Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor



Similar documents
Stress Strain Relationships

Finite Element Formulation for Plates - Handout 3 -

Lap Fillet Weld Calculations and FEA Techniques

Back to Elements - Tetrahedra vs. Hexahedra

Tower Cross Arm Numerical Analysis

Scroll Compressor Development for Air-Source Heat Pump Water Heater Applications

Finite Element Method (ENGC 6321) Syllabus. Second Semester

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

The elements used in commercial codes can be classified in two basic categories:

How To Analyze A Scotch-Yoke

Nonlinear Analysis Using Femap with NX Nastran

Integration of a fin experiment into the undergraduate heat transfer laboratory

AN EXPLANATION OF JOINT DIAGRAMS

SHORE A DUROMETER AND ENGINEERING PROPERTIES

Technology of EHIS (stamping) applied to the automotive parts production

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Finite Element Formulation for Beams - Handout 2 -

Experimental Analysis of a Variable Capacity Heat Pump System Focusing on the Compressor and Inverter Loss Behavior

ANALYSIS OF GASKETED FLANGES WITH ORDINARY ELEMENTS USING APDL CONTROL

8.2 Elastic Strain Energy

Technical Report Example (1) Chartered (CEng) Membership

Shell Elements in ABAQUS/Explicit

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

In Situ Performance Evaluation of Industrial Reciprocating Air Compressors

Experimental Evaluation Of The Frost Formation

The Basics of FEA Procedure

LOW VELOCITY IMPACT ANALYSIS OF LAMINATED FRP COMPOSITES

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

Course in. Nonlinear FEM

CAE -Finite Element Method

Prestressed Concrete Pipe Fitness for Service and Repair

CHAPTER 4 4 NUMERICAL ANALYSIS

CAE -Finite Element Method

Research on the Air Conditioning Water Heater System

Engineering Fundamentals of Threaded Fastener Design and Analysis

CRASH ANALYSIS OF AN IMPACT ATTENUATOR FOR RACING CAR IN SANDWICH MATERIAL

Heat and Mass Transfer Calculation of the Intercooler With Spraying Water for Air Compressor

Computer Aided Engineering (CAE) Techniques Applied To Hip Implant

Numerical modelling of shear connection between concrete slab and sheeting deck

MASTER DEGREE PROJECT

Design Validation and Improvement Study of HVAC Plumbing Line Assembly under Random Loading Condition

PARAMETRIC MODELING. David Rosen. December By carefully laying-out datums and geometry, then constraining them with dimensions and constraints,

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

Bending, Forming and Flexing Printed Circuits

(Seattle is home of Boeing Jets)

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

Study of Accelerating Torque Requirements of a Reciprocating Compressor

New approaches in Eurocode 3 efficient global structural design

Application of FEM-Tools in the Engine Development Process

An Overview of the Finite Element Analysis

Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole

Burst Pressure Prediction of Pressure Vessel using FEA

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Measurement And Application of Performance Characteristics Of A Free Piston Stirling Cooler

4.3 Results Drained Conditions Undrained Conditions References Data Files Undrained Analysis of

Finite Element Simulation of Simple Bending Problem and Code Development in C++

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI

Bolted Joint Design. Mechanical Properties of Steel Fasteners in Service

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

PROPERTIES OF MATERIALS

Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods

Introduction to Mechanical Behavior of Biological Materials

bi directional loading). Prototype ten story

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Laterally Loaded Piles

Finite Element Method

GMC 2013: Piping Misalignment and Vibration Related Fatigue Failures

ME6130 An introduction to CFD 1-1

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia

Material Optimization and Weight Reduction of Drive Shaft Using Composite Material

Optimum proportions for the design of suspension bridge

Benchmark Tests on ANSYS Parallel Processing Technology

Design Analysis and Optimization of Piston using CATIA and ANSYS

8 EXTRA LIGHT GRC SANDWICH ELEMENTS FOR ROOFING IN INDUSTRIAL BUILDINGS

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

Solved with COMSOL Multiphysics 4.3

In-situ Load Testing to Evaluate New Repair Techniques

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

CONVERGE Features, Capabilities and Applications

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

How To Model A Shallow Foundation

Advanced bolt assessment through process automation

ASTM D 1599 Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings

SFI SPECIFICATION 28.1 EFFECTIVE: SEPTEMBER 23, 2011 *

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS

Why and How we Use Capacity Control

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

CRITERIA FOR PRELOADED BOLTS

Transcription:

Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor Pavan P. Jorwekar Kirloskar Copeland Limited Yogesh V. Birari Kirloskar Copeland Limited Mayur M. Nadgouda Kirloskar Copeland Limited Follow this and additional works at: http://docs.lib.purdue.edu/icec Jorwekar, Pavan P.; Birari, Yogesh V.; and Nadgouda, Mayur M., "Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor" (2006). International Compressor Engineering Conference. Paper 1795. http://docs.lib.purdue.edu/icec/1795 This document has been made available through Purdue e-pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html

C071, Page 1 Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor *Pavan P. Jorwekar 1, Yogesh V. Birari 2, Mayur M. Nadgouda 3 1 Kirloskar Copeland Limited, Product Engineering Department, Karad, Maharashtra, India Phone +91 2164 241002 Fax +91 2164 241122 Email pavanj@kircop.com 2 Kirloskar Copeland Limited, Product Engineering Department, Karad, Maharashtra, India Phone +91 2164 241002 Fax +91 2164 241122 Email yogeshb@kircop.com 3 Kirloskar Copeland Limited, Product Engineering Department, Karad, Maharashtra, India Phone +91 2164 241002 Fax +91 2164 241122 Email mayurn@kircop.com *Indicates Corresponding Author ABSTRACT As per the Montreal Protocol, the CFC refrigerants are being phased out and alternate refrigerants are being introduced for refrigeration system. In view of this the existing design schemes are required to be evaluated. The paper deals with evaluation of the contact pressure distribution of cylinder-head gasket to address the adverse pressure conditions. Pump assembly consists of reciprocating mechanism in which a cylinder head is fastened to crank case deck face with gasket in between them. The cylinder head essentially consists of suction and discharge plenums separated by walls and are subjected to respective pressures. With alternate refrigerant, the pressure difference across the suction and discharge plenum is increased. In order to address this increased pressure differential, the cylinder head gasket must have enough contact pressure across the discharge plenum and separating walls. This paper elaborates the use of FEA tool ANSYS, to analyze the cylinder head and gasket for gasket-joint. This analysis helped in finding the contact pressures across the gasket due to pre-torques applied through bolts. Design modifications were done for removing the low contact pressure zone areas on gasket. The gasket contact pressure pattern obtained in ANSYS was validated using Fuji film. 1. INTRODUCTION Gasket joints are essential components in hermetic compressor. A gasket is a compressible material, or a combination of materials, which when clamped between two stationary members prevents the passage of the media across those members. The gasket material selected must be capable of sealing mating surfaces, resistant to the medium being sealed, and able to withstand the operating temperatures and pressures. In hermetic compressors gasket joints are most critical parts as sealing must be leak proof at all the operating conditions. Any damage to gasket sealing leads the entire compressor unusable. The rapid change from CFC refrigerant to non CFC and natural refrigerant put a very high demand on compressor manufacturers to develop new design for new environment friendly alternate refrigerants. For these alternate refrigerants, suction and discharge pressures are higher than conventional CFC refrigerants. So while designing the gasket joints one must consider the increased pressure across the suction and discharge plenum of the cylinder head.

C071, Page 2 In order to ensure the maintenance of the seal throughout the life expectancy of the assembly, sufficient pressure must remain on the gasket surface to prevent the damage to the gasket. A traditional way to find the contact pressure is by means of Fuji films. This activity requires lots of prototyping and testing. It is costly and time consuming as there is chance of re-looping when the expected results are not obtained. Here in this paper, explained the use of FEA tool for virtual method to find out the gasket pressure. 2. PROBLEM DESCRIPTION Gasket pressure depends on bolt tension and the amount of this bolt tension is transferred to the gasket is dependent on the stiffness of the cylinder head. Stiffer the cylinder head, more uniform distribution of bolt tension on the gasket. The objective of the analysis was to find out the distribution of cylinder head bolt tension on the gasket surface in terms of pressure for existing design. 3. GASKET MATERIAL Gasket as sealing component between structural components are usually very thin and made of various materials, such as steel, rubber compounds and composites. From a mechanics point of view, gaskets act to transfer force between components. The primary deformation of a gasket is usually confined to one direction, i.e. through thickness. This behavior is most important sealing joint. In-plane stiffness (the stiffness contribution from membrane) and transverse shear is negligible when compared to the through thickness (ANSYS user guide). The stiffness contribution therefore is assumed to be negligible. Due to this, gasket behaves non-linearly in loading and unloading with permanent deformation. Typical gasket behavior is shown in Figure3 for synthetic material which is currently used in aforesaid Gasket. The loading and unloading curve was obtained from the following compression curve function of the gasket material. Compression curve function for synthetic gasket material: Y = A (1 e ( X / B) ) + C (1 e ( X / D) ) + ( U) -(1) Slope: dy / dx = A/ B exp( X / Y ) + C / D exp( X / D) -(2) Tangent Modulus: E = dx / dy -(3) Unloading offset (Due to unrecoverable strain): / B) / D) / B') / D') U( Z) = (( A (1 e )) + ( C (1 e ))) (( A' (1 e )) ( C' (1 e ))) -(4) Equation 1 gives the compression of gasket for the particular value of stress X. U parameter in equation1 is unloading offset which is equal to zero for initial loading of the gasket. Equation 2 and equation 3 gives the slop and tangent modulus of the compression curve. Equation 4 gives the unloading offset of the gasket due to unrecoverable strain. Using equation 1 and equation 4, gasket compression and unloading behavior was calculated. Figure3 shows the gasket compression and unloading curve that were input to the ANSYS.

C071, Page 3 4. PROBLEM SOLVING IN ANSYS 4.1 Model Simplification and assumption Figure 1: Cylinder Head and Gasket assembly CAD models of cylinder head, gasket, valve plate and crank case was created in I-DEAS NX2. These models were geometrically simplified for ease of meshing. Only the crank case deck has considered for the analysis as there is negligible effect of bolt torque on remaining part of the crank case. This has reduced the model size and solution time. Following are the assumption o Bolt torque sequencing is ignored and torque applied simultaneously o Gasket and cylinder head material assumed to be homogenous. o Valve plate and crank-case assumed to be single part. o Effect of operating temperature on gasket behavior is not considered in the analysis. 4.2 Pre-processing ANSYS offers a series of elements to model gaskets. These elements belong to the ANSYS family of interface elements. For these elements, the membrane and transverse shear are neglected for gasket simulations. A gasket material option has been designed especially to account for the gasket through thickness behavior. This option should be used in a microscopic investigation of how gasket joints behave and does not predict the response of the gasket, but rather allows the user to input the response of the material. In this analysis, gasket material behavior was obtained form compression curve equation. One may focus on the behavior of the joint rather than detailed study of the gasket. If the detailed gasket results are desired, more sophisticated material models will be required For this problem INTER194 is selected to model the gasket. INTER194 is a 3-D 16-node quadratic element. It is defined by 16 nodes having three degrees of freedom at each node: translations in the nodal x, y, and z directions. Cylinder head and crank-case is meshed using Solid 92 elements. Bolt toque is converted into axial force and applied on the cylinder as shown in Figure2. Base of crank-case part is constrained in all degrees of freedoms. Material properties for cylinder head and valve plate such as modulus of elasticity, poisons ratio were defined. The gasket material compression and unloading data were input to the ANSYS. The GASKET option in ANSYS allows directly input data for complex pressure closure curves. The GASKET option also offers two sub-options to define gasket unloading behavior including linear and nonlinear unloading. The linear unloading option simplifies

C071, Page 4 the input by defining the starting closure at the compression curves and the slope. The nonlinear option allows to directly input unloading curves to more accurately model the gasket unloading behavior. In this simulation nonlinear option was used for both compression and unloading condition to simulate accurate behavior of the gasket. Figure 2: Boundary condition 5. EXPERIMENTAL VALIDATION The Fuji pre-scale pre-stressing sensitive films works like litmus paper. It consists of thin polyester film that contains a layer of tiny microcapsules. The application of force upon the film causes the microcapsules to rupture, producing as instantaneous and permanent high resolution of pressure variation across the contact area. The color intensity of the image created is directly related to the amount of the pressure applied. The greater pressure shows more intense color. For experimental analysis, Fuji film was inserted between valve plate and cylinder head. This assembly was then bolted to the crank and specified bolt torque was applied. Figure5 shows the result obtained form Fuji film test. 6. RESULTS AND DISCUSSION Figure6 shows the result obtained from FEA method. The FEA results are in well agreement with the Fuji film test. The areas encircled in Figure5 and Figure6 is where the gasket pressure is low. Using the results obtained from the analysis and validation from Fuji film test, cylinder head was modified accordingly to ensure the gasket pressure is enough to withstand the differential pressure across the suction and discharge plenum. The new designed cylinder head was tested for the maximum pressure differential that can occur during operating condition. By analyzing the sealing performance, it is possible to improve the sealing joints. In future design, Fuji film test can be done only with finalized design. This will reduce the cost, development time and improve reliability of the compressor.

C071, Page 5 12000 10000 8000 Stress 6000 Series1 Compression Curve 4000 2000 Unloading Curve 0 0.000000 0.020000 0.040000 0.060000 0.080000 0.100000 0.120000 Deflection Figure 3: Stress vs. Deflection Responses for the Gasket Material Figure 4: FEA model of Cylinder Head and Gasket Figure 5: Gasket contact pressure obtained from Fuji film test. Figure 6: Gasket pressure pattern obtained from ANSYS NOMENCLATURE Y = Strain or % Compression X = Stress A, C = Scale Factors B, D = Time Constants U = Unloading Offset (U=0 for loading curve) Z = maximum stress achieved REFERENCES ANSYS 8.1, User Manual, Raub Jonathan,1999, Modeling Diesel Engine Cylinder Head Gaskets using the Gasket Material Option of the SOLID185 Element, MSC Worldwide Automotive Conference Fuji Corporations Fuji Prescale film operating instructions.