Harmonic Motion: The Pendulum Lab Student Version

Similar documents
Practice Test SHM with Answers

Sound and stringed instruments

ACTIVITY 6: Falling Objects

EXPERIMENT 2 Measurement of g: Use of a simple pendulum

FXA UNIT G484 Module Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

Oscillations: Mass on a Spring and Pendulums

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

Chapter 17: Change of Phase

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

Sound and Music. Drum. Drum. Guitar. Flute. Guitar. Trumpet. Flute. Trumpet

Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done.

Lesson 3 - Understanding Energy (with a Pendulum)

Pendulum Investigations. Level A Investigations. Level B Investigations

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Scientific Experiments Using the Inquiry Activity Pendulums

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

Chapter 3 Student Reading

Acceleration of Gravity Lab Basic Version

The Sonometer The Resonant String and Timbre Change after plucking

Waves-Wave Characteristics

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

Three Methods for Calculating the Buoyant Force Gleue: Physics

Balanced & Unbalanced Forces

Chapter 1 Student Reading

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Einstein s Theory of Special Relativity Made Relatively Simple!

Lab 8: Ballistic Pendulum

PUSD High Frequency Word List

The Physics of Guitar Strings

Summary The students will learn how to make a basic musical instrument and how to modify it to get different loudness and pitches.

LAB #11: RESONANCE IN AIR COLUMNS

Practice TEST 2. Explain your reasoning

Conservation of Energy Physics Lab VI

HOOKE S LAW AND SIMPLE HARMONIC MOTION

Fry Phrases Set 1. TeacherHelpForParents.com help for all areas of your child s education

Prelab Exercises: Hooke's Law and the Behavior of Springs

Determination of Acceleration due to Gravity

The Tuning CD Using Drones to Improve Intonation By Tom Ball

Physics 1230: Light and Color

Chapter 21 Study Questions Name: Class:

Tennessee State University

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Lab 2: Vector Analysis

The Monolina is available in four different base tunings D - F - A - C

Visit the Piano Learning Center of the Piano Technicians Guild at for more fun ways to learn about the piano.

Standing Waves on a String

Kinetic Molecular Theory and Gas Laws

Practice Ideas Rookie / Junior Mosquito

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Giant Slinky: Quantitative Exhibit Activity

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

What is Energy? What is the relationship between energy and work?

Conditioning From Gym To Home To Gym

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

How does your heart pump blood in one direction?

Force and Motion Grade 2

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Seismographs. Lesson 7. Seismographs recording activity on Kilauea

Ch 25 Chapter Review Q & A s

Freely Falling Objects

Experiment 9. The Pendulum

The Physics of Music: Brass Instruments. James Bernhard

AP Physics C. Oscillations/SHM Review Packet

Friday 18 January 2013 Morning

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

Physics 101 Hour Exam 3 December 1, 2014

Grade 5 Standard 4 Unit Test Static Electricity

AwanaGames Circle. Official. Diagram 1. Key to diagram: Pin & Striped Bean Bag C Diagonal or Starting Line. B Scoring Pins, or Center.

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time


How To Work With Beads. By Rowan

Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 3 Quarter 3 Activity 23

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

How to increase Bat Speed & Bat Quickness / Acceleration

MARKETING. Deep Dive: What Physics Can

Gravity. in the Solar System. Beyond the Book. FOCUS Book

Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong?

Football Learning Guide for Parents and Educators. Overview

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Building a simple seismometer

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9

Vibration Isolation in Data Centers

Engineering with Sound Lesson Plan

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

This Performance Standards include four major components. They are

The Physics of Kicking a Soccer Ball

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Tectonic plates have different boundaries.

Transcription:

Harmonic Motion: The Pendulum Lab Student Version In this lab you will set up a pendulum using rulers, string, and small weights and measure how different variables affect the period of the pendulum. You will also use the concept of resonance to make pendulums swing without any initial push. Key Concepts: The period is the amount of time it takes the pendulum to make one back-and-forth swing. The frequency is the number of swings the pendulum makes per unit time. The amplitude measures how far the pendulum is pulled back and swings. Resonance is the back-and-forth motion that becomes especially strong when a pendulum is repeatedly pushed at its natural frequency (the same frequency it already has as determined by the pendulum s length and the strength of gravity). This effect can happen with any system that has a natural vibrating frequency (e.g., earthquake toppling a building, opera singer breaking a crystal glass, etc.). Part 1 Period of a Pendulum In this part, you will investigate what factors determine the period of a pendulum. 1. If you re using duct tape, tape down two rulers to the table about 6 inches apart so that several inches stick out beyond the edge of the table as shown in the diagram below. If you re using masking tape instead, tape two rulers to opposite sides of the Tupperware container at the same height so that several inches stick out beyond the edge of the container. Place the box-ruler setup on the edge of the table such that the rulers stick out beyond the edge of the table. 2. Cut a piece of string about 30 cm long and tie it between the two rulers, making sure that it is pulled taut. 3. Cut a piece of string about 40 cm long and tie a washer to one end, then tie the other end to the string between the rulers. If you re using duct tape, your pendulum setup will look like the picture below. (Do not tie the pendulum very tightly to the horizontal string you will be adjusting its length later.)

Effect of amplitude: Prediction Q1. If we increase the amplitude of the pendulum's swing by pulling it further out, will the period of the pendulum (i.e., how long it takes to complete one swing) increase, decrease, or stay the same? Measurement 4. Using a protractor, pull out the pendulum to 20 degrees from vertical. Let it go and have your lab partner carefully time how long it takes for the pendulum to swing back and forth ten times. It can help to have one person count the complete swings out loud while another tracks the time. Use this time to calculate the period (the time for one back-and-forth swing). 5. Repeat, this time pulling out the pendulum to 40 degrees from the vertical. Amplitude Time for 10 swings (seconds) Period (seconds) 20 degrees 40 degrees Q2. Based on your experimental results, how does increasing the amplitude of the swing affect the period of the pendulum?

Effect of length: Prediction Q3. If we decrease the length of the pendulum by shortening the string, will the period of the pendulum increase, decrease, or stay the same? Measurement 1. Copy over the data for the pendulum with three washers from the table on the previous page. This will be your longer pendulum. 2. Adjust the length of the pendulum with one washer so that it is about half as long as the other pendulum. Measure the time it takes for this shorter pendulum to swing back and forth 10 times. Use this time to calculate the period. Length Time for 10 swings (seconds) Period (seconds) longer pendulum shorter pendulum Q4. Why is it acceptable in this case to have two variables be different at the same time (length and number of washers) if we're interested in isolating the effect of the pendulum s length on its period? Q5. Based on your experimental results, how does shortening the pendulum change the period of the pendulum? Q6. The frequency of a pendulum is how many swings the pendulum can complete per second. Which has the higher frequency, the short or the long pendulum? Effect of mass: Prediction

Q7. If we make the pendulum heavier by attaching extra washers, will the period of the pendulum increase, decrease, or stay the same? Measurement 3. Copy the data from the first row of table on the previous page (in the Effect of amplitude section) into the first row of the table below. 4. Cut another piece of string and tie three washers to one end. Tie this new pendulum to the string between the rulers next to your old pendulum. Very carefully, adjust the length of the new pendulum so that the two are exactly equal. Remember, we only want to test one variable at a time! 5. Measure the time it takes for the heavier pendulum to swing back and forth ten times. Use this time to calculate the period. Number of washers Time for 10 swings (seconds) Period (seconds) 1 3 Q8. Based on your experimental results, how does increasing the mass of the pendulum change the period of the pendulum? (increase / decrease / stay the same) Concept Questions Q9. There is one other factor whose effect we did not measure: the strength of gravity. However, we can make an intelligent assumption about how gravity will affect the period of the pendulum. (a) What would happen to the pendulum if you were in outer space and there was no gravity at all? (b) Now imagine trying this on the moon, where gravity is much weaker. When you pull out the pendulum, do you expect it to fall slower, faster, or with the same speed as on earth?

What would happen to the period of the pendulum on the moon? Q10. Suppose that a little 6-year-old and his big burly 13-year-old brother are swinging side-byside on a playground. The strong 13-year-old pumps much harder and swings much higher than the 6-year old. Which of them takes longer to complete one back-and-forth motion? Q11. If you are pushing a kid on a swing, do either you or the kid have any control over how quickly the swing swings back and forth? What aspect of the motion do you have control over?

Part 2 Resonance Any object that has a natural frequency for moving back and forth can experience resonance if it is pushed by a force that happens to match that frequency. When resonance occurs, the amplitude of the object s motion can become quite large. (If you were trying to push a friend on a swing to make them go as high as possible, you would push every time the swing comes back towards you in other words, at the same frequency as the swing.) Without resonance, even a big force will not do much to keep the object moving. In this part, you will observe resonance in pendulums. Haunted pendulums: Make a pendulum move without touching it! 1. Create another pendulum with one washer. Attach it to the string across the rulers, on the other side of the long pendulum (see diagram above). Carefully adjust the length of your new pendulum to be as close as possible to the length of the other short one. 2. Pull back one of the short pendulums and let it swing. Q12. What happens to the other short pendulum? Q13. What happens to the central long pendulum? Q14. Since you didn't touch it, where does the force that makes the other short pendulum swing come from? Q15. For which of the two pendulums you didn't touch does resonance occur? Why did it happen for that one?

Q16. If you have two pendulums of the same length but with a different number of washers at the end, do you expect to see resonance? 3. Now move the central long pendulum out of the way (by draping it over a ruler or the table). Repeat the experiment by pulling back one of the short pendulums and releasing it. Q17. If you wait a little longer, what happens to the pendulum you pulled back? This phenomenon is called beats. It happens when you have two different frequencies contributing to a back-and-forth motion. You can hear it with sound if you play two violin strings that are very close to the same frequency but not quite the sound will seem to waver between loud and soft, in the same way that these pendulums alternated between large amplitudes and small ones. This phenomenon occurs because when two waves have different frequencies, they interfere with each other (see diagram below). Sometimes, the waves line up so that the interference is said to be constructive (making the net wave bigger than either of the individual waves); other times, the waves oppose each other so that the interference is said to be destructive (making the net wave smaller than either of the individual waves). Waves are all around us: waves on vibrating strings, ocean waves, sound waves, etc.

4. [OPTIONAL connection to sound] A great demonstration of sound beats can be done using an online tuning fork that will play a perfect pitch: http://www.tictone.com/online-tuning-fork.php Open up two browser windows such that both are playing the A4 pitch at 440 Hz. Now adjust one of the pitches up by a couple Hz (i.e., to 442 Hz). You will hear beats. Q18. If you increase the difference between the pitches of the two simultaneous notes, how does this affect the frequency of the beats? Pendulum Mind-Control : Learn to control which pendulums swing! 5. Now attach a handle string at both ends to either side of the string between the rulers. Your pendulum setup will now look as shown below.

6. Tug rhythmically on the center of your handle-string. Q19. Can you make the two short pendulums swing high without the long pendulum swinging much? Q20. Can you make the long pendulum swing high without the short ones swinging much? Q21. Can you make only one of the short pendulums swing without the other one swinging? Q22. What do you have to change in order to control which pendulums are swinging?

Concept Questions Q23. Old-fashioned grandfather clocks use a long pendulum that swings back and forth to keep time. When the metal of the pendulum is heated slightly, it stretches so that the pendulum becomes longer. On a warm summer day, is a grandfather clock likely to run fast, run slow, or keep good time? Q24. Imagine a giraffe, a mouse, and an ant walking side-by-side. For every step the giraffe takes, the mouse will take many more, and an ant will take even more. In general, why do animals with short legs tend to move them more frequently than animals with long legs? Q25. There have been several times in history when groups of soldiers marching in rhythm across a suspension bridge caused the bridge to start swinging and collapse. Nowadays, soldiers are ordered to break step when going across a bridge. Why is this? Why are the bridges unlikely to collapse from crowds of ordinary people walking across? Q26. When designing a tall building in a region where earthquakes can happen, engineers have to take into account the typical frequencies associated with the back-and-forth vibration of the ground in an earthquake. Why?