,7 8,2 V 0,05 0,05 0,05 0,05 0, V 0, 0,5 0,5 0,5 0,2 W 5 5 6 8 8 Z H8 35 42 52 62 80 z 2 2,5 3 3,5 3,5 We reserve the right to make dimensional and constructional alterations. 35
Technical Explanations ROBA -quick electromagnetic brake Installation Guidelines a V Fig. Fig. 2 Table Adjustment of the air gaps 8 9 a 0,2 +0, -0,05 0,2 +0,5-0,05 0,2 +0,5-0,05 0,3 +0,5-0,05 0,3 +0,5-0,05 0,5 +0,5-0, 0,5 +0,5-0, 8 9 V 0,05 0,05 0,05 0,05 0, 0, 0, Table 2 Permitted shaft misalignments The dimension a (Fig. ) must be adjusted according to Table. Please ensure that the shaft is fastened axially, since otherwise the dimension a will change and cause the armature disk to band against coil carrier. Design: ROBA -quick electromagnetic brakes are manufactured according to the electric protection IP 54 specification and the insulation material class F up to 55 C for coil, moulding compound and connection strands as well as insulation class B +30 C for the magnetic coil plastic-coated. The friction linings are asbestos-free, the surfaces of coil carrier and flange hub are phosphated. The armature disk is gas nitro-carburized and the transmission spring is made of stainless steel. ROBA -quick electromagnetic brakes are used for dry running. The torque is transmitted by friction between armature disk and the iron poles and the friction lining surfaces of the coil carrier. When braking the eccentricity V according to Table must not be exceeded. The larger the displacement V the more the torque decreases and the hotter the friction surface becomes. In the case of arrangement according to table care must be taken that the coil carrier and shaft have no axial backlash since otherwise a brushing of the coil carrier would be possible. The flange hub is kept axially by means of a set screw (on set 90 to the key). The V -values are indicated again in the Technical Data of the individual brakes. Please observe: The run-in conditions or the min. speed must be observed (see page 4). The friction surfaces have to be absolutely free of oil and grease as otherwise, the torque drops significantly. The air gap a (Fig. ) has to be checked periodically. The brake does not function correctly if the max. working air gap (see Table 4, page 39) is exceeded. Assembly and maintenance have to be carried out by well-trained specialists. 36
Technical Explanations ROBA -quick electromagnetic brake Brake size calculation Formulas. Drive torque M A 9550 x P A [Nm] n 2. Required torque M req. K x M A [Nm] 3. Switchable torque of the brake (acc. to diagram, page 38) M S M req. [Nm] 4. Mass moment of inertia I I own + I add. [kgm 2 ] 5. Deceleration torque of the brake M v M S M L [Nm] 6. Deceleration time t v I x n 9,55 x M v + t [sec] 7. Max. switching frequency per hour (dependent on time) S h max t am + (t v + t 2 ) x,2 x 3600 [h - ] Key: P A [kw] drive power M A [Nm] drive torque M v [Nm] deceleration torque of the brake M req. [Nm] required torque M L [Nm] load torque (+ drop load) (- lift load) M S [Nm] switchable torque of the brake (diagram, page 38) n [rpm] drive speed K safety factor > 2 I [kgm 2 ] mass moment of inertia I own [kgm 2 ] own mass moment of inertia ( Technical data ) I add. [kgm 2 ] additional mass moment of inertia t v [sec] deceleration time t am [sec] acceleration time of the machine t [sec] switch-on time of the brake Table 3, t 2 [sec] switch-off time of the brake page 39 S h max [h - ] max. switching frequency per hour (dependent on time) Q tot. [J] total friction work (acc. Table 4, page 39) Q v [J] friction work per deceleration Q E [J] perm. friction work for single switching Table 4, Q [J/mm] friction work until mm wear page 39 Z n Z number of switchings until re-adjustment number of switchings until wear limit a [mm] nominal air gap Table 4, a n [mm] max. working air gap page 39 8. Friction work per deceleration I x n 2 M s Q v x 82,4 M v [J] 9. Examination of the selected brake size in diagram 2 (page 38 friction power diagram). Intersection friction work / switching frequency must be below the friction power curve! If it is above, the next size has to be selected and re-calculated from point 3 on. Q v < Q E [J] 0. Number of switchings until re-adjustment Z n Q x (a - a) [-] n Q v. Number of switchings until wear limit Z Q tot. [-] Q v 37
Technical Explanations ROBA -quick electromagnetic brake Calculation example Data: Input power P A 3 kw Input speed n 400 rpm Load torque output M L 5 Nm Additional mass moment of inertia I add. 0,5 kgm² Acceleration time of the machine t am,5 [sec] 350 switchings per hour 000 Switchable torque Drive torque M A Required torque 9550 x P A 9550 x 3 n 400 20,5 [Nm] M req. K x M A 2 x 20,5 4 [Nm] Determined brake size (acc. to diagram ) 6 M S M req. 47 [Nm] selected brake 6, Type 520.200.0 Mass moment of inertia I I own + I add. 0,00756 + 0,5 0,5756 [kgm²] Deceleration torque of the brake M v M S + M L 47 + 5 62 [Nm] ** Switchable torque M s [Nm] 00 0 Deceleration time of the brake t v I x n + t * 0,5756 x 400 + 0,0 0,46 [sec] 9,55 x M v 9,55 x 62 * Switching times t and t 2 from Table 3, page 25 without overexcitation Max. switching frequency per hour S h max S h max t am + (t v + t 2 *) x,2 Friction work per deceleration Q v,5 + (0,46 + 0,060) x,2 I x n 2 M S x 82,4 M v x 3600 x 3600 695 [h - ] 0 5 0 4 0 3 Diagram 500 000 500 2000 2500 3000 3500 4000 Speed n [rpm] ** Friction surfaces have been run in Friction power diagram valid for speed 500 rpm 9 8 7 6 5 4 3 Calculation example Q v 0,5756 x 400 2 47 x 82,4 62 236 [J] Q E The point of intersection determined in diagram 2 must be located in or under the characteristic curve of the selected brake. Switching frequency: 350 switchings per hour permitted Number of switchings until adjustment Z n Q Q v x (a n - a) Q v Switching work [J] 0 2 0 38 Z n 57 x 07 x (,2-0,3) 45048 switchings 236 Number of switchings until wear limit Z Q tot. 00 x 07 80906 switchings Q v 236 Diagram 2 0 0 2 0 3 0 4 0 5 Switching frequency S h [h - ]
Technical Explanations ROBA -quick electromagnetic brake Switching times The switching times stated in Table 3 have been determined by comprehensive series of tests. They are valid for switching DC-side with nominal air gap and warm coil. Deviations depend on the respective installation situation, ambient temperatures, release path and the type of rectification with which the corresponding brake is operated. Switching times Without overexcitation Type 520. _._ 8 9 t [sec] 0,006 0,008 0,00 0,05 0,025 0,027 0,030 t [sec] 0,035 0,040 0,055 0,00 0,50 0,245 0,330 t 2 [sec] 0,00 0,08 0,030 0,060 0,090 0,00 0,40 With overexcitation Type 520. _._ t [sec] 0,002 0,003 0,004 0,006 0,008 0,00 0,05 t [sec] 0,020 0,022 0,030 0,050 0,075 0,20 0,65 Table 3 M Key: P EINON M 2 M L t t v t 3 t t 2 0, M 2 t M 2 M L P t v t t t 2 t 3 Nominal torque of the brake Load torque of the drive Electrical power Deceleration time Connection time Response delay on connection Disconnection time Slip time AUS OFF t Diagram 3: Torque-time Friction work and air gap Friction work up to mm wear 8 9 Type 520. _._ Q [0 7 J/mm] 2,5 20 33 57 00 05 70 Total friction work Type 520. _._ Q tot. [0 7 J] 2,5 25 50 00 200 85 340 Permitted friction work with a single switching Q E [0 3 J] 3,8 6,2 9 5 25 42 65 Nominal air gap a [mm] 0,2 0,2 0,2 0,3 0,3 0,5 0,5 Max. working air gap a n [mm] 0,6 0,8,0,2,5,8 2,0 Table 4 Please Observe! Wear values can only be recommended values due to operating parameters, such as sliding speed, pressing or temperature. 39
Application Rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop, ROBA-quick, ROBATIC ), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc. Function The AC input voltage (VAC) is rectified (VDC) in order to operate DC voltage units. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced. Half-wave Rectifiers and Bridge Rectifiers Type 02_.000.6 Electrical Connection (Terminals) + 2 Input voltage 3 + 4 Connection for an external switch for DC-side switching 5 + 6 Coil 7-0 Free nc terminals (only for 2) (mm) ØD A C E 9 5 Order Number B / 0 2. 0 0 0. 6 up to 4 4 5 Half-wave rectifier Bridge rectifier A B C ØD E 34 30 25 3,5 4,5 2 54 30 44 4,5 5,0 3/4 64 30 54 4,5 5,0 Accessories: Mounting bracket set for 35 mm rail acc. EN 6075: Article-No. 80320 40 Technical Data Bridge rectifier Half-wave rectifier Calculation output voltage VDC VAC x 0,9 VDC VAC x 0,45 Type /025 2/025 /024 2/024 3/024 4/024 Max. input voltage ± 0 % U AC [VAC] 230 230 400 400 500 600 Max. output voltage U DC [VDC] 207 207 80 80 225 270 Output current at 50 C I RMS [A] 2,5 2,5 3,0 4,0 4,0 4,0 max. 85 C I RMS [A],7,7,8 2,4 2,4 2,4 Max. coil nominal capacity at U AC 5 VAC 50 C P nom [W] 260 260 - - - - up to 85 C P nom [W] 77 77 - - - - U AC 230 VAC 50 C P nom [W] 57 57 32 46 46 46 up to 85 C P nom [W] 352 352 87 250 250 250 U AC 400 VAC 50 C P nom [W] - - 540 720 720 720 up to 85 C P nom [W] - - 324 432 432 432 U AC 500 VAC 50 C P nom [W] - - - - 900 900 up to 85 C P nom [W] - - - - 540 540 U AC 600 VAC 50 C P nom [W] - - - - - 080 up to 85 C P nom [W] - - - - - 648 Peak reverse voltage [V] 600 600 2000 600 2000 2000 Rated insulation voltage U RMS [V RMS] 320 320 500 500 630 630 Pollution degree (insulation coordination) Device fuses To be included in the input voltage line. Recommended microfuse switching capacity H The microfuse corresponds to the max. possible connection capacity. If fuses are used corresponding to the actual capacities, FF 3,5 A FF 3,5 A FF 4 A FF 5 A FF 5 A FF 5 A the permitted limit integral I²t must be observed on selection. Permitted limit integral l 2 t [A 2 s] 40 40 50 00 50 50 Protection IP65 components, encapsulated / IP20 terminals Terminals Cross-section 0,4 -,5 mm 2 (AWG 26-4) Ambient temperature [ C] - 25 up to + 85 Storage temperature [ C] - 25 up to + 05 Conformity markings UL, CE UL, CE UL, CE UL, CE UL, CE CE The installation position can be user-defined. Please ensure sufficient Installation conditions heat dissipation and air convection! Do not install near to sources of intense heat!
Spark Quenching Unit Type 070.000.6 Application Reduces spark production on the switching contacts occurring during DC-side switching-off of inductive loads. Voltage limitation according to VDE 0580 2000-07, Item 4.6. Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks. Reduction of brake engagement times by a factor of 2-4 compared to free-wheeling diodes. Function The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact opening distance of > 3 mm are suitable for this purpose. Electrical Connection (Terminals) (mm) (+) Input voltage 2 ( ) Input voltage 3 ( ) Coil 4 (+) Coil 5 Free nc terminal 6 Free nc terminal Ø3,5 34 25 4,5 9 5 Technical Data 30 Input voltage max. 300 VDC, max. 65 V peak (rectified voltage 400 VAC, 50 / 60 Hz) Switch-off energy max. 9 J / 2 ms Power dissipation max. 0, Watt Max. voltage nc terminals 250 V Protection IP65 / IP20 terminals Ambient temperature -25 C up to +85 C Storage temperature -25 C up to +05 C Max. conductor connection diameter 2,5 mm 2 / AWG 26-2 Max. terminal tightening torque 0,5 Nm Accessories Mounting bracket set for 35 mm rail acc. EN 6075: Article-No. 80320 Order Number / 0 7 0. 0 0 0. 6 4
ROBA -takt clutch brake module The clutch brake module for positioning and synchronising Energy-saving and environmentally-friendly Positioning accuracy for the entire service lifetime High switching frequency Maintenance-free during the entire service lifetime Low-noise Sealed Individual variants - without flange - with cast IEC-flange - with hollow shaft Maintenance-free/ no manual readjustment Constant switching behaviour, i.e. high positioning accuracy and freedom maintenance over the entire service lifetime No downtime due to re-adjustment Low leakage flux/ high friction power Larger magnetic and friction surfaces (asbestos free) with the same dimensions due to the new technology of the clutches and brakes Optimised electromagnetic effect, i.e. low leakage flux, faster switching behaviour, less heat build-up and, therefore, constant holding accuracy High radial shaft end loads Strengthened bearings High radial loads of the input and output shafts permitted Heat dissipation Optimized heat dissipation and large cooling ribs operational Optimum operation temperature due to dissipation of the frictional heat Constant characteristic operating data Functional Principle Sturdy housing Consists of en bloc cast two part ribbed housing, in a flanged design with cast flanges Large housing rigidity guarantees dimensional stability, even with loads not caused under regular conditions (for example weight load by people) The ROBA -takt clutch brake module is an electromagnetic clutch brake unit. Whilst the drive machine runs through continuously, it generates cycle operation via alternating coupling and braking actions. ROBA -takt clutch brake modules guarantee high cycle times. Due to the completely enclosed construction (Protection IP55), conceived acc. VDE/IEC directives, the ROBA -takt clutch brake module is ideal for all standardized motors and gearboxes. This means that many different installation positions are possible. Due to the patented principle of self-readjustment, the ROBA -takt clutch brake module is accurately positioned and maintenance-free over the entire service lifetime. 42
ROBA -takt clutch brake module Summary of structural designs ROBA -takt ROBA -takt s 3 to 7 Type 674.0_4.0 without feet Type 674.004.0 with feet Type 674.04.0 without flange/shaft without flange/shaft Pages 44 45 ROBA -takt s 3 to 7 Type 674.0.0 without feet IEC-flange small Type 674.005.0 IEC-flange large Type 674.006.0 with feet IEC-flange small Type 674.05.0 IEC-flange large Type 674.06.0 without flange/shaft ROBA -takt IEC-flange/hollow shaft Pages 46 47 s 3 to 7 Type 67_.0_4.0 without feet IEC-flange small Type 675.004.0 IEC-flange large Type 676.004.0 with feet IEC-flange small Type 675.04.0 IEC-flange large Type 676.04.0 IEC-flange/shaft ROBA -takt without flange/shaft Pages 48 49 s 3 to 7 Type 67_.0.0 without feet IEC-flange small/small Type 675.005.0 IEC-flange small/large Type 675.006.0 IEC-flange large/small Type 676.005.0 IEC-flange large/large Type 676.006.0 with feet IEC-flange small/small Type 675.05.0 IEC-flange small/large Type 675.06.0 IEC-flange large/small Type 676.05.0 IEC-flange large/large Type 676.06.0 IEC-flange/shaft IEC-flange/hollow shaft Pages 50 5 Additional designs are available on request. 43
i L L k H Ød i ROBA -takt clutch brake module s 3 7 Type 674.0_4.0 output side brake side input side clutch side B 2 M6x,5 f f l l u Ød H k A c Ør c c B B f l Order Number / 6 7 4. 0 4. 0 / / W / W with control unit s 3 to 7 without feet with feet 0 Coil voltage [VDC] 24 04 output * shaft Ø d k6 input * shaft Ø d k6 see pages 56-58 Example: 5 / 674.04.0 / 24 / W24 / W24 * Special dimensions on request 44
ROBA -takt clutch brake module s 3 7 Type 674.0_4.0 Technical Data Nominal torque Electrical power Clutch M 2 [Nm] 0 20 45 80 60 Brake M 2 [Nm] 8,5 7 45 80 60 Clutch P 20 [W] 7 25 30 44 79 Brake P 20 [W] 3 23 30 45 70 Maximum speed n max [rpm] 3600 3600 3600 3600 3600 Weight Type 674.04.0 m [kg] 3,9 6,8 9,9 5,3 27,7 Mass moment of inertia Output Type 674.04.0 I [0-4 kgm 2 ] 2,5 6,37 2,5 60,5 38 Standard voltage 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. [mm] A 26 46 65 89 233 B 75 95 0 20 45 B 93 5 36 52 75 B 2 4 27 56 79 230 c 9 22 28 28 33 c 37 46,5 57 67 89 d k6 4 9 24 28 38 f H 86 94 06 2 42 [mm] H 63 80 90 00 32 i M5 M6 M8 M0 M2 k 2,5 6 9 22 28 L 200 239 279 323 408 L 38 57 77 20 246 l 30 40 50 60 80 r 6,6 9 4 u 3 3 4 4 5 We reserve the right to make dimensional and constructional alterations. 45
i ROBA -takt clutch brake module s 3 7 Type 674.0.0 L L I 45 Øs f M6x,5 f 90 (4x) Ød k l Ød Øb Øe ØD H H H 2 u Ør B c A c c p B output side brake side input side clutch side l f Order Number Clutch side IEC-flange small IEC-flange large 5 6 / 6 7 4. 0. 0 / / W / B with control unit s 3 to 7 without feet with feet 0 Coil voltage [VDC] 24 04 output shaft * Ø d k6 input hollow shaft bore * Ø d F8 see pages 56-58 46 Example: 4 / 674.05.0 / 24 / W9 / B24 * Special dimensions on request
ROBA -takt clutch brake module s 3 7 Type 674.0.0 Technical Data Nominal torque Electrical power Clutch M 2 [Nm] 0 20 45 80 60 Brake M 2 [Nm] 8,5 7 45 80 60 Clutch P 20 [W] 7 25 30 44 79 Brake P 20 [W] 3 23 30 45 70 Maximum speed n max [rpm] 3600 3600 3600 3600 3600 Weight Type 674.04.0 m [kg] 3,9 6,8 9,9 5,3 27,7 Mass moment of inertia Output Type 674.04.0 I [0-4 kgm 2 ] 2,5 6,37 2,5 60,5 38 Standard voltage 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. IEC [mm] optionally with small or large IEC-flange IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large D 40 60 60 200 200 200 200 250 250 300 d F8 4 4 9 9 24 24 28 28 38 b +0,5 +0,3 95 0 0 30 30 30 30 80 80 230 e 5 30 30 65 65 65 65 25 25 265 f 3,5 4 4 4 4 4 4 4,5 4,5 4,5 H ) 70 80 80 00 00 00 00 25 25 50 l 25 32 32 42 42 55 55 65 65 90 s 9 9 9 4 4 4 [mm] A 0 26 40 64 98 B 75 95 0 20 45 B 93 5 36 52 75 c 9 22 28 28 33 c 3,5 8 8 2 d k6 4 9 24 28 38 f H 86 94 06 2 42 H 2 ) 63 80 90 00 32 [mm] i M5 M6 M8 M0 M2 k 2,5 6 9 22 28 L 70 99 229 263 328 L 39 58 78 202 247 l 30 40 50 60 80 p 2 3 4 4 20 r 6,6 9 4 u 3 3 4 4 5 We reserve the right to make dimensional and constructional alterations. ) Please observe the difference in height of the feet input side and output side. 47
i ROBA -takt clutch brake module s 3 7 Type 67_.0_4.0 output side brake side input side clutch side L M6x,5 Øs L 45 H m l l f H H 2 ØD Øe Øb Ød Ød i 90º (4x) k k u Ør B B f p c c A c l m Order Number Brake side IEC-flange small IEC-flange large 5 6 / 6 7. 0 4. 0 / / W / W with control unit s 3 to 7 without feet with feet 0 Coil voltage [VDC] 24 04 output shaft * Ø d k6 input shaft * Ø d k6 see pages 56-58 48 Example: 4 / 675.04.0 / 24 / W4 / W9 * Special dimensions on request
ROBA -takt clutch brake module s 3 7 Type 67_.0.0 Technical Data Nominal torque Electrical power Clutch M 2 [Nm] 0 20 45 80 60 Brake M 2 [Nm] 8,5 7 45 80 60 Clutch P 20 [W] 7 25 30 44 79 Brake P 20 [W] 3 23 30 45 70 Maximum speed n max [rpm] 3600 3600 3600 3600 3600 Weight Type 674.04.0 m [kg] 3,9 6,8 9,9 5,3 27,7 Mass moment of inertia Output Type 674.04.0 I [0-4 kgm 2 ] 2,5 6,37 2,5 60,5 38 Standard voltage 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. IEC [mm] optionally with small or large IEC-flange IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large D 40 60 60 200 200 200 200 250 250 300 d k6 4 4 9 9 24 24 28 28 38 b j6 95 0 0 30 30 30 30 80 80 230 e 5 30 30 65 65 65 65 25 25 265 f 3 3,5 3,5 3,5 3,5 3,5 3,5 4 4 4 H ) 70 80 80 00 00 00 00 25 25 50 i M4 M5 M5 M6 M6 M8 M8 M0 M0 M2 k 0 2,5 2,5 6 6 9 9 22 22 28 L 93 200 229 239 269 279 33 323 388 408 l 23 30 30 40 40 50 50 60 60 80 m 3 3,5 3,5 3,5 3,5 3,5 3,5 4 4 4 s 9 9 9 4 4 4 [mm] A 0 26 40 64 98 B 75 95 0 20 45 B 93 5 36 52 75 c 9 22 28 28 33 c 3,5 8 8 2 d k6 4 9 24 28 38 f H 86 94 06 2 42 ) Please observe the difference in height of the feet input side and output side. [mm] H 2 ) 63 80 90 00 32 i M5 M6 M8 M0 M2 k 2,5 6 9 22 28 L 39 58 78 202 247 l 30 40 50 60 80 p 2 3 4 4 20 r 6,6 9 4 u 2,5 3 3 3 4 We reserve the right to make dimensional and constructional alterations. 49
i ROBA -takt clutch brake module s 3 7 Type 67_.0.0 output side brake side input side clutch side L L l f M6x,5 m 90º (4x) ØD Øe Øb Ød Ød Øb Øe ØD H k u H Øs Øs l Ør B f p c c A c p 45º B l m Order Number Brake side IEC-flange small IEC-flange large 5 6 Clutch side IEC-flange small IEC-flange large 5 6 / 6 7. 0. 0 / / W / B with control unit s 3 to 7 without feet with feet 0 Coil voltage [VDC] 24 04 output shaft * Ø d k6 input hollow shaft bore * Ø d F8 see pages 56-58 50 Example: 7 / 675.05.0 / 24 / W28 / B28 * Special dimensions on request
ROBA -takt clutch brake module s 3 7 Type 67_.0.0 Technical Data Nominal torque Electrical power Clutch M 2 [Nm] 0 20 45 80 60 Brake M 2 [Nm] 8,5 7 45 80 60 Clutch P 20 [W] 7 25 30 44 79 Brake P 20 [W] 3 23 30 45 70 Maximum speed n max [rpm] 3600 3600 3600 3600 3600 Weight Type 674.04.0 m [kg] 3,9 6,8 9,9 5,3 27,7 Mass moment of inertia Output Type 674.04.0 I [0-4 kgm 2 ] 2,5 6,37 2,5 60,5 38 Standard voltage 24 VDC; 04 VDC. Permitted voltage tolerances acc. IEC 38 +/-0 %. IEC [mm] optionally with small or large IEC-flange IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large IEC-small IEC-large D 40 60 60 200 200 200 200 250 250 300 d k6 4 4 9 9 24 24 28 28 38 d F8 4 4 9 9 24 24 28 28 38 b j6 95 0 0 30 30 30 30 80 80 230 b +0,5 +0,3 95 0 0 30 30 30 30 80 80 230 e 5 30 30 65 65 65 65 25 25 265 f 3 3,5 3,5 3,5 3,5 3,5 3,5 4 4 4 f 3,5 4 4 4 4 4 4 4,5 4,5 4,5 H ) 70 80 80 00 00 00 00 25 25 50 i M4 M5 M5 M6 M6 M8 M8 M0 M0 M2 k 0 2,5 2,5 6 6 9 9 22 22 28 L 63 70 89 99 29 229 253 263 308 328 l 23 30 30 40 40 50 50 60 60 80 l 25 32 32 42 42 55 55 65 65 90 m 3 3,5 3,5 3,5 3,5 3,5 3,5 4 4 4 s 9 9 9 4 4 4 ) The difference in height of feet depends on the flange diameter [mm] A 94 06 5 39 66 B 75 95 0 20 45 B 93 5 36 52 75 c 9 22 28 28 33 c 3,5 8 8 2 ) Please observe the difference in height of the feet input side and output side. [mm] H 86 94 06 2 42 L 40 59 79 203 248 p 2 3 4 4 20 r 6,6 9 4 u 3 3 4 4 5 We reserve the right to make dimensional and constructional alterations. 5
Technical Explanations ROBA -takt clutch brake module Installation Clutch Brake Unit with flange: The shafts, centring, screw-on pitch circles and diameters of the flanges are designed according to IEC-standard. Input and output sides can be fitted with the corresponding flanges of motor, gearbox or other units without problems, as shown in Fig.. Permitted shaft loads The drive elements located on the shafts exert a radial load during operation which has to be absorbed by the bearings of the unit. The load is limited by the required life of the bearings and strength of the shaft (Table ). Fig. 3 Fig. Installation of the transmission elements: The drive elements are mounted onto the respective shafts and secured axially via a press cover and a screw screwed into the threaded centre hole of the shaft, see Fig. 2. For the combination motor shaft - ROBA -takt hollow shaft, the motor shaft must be greased slightly to prevent frictional corrosion. Extensive force or hammer blows can damage the bearings. Radial loads acting on the shaft via the drive elements must not exceed the maximum allowable values (see heading permissible shaft load ). Should both radial and axial loads be present on the shaft, the permissible loads must be determined - please contact our engineers. ROBA -takt max. permitted radial force F max [N] Input shaft without IEC-flange Output shaft without IEC-flange Output shaft small IEC-flange Output shaft large IEC-flange 333 995 250 2705 5355 333 05 233 2950 62 - - - - - 333 05 233 2950 62 Table : Max. permitted radial force F max limited due to the strength of the shaft, application of load midway along shaft. The application of load is assumed to be midway along the shaft, determining the acceptable radial load. In case of additional axial loads, an extensive calculation is necessary (please contact the manufacturer). The permitted radial forces stated in Table 2 refer to a speed of n 500 rpm and a bearing service life L h 0 000 hours. ROBA -takt Radial force F N [N] Input shaft without IEC-flange Output shaft without IEC-flange Output shaft small IEC-flange Output shaft large IEC-flange 436 547 68 89 49 788 052 484 685 286 840 34 586 785 35 788 052 484 685 286 Fig. 2 Table 2: Permitted radial force F N with speed n 500 rpm, bearing service life L h 0 000 hours assuming load applied midway along shaft. The permitted force F can be calculated with factor k for other speeds or bearing lifetimes. The factor k is determined from diagram. Correction factor k [-] bearing service life in hours L h [h] 000 2000 5000 0000 20000 F k F N F max [N] F in N Permitted radial force k Correction factor (diagram ) F N in N Permitted radial force at n 500 rpm and bearing service life L h 0 000 hours (Table 2) 52 Diagram Speed n [rpm] F max in N Max. permitted radial force, limited due to shaft strength (Table )
Technical Explanations ROBA -takt clutch brake module Clutch brake modul size calculation Formulas. Drive torque M A 9550 x P A [Nm] n 2. Required torque M req. K x M A [Nm] 3. Pre-selection of the unit size acc. diagram page 54 M S M req. [Nm] 4. Mass moment of inertia I I own + I add. [kgm 2 ] 5. Acceleration time input side (M A M S ) I x n ) t a + t [sec] 9,55 x (M S M L ) 6. Braking time output side t v Basis: M L constant M S constant I x n 2) + t [sec] 9,55 x (M S M L ) Key: P A [kw] drive power M A [Nm] drive torque M req. [Nm] required torque M L [Nm] load torque ( / drop load) In case of a load reduce the value in the bracket M S [Nm] switchable torque (diagram, page 54) n [rpm] drive speed K safety factor > 2 I [kgm 2 ] mass moment of inertia I own [kgm 2 ] own mass moment of inertia ( Technical data ) I add. [kgm 2 ] additional mass moment of inertia t a [sec] acceleration time (input side) t v [sec] braking time (output side) ) t [sec] switching time of the clutch Table 3, 2) t [sec] switching time of the brake page 55 S h max [h - ] max. switching frequency per hour (dependent on time) Q tot. [J] total friction work (acc. to Table 4, page 55) Q a [J] friction work per acceleration Q E [J] perm. friction work with single switching Table 4, Q v [J] friction work per deceleration page 55 t S [s] delay times Z number of switchings until wear limit 7. Max. switching frequency per hour (dependent on time) S h max x 3600 [h - ] (t v + t a ) x,2 8. Friction work per acceleration I x n 2 M s Q a x 82,4 M S M L [J] Q a < Q E [J] 9. Friction work per delay I x n 2 M s Q v x 82,4 M S M L [J] Q v < Q E [J] 0. Check the selected unit size in diagram 2 (page 54 friction power diagram). The point of intersection of friction work (switching work)/ cycling frequency must be below the friction power curve! If it is above, the next size has to be selected and re-calculated from point 3 on.. Number of switchings until wear limit Z Q tot. [-] * Qa (Q v ) x 2 * Q a /Q v - put in higher value 53
Technical Explanations ROBA -takt clutch brake module Calculation example Data: Input power P A 0,75 kw Input speed n 400 rpm Load torque output M L 3,0 Nm Additional mass moment of inertia I add. 0,0042 kgm² 3000 cycles per hour Drive torque M A Required torque 9550 x P A 9550 x 0,75 5, [Nm] n 400 M req. K x M A 2 x 5, 0,2 [Nm] Determined unit size acc. diagram 4 M S M req. [Nm] Mass moment of inertia I I own + I add. 0,000637 + 0,0042 0,00484 [kgm2 ] Acceleration time input side (lift load) (M A M S ) t a t a I x n 9,55 x (M S M L ) 0,00484 x 400 9,55 x ( - 3) + *t ) (clutch) + 0,065 0,53 [sec] ** Switchable torque M s [Nm] 000 00 0 Switchable torque 250 500 750 000 250 500 750 2000 2250 2500 2750 3000 3250 3500 3750 4000 Speed n [rpm] 7 4 Clutch 6 4 Brake 5 3 Clutch Calculation example 3 Brake Braking time output side (drop load) t v I x n 9,55 x (M S M L ) 2) + *t (brake) t v 0,00484 x 400 9,55 x ( - 3) + 0,040 0,29 [sec] ) 2) * switching times t and t from Table 3, page 55 without overexcitation Max. switching frequency per hour S h max (t v + t a ) x,2 x 3600 S h max (0,29 + 0,53) x,2 x 3600 0.638 [h - ] Diagram 0 5 0 4 ** Friction surfaces have been run Friction power diagram valid for speed 500 rpm 7 6 5 4 3 Calculation example Friction work per acceleration Q a I x n 2 M x S 82,4 M S - M L Q a 0,00484 x 400 2 x 82,4-3 Friction work per deceleration Q v I x n 2 M x S 82,4 M S + M L 7,5 [J] Q E Q a /Q v Switching work [J] 0 3 0 2 54 Q v 0,00484 x 400 2 x 82,4 + 3 40,9 [J] Q E Check the selected unit size in the friction power diagram (determine point of intersection Q a or Q v to S h ). (The point of intersection determined in diagram 2 must be located in or under the characteristic curve of the selected unit). Number of switchings until wear limit Z Q tot. 44 x 0 7 3,08 x 0 6 switchings Q a x 2 7,5 x 2 0 0 0 2 0 3 0 4 0 5 Switching frequency S h [h - ] Diagram 2
Technical Explanations ROBA -takt clutch brake module Switching Times The switching times stated in Table 3 have been determined by comprehensive series of tests. They are valid for switching DC-side with nominal air gap and warm coil. Deviations depend on the respective installation situation, ambient temperatures, release path and the type of rectification with which the corresponding clutch is operated. Switching times t Clutch [sec] 0,00 0,05 0,020 0,030 0,045 t Clutch [sec] 0,045 0,065 0,080 0,50 0,200 Without t Brake [sec] 0,006 0,008 0,00 0,05 0,025 overexcitation t Brake [sec] 0,035 0,040 0,055 0,00 0,50 t 2 Clutch [sec] 0,02 0,020 0,045 0,060 0,090 t 2 Brake [sec] 0,00 0,08 0,030 0,060 0,090 t Clutch [sec] 0,003 0,005 0,007 0,00 0,05 With t Clutch [sec] 0,025 0,035 0,040 0,075 0,00 overexcitation t (only switch-on time) Brake [sec] 0,002 0,003 0,004 0,006 0,008 t Brake [sec] 0,020 0,022 0,030 0,050 0,075 Recommended duration of overexcitation [sec] 0,00 ) 0,00 ) 0,00 0,05 0,020 Minimal necessary slope with overexcitation [sec] 0,020 0,025 0,030 0,080 0,20 separation without overexcitation [sec] 0 0 0,05 0,050 0,080 Height of the overexcitation approx. 0 x nominal voltage (current limited) Table 3 ) In case of operation with overexcitation and high switching frequency (80-00 % of the diagram value), the recommended period of the overexcitation acc. Table 3 must not be exceeded. M M 2 M L t t Clutch t 3 t a Brake t 2 t 2 t t 3 t t v 0, M 2 t Key: M 2 M L P t a t v t t t 2 t 3 Nominal torque of the brake or clutch Load torque of the drive Electrical power Acceleration time Deceleration time Connection time Response delay on connection Disconnection time Slip time P Clutch ON OFF Brake ON Slope separation Slope separation t Diagram 3: Torque-time Friction work Permitted friction work for single switching Q E [0 3 J] 3,8 6,2 9 5 25 Total friction work Q tot. [0 7 J] 22,5 44 87 7 340 Table 4 Please Observe! Wear values can only be recommended values due to operating parameters, such as sliding speed, pressing or temperature. 55
ROBA -takt control unit Type 04.000.2 Application This unit is used to start, stop and to position by switching and controlling the mayr ROBA -takt clutch brake modules. Function The ROBA -takt control unit operates according to the principle of a clocked switching controller with a frequency of 8 khz. Its coil is energised by actuating the sensor for clutch and brake. A temperature monitor protects the unit from overheating. Should the temperature exceed >80 C, the coil voltage is switched off. The LED excess temperature unit lights up red. A slope separation avoids simultaneous occurrence of clutch and brake torques. On overexcitation, the coil attraction time is reduced, allowing exact switching and positioning. Electrical Connection (mm) 2 7 Coil connection for clutch Ku / Ku2 2 Coil connection for brake Br / Br2 3 Sensor connection for clutch +2 V / Ku / Gnd 4 Sensor connection for brake +2 V / Br / Gnd2 5 Connection input voltage PE, L, N 6 Temperature monitoring Option (bare) 7 Signalling relay Option 2 (bare) 50 95 5 Technical Data Input voltage 230 VAC ±0 %, 50-60 Hz Power input max. 4 Ampere /00 % duty cycle No-load supply power < 7 Watt Coil Nom -Voltage 24 VDC Coil Nom -power maximal 96 Watt Coil Nom -current Manufacturer-side setting to mayr ROBA -takt-size Coil overexcitation maximal 325 VDC current limitation is adapted to the respective coil size Overexcitation time 2-50 ms ( 30 % to +60 %), externally adjustable (only applicable with coding overexcitation ON ) Slope separation 2-50 ms ( 25 % to +30 %), externally adjustable Protection IP20 Ambient temperature 0 C to +50 C Storage temperature -20 C to +70 C Clamping conductor cross section 2,5 mm 2 Weight,5 kg / 3,3 lb 03 0 5 6 3 4 82 202 Protection fuse Input-side: G-microfuse F/F2, (M) 4 A, 5x20mm Protection fuse Coil-side: G-microfuse F3, the current is adapted to the ROBA -takt sizes. Always use the same replacement fuses Overvoltage category two; one for connection to PELV/SELV PELV/SELV (control wires) Overvoltage protection For installation in overvoltage category III, a suitable overvoltage protection unit is required between the incoming voltage and the ROBA -takt control unit. Order Number / 0 4. 0 0 0. 2 s 3-7 ROBA -takt control unit 56 Control unit temperature monitoring A fitted temperature switch prevents the control unit from overheating.
ROBA -takt control unit Type 04.000.2 Functional Sequence Brake Voltage Brake Current Clutch Voltage Clutch Current Clutch Slope separation Clutch Overexcitation Brake Slope separation Brake Overexcitation 325 VDC overexcitation Voltage with current limitation 24 VDC coil voltage Limited current with overexcitation Current with 24 VDC coil voltage 325 VDC overexcitation Voltage with current limitation 24 VDC coil voltage Limited current with overexcitation Current with 24 VDC coil voltage LED LED LED Mains Clutch Brake Mains OFF ON Clutch Start ON Brake Start ON Connection Example Control elements / control function Control sensor for start and stop Connection example -sensor operation Connection example 2-sensor operation Brake (Br) Clutch (Ku) 2V Ku Gnd 2V Br Gnd 2 2V Ku Gnd 2V Br Gnd 2 Application Function (condition-controlled) Function (slope-controlled) Contact potential-free (NO-Contact) 2V Ku Gnd 2V Br Gnd 2 Close contact Clutch ON Close contact clutch or Clutch ON Open contact Brake ON Close contact brake Brake ON SPS - Control (0-30 VDC) (-) (0-30 VDC) (+) 2V Ku Gnd 2V Br Gnd 2 + 24 VDC signal Clutch ON 0 VDC signal Brake ON + 24 VDC signal to clutch or + 24 VDC signal to brake Clutch ON Brake ON External voltage (0-30 VDC) (-) (0-30 VDC) (+) 2V Ku Gnd 2V Br Gnd 2 +0-30 VDC signal Clutch ON 0 VDC signal Brake ON +0-30 VDC signal to clutch or +0-30 VDC signal to brake Clutch ON Brake ON NAMUR Proximity switch (0-30 VDC) sw bl 2V Ku Gnd 2V Br Gnd 2 Sensor undamped Sensor damped Clutch ON Brake ON Sensor clutch undamped or Sensor brake undamped Clutch ON Brake ON PNP - NC contact Proximity switch (0-30 VDC) br sw bl 2V Ku Gnd 2V Br Gnd 2 Sensor undamped Sensor damped Clutch ON Brake ON Geber Kupplung undamped or Sensor brake undamped Clutch ON Brake ON 57
Application This device is used to start and stop mayr ROBA -takt clutch brake modules. It can be used for alternating 24 VDC coil switching, if a 24 VDC power supply is available. ROBA -takt circuit module Type 004.000._ Function -sensor operation: activated deactivated clutch is energised brake is energised The respective control of the clutch or brake is indicated via LED. The ROBA -takt circuit module has no over excitation function. The brake has priority: The brake is energised independently of the sensor position when the 24 VDC power supply is switched on. The coil is energised with the 24 VDC power supply. Slope separation: To avoid simultaneous clutch and braking torques, a slope separation of 0-00 ms between clutch and brake can be set, which acts according to the respective rise time and drop-out time of the coils (see switching time table). This adjustment is carried out via the potentiometers Ku clutch (P2) and Br brake (P). The factory default setting is 0 ms. Brake Clutch ON OFF ON OFF Slope separation clutch max. 00 ms Slope separation brake max. 00 ms Electrical Connection (Terminals) Input voltage 24 VDC 2 Input voltage GND 3 + 4 Brake 5 + 6 Clutch 7 Control voltage for switches or sensors 2 VDC 8 + 9 Control inputs Technical Data Input voltage 24 VDC SELV/PELV ripple content 5% Recommended fuse T 4A Output voltage 24 VDC Output power maximal 79 W Slope separation 0 00 ms (factory default setting is 0 ms) Ambient temperature 0 C to +70 C Storage temperature -20 C to +85 C Conductor cross section 0,4 -,5 mm² / AWG 26-4 Protection IP00 Design Printed board with screw-on attachment part or a mounting frame for 35 mm standard mounting rails Maximal cycle frequencies 45 C 70 C up to A / sizes 3 + 4 cycles / min 600 600 approx. 2 A / sizes 5 + 6 cycles / min 240 80 approx. 3 A / size 7 cycles / min 20 75 (mm) with mounting frame Component assembly only shown partially Order Number 77 67,5 63 / 0 0 4. 0 0 0. _ 58 Please Observe! Higher cycle frequencies will lead to ROBA -takt circuit module overload and failure. only printed board without frame printed board with mounting frame 0
Headquarters Chr. Mayr GmbH + Co. KG Eichenstrasse, D-87665 Mauerstetten Tel.: 0 83 4/8 04-0, Fax: 0 83 4/80 44 2 www.mayr.de, E-Mail: info@mayr.de Service Germany Baden-Württemberg Esslinger Straße 7 7077 Leinfelden-Echterdingen Tel.: 07 /45 96 0 0 Fax: 07 /45 96 0 0 Bavaria Eichenstrasse 87665 Mauerstetten Tel.: 0 83 4/80 4 04 Fax: 0 83 4/80 44 23 Chemnitz Bornaer Straße 205 094 Chemnitz Tel.: 03 7/4 74 8 96 Fax: 03 7/4 74 8 95 Franken Unterer Markt 9 927 Hersbruck Tel.: 0 9 5/8 48 64 Fax: 0 9 5/8 62 45 Hagen Im Langenstück 6 58093 Hagen Tel.: 0 23 3/78 03 0 Fax: 0 23 3/78 03 25 Kamen Lünener Strasse 2 5974 Kamen Tel.: 0 23 07/23 63 85 Fax: 0 23 07/24 26 74 North Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78 Rhine-Main Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00 Branch office China Mayr Zhangjiagang Power Transmission Co., Ltd. Changxing Road No. 6, 25600 Zhangjiagang Tel.: 05 2/58 9-75 65 Fax: 05 2/58 9-75 66 info@mayr-ptc.cn Great Britain Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD2 4LZ West Yorkshire Tel.: 0 5 35/66 39 00 Fax: 0 5 35/66 32 6 sales@mayr.co.uk France Mayr France S.A. Z.A.L. du Minopole BP 6 6260 Bully-Les-Mines Tel.: 03.2.72.9.9 Fax: 03.2.29.7.77 contact@mayr.fr Italy Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0 49/8 79 0 20 Fax: 0 49/8 79 0 22 info@mayr-italia.it Singapore Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 2 Singapore 609964 Tel.: 00 65/65 60 2 30 Fax: 00 65/65 60 0 00 info@mayr.com.sg Switzerland Mayr Kupplungen AG Tobeläckerstrasse 822 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch USA Mayr Corporation 4 North Street Waldwick NJ 07463 Tel.: 2 0/4 45-72 0 Fax: 2 0/4 45-80 9 info@mayrcorp.com Representatives Australia Transmission Australia Pty. Ltd. 22 Corporate Ave, 378 Rowville, Victoria Australien Tel.: 0 39/7 55 44 44 Fax: 0 39/7 55 44 info@transaus.com.au China Mayr Power Transmission Co., Ltd. Shanghai Representative Office Room 2206, No. 888 Yishan Road 200233 Shanghai, VR China Tel.: 0 2/64 32 0 60 Fax: 0 2/64 57 56 2 Trump.feng@mayr.de India National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 4026 Tel.: 0 20/27 3 00 29 Fax: 0 20/27 3 02 29 nenco@nenco.org Japan MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 06-864 Tel.: 03/35 86-4 4 Fax: 03/32 24 24 0 k.goto@matsui-corp.co.jp South Africa Torque Transfer Private Bag 9 Elandsfonstein 406 Tel.: 0 /8 99 00 00 Fax: 0 /8 99 65 74 torque@bearings.co.za South Korea Mayr Korea Co. Ltd. Room No.002, 0th floor, Nex Zone, SK TECHNOPARK, 77-, SungSan-Dong, SungSan-Gu, Changwon, Korea Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com Taiwan German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist., Taichung City 429, Taiwan R.O.C. Tel.: 04/25 5 05 66 Fax: 04/25 5 24 3 abby@zfgta.com.tw Machine tools Applications in China Dynamic Power Transmission Co., Ltd. Block 5th, No. 699, Songze Road, Xujing Industrial Zone 20702 Shanghai, China Tel.: 02/59883978 Fax: 02/59883979 dtcshanghai@online.sh.cn More representatives: Austria, Benelux States, Brazil, Canada, Czech Republic, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Malaysia, New Zealand, Norway, Philippines, Poland, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Thailand, Turkey You can find the complete address for the representative responsible for your area under www.mayr.com in the internet. your reliable partner 59
Product Summary Safety Clutches/Overload Clutches EAS -Compact /EAS -NC Positive locking and completely backlash-free torque limiting clutches EAS -smartic Cost-effective torque limiting clutches, quick installation EAS -element clutch/eas -elements Load-disconnecting protection against high torques EAS -axial Exact limitation of tensile and compressive forces EAS -Sp/EAS -Sm/EAS -Zr Load-disconnecting torque limiting clutches with switching function ROBA -slip hub Load-holding, frictionally locked torque limiting clutches ROBA -contitorque Magnetic continuous slip clutches Shaft Couplings smartflex Perfect precision couplings for servo and stepping motors ROBA -ES Backlash-free and damping for vibration-sensitive drives ROBA -DS/ROBA -D Backlash-free, torsionally rigid all-steel couplings EAS -control-ds Cost-effective torque-measuring couplings Electromagnetic Brakes/Clutches ROBA-stop standard Multifunctional all-round safety brakes ROBA-stop -M motor brakes Robust, cost-effective motor brakes ROBA-stop -S Water-proof, robust monoblock brakes ROBA-stop -Z/ROBA-stop -silenzio Doubly safe elevator brakes ROBA -diskstop Compact, very quiet disk brakes ROBA -topstop Brake systems for gravity loaded axes ROBA -linearstop Backlash-free brake systems for linear motor axes ROBATIC /ROBA -quick/roba -takt Electromagnetic clutches and brakes, clutch brake units DC Drives tendo -PM Permanent magnet-excited DC motors tendo -SC quadrant and 4 quadrant transistor controllers 5/05/202 GF/SC