Organization and Structure of Cells



Similar documents
Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

Chapter 2: Cell Structure and Function pg

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells.

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

Cell Structure & Function!

Organelles and Their Functions

Lecture 4 Cell Membranes & Organelles

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

Cells & Cell Organelles

Review of the Cell and Its Organelles

BME Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Eukaryotes. PSI Biology Eukaryotes & Gene Expression

Cells. Structure, Function and Homeostasis

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells.

Plasma Membrane hydrophilic polar heads

Chapter 3. Cellular Structure and Function Worksheets. 39

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic

The Cell: Organelle Diagrams

Biological cell membranes

Multiple Choice Questions

Page 1. Name:

Introduction to the Cell: Plant and Animal Cells

An Overview of Cells and Cell Research

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

CELLS: PLANT CELLS 20 FEBRUARY 2013

MCAS Biology. Review Packet

1. The diagram below represents a biological process

Plant and Animal Cells

The Cell Interior and Function

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1

The Cell Teaching Notes and Answer Keys

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside

3.1 AS Unit: Cells, Exchange and Transport

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Cell Structure and Function

Eukaryotic Cell Structure: Organelles in Animal & Plant Cells Why are organelles important and how are plants and animals different?

Cell Structure and Function. Eukaryotic Cell: Neuron

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

THE HISTORY OF CELL BIOLOGY

Cell Unit Practice Test #1

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

Common Characteristics of cells

Comparing Plant And Animal Cells

The Living Cell from the Biology: The Science of Life Series. Pre-Test

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS

Cells, tissues and organs

Structure and Function of DNA

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Six major functions of membrane proteins: Transport Enzymatic activity

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

Cells are tiny building blocks that make up all living things. Cells are so small that you need a microscope to see them.

Video Links: Differences Between Plant and Animal Cells

The Molecules of Cells

pathway that involves taking in heat from the environment at each step. C.

Biology I. Chapter 7

Plant and Animal Cells

Homeostasis and Transport Module A Anchor 4

7.2 Cells: A Look Inside

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure enzymes control cell chemistry ( metabolism )

Visualizing Cell Processes

CELL ANALOGY: AIRPORT. By: Joe Behrmann and Isaac Thompson

called a cell wall. The cell wall protects against mechanical stress and keeps the cell from becoming over-filled with water.

1. When you come to a station, attempt to answer each question for that station.

Make your whiteboard come alive with science!

Do Not Write on this Quiz Paper (südamlik aitäh)

Parts of the Nerve Cell and Their Functions

Membrane Structure and Function

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

Biology Chapter 7 Practice Test

The Lipid Bilayer Is a Two-Dimensional Fluid

OBJECTIVES PROCEDURE. Lab 2- Bio 160. Name:

Translation Study Guide

Cellular Respiration: Practice Questions #1

Cell Biology Questions and Learning Objectives

RNA & Protein Synthesis

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

I. PLANT CELL, CELL WALL Bot 404--Fall 2004

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

Topic 3: Nutrition, Photosynthesis, and Respiration

Prokaryotic and Eukaryotic Cells

Prokaryotic and Eukaryotic Cells

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue

The Cell Grade Ten. Estimated Duration: Three hours

COMPARISON OF PLANT AND ANIMAL CELLS SIMILARITIES IN PLANT & ANIMAL CELLS

Cellular Structure and Function

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts.

The microscope is an important tool.

Transcription:

Organization and Structure of Cells All living things fall into one of the two categories: prokaryotes eukaryotes The distinction is based on whether or not a cell has a nucleus. Prokaryotic cells do not have nuclei, while eukaryotic cells do. Also, eukaryotic cells have organelles. pro = means prior to eu = means true karyote = means nucleus Early Evolution of Cells Contemporary evidence favors the view that all living organisms should be grouped into three lineages (or classes): Archaea Eubacteria (or just bacteria) Eucarya (or eukaryotes) Archaea and eubacteria are both prokaryotic (single cell organisms without nucleus). It is believed (estimated) that all three lineages evolved approximately 3.5 billion years ago from a common ancestral form called progenote. However, it is now accepted that eukaryotic cells are composed of various prokaryotic contributions, making the dichotomy artificial. In contrast to eukaryotes, prokaryotes lack structural diversity. What is often used to classify prokaryotes is their physiological, ecological, and morphological diversity. Archaea derived from the word ancient most recently discovered lineage similar in shape to bacteria, but genetically they are as distinct from bacteria as they are from eucarya (whole genome sequencing of the archaeon Methanococcus jannaschii showed 44% similarity to the known genes in eubacteria and 56% of genes that were new to science) based on their physiology, archaea can be classified into three subcategories: o methanogens - prokaryotes that produce methane (CH 4 ) o halophiles - prokaryotes that live at very high concentrations of salt (NaCl) o thermo(acido)(psychro)philes - prokaryotes that live at very high temperatures (>100 C) or in acidic environments or at very low temperatures ( 10 C) 1/9

Eubacteria ubiquitous single cell organisms differ from archaea in chemical content of the cell wall and cell membrane based on morphology, physiology, and ecology, some of the important representatives are o photosynthetic purple and green bacteria (blue-green algae) convert the energy of light into chemical energy, but do not produce oxygen o cyanobacteria thought to have given rise to eukaryotic chloroplasts; live in fresh water and marine habitats and are a part of a complex microbial community called plankton o spirochetes genetically are a distinct group of bacteria; some are pathogens for animals (syphilis, lyme disease, etc.) o spirilla live in fresh water and like oxygen; can be pathogenic o myxobacteria (a group of gliding bacteria) live in soil or animal dung o lithotrophs requires inorganic compounds as sources of energy (this mechanism also exists in archaea). For example, the nitrifying bacteria can convert NH 3 to NO 2, and NO 2 to NO 3 ; may play an important role in primary production of organic material in nature o pseudomonads and their relatives most commonly free-living organisms in soil and water; have flagella o enterics can ferment glucose and are present in humans; very well studied and the most important organism is E. Coli and there are many many more. Eubacteria come in various shapes: little balls medicine capsules segmented ribbons little rods Escherichia coli (abbr. E.Coli) is one of the very important model organisms and one of the best studied organisms. It is one of the main species of bacteria that live in the lower intestines of warm-blooded animals (including birds and mammals) and are necessary for the proper digestion of food. However, it may become harmful if it makes it out of the lower intestines (e.g. dysentery). Eukaryotes are single-cell or multi-cell organisms in which each cell contains a nucleus and organelles eukaryotes are subdivided into four categories o animals typically divided into vertebrates (e.g. mammals) and invertebrates (e.g. snails) o plants trees, flowers etc. o fungi sometimes in popular literature considered as plants o protists all other organisms, e.g. yeast. 2/9

Prokaryotic Cell Major elements and features of a typical prokaryotic cell: cell wall a rigid framework of polysaccharide cross-linked by short peptide chains; provides mechanical support, shape, and protection; it is a porous nonselective barrier that allows most small molecules to pass cell membrane 45:55% lipid:protein ratio; bilayer; highly selective and controls the entry of most substances into the cell; important proteins are located in the cell membrane nucleoid (DNA) repository of the cell s genetic information; contains a single tightly coiled DNA molecule ribosomes sites where proteins are synthesized; consists of a small and a large subunit; a bacterial cell has about 15,000 ribosomes; 35% of a ribosome is protein, the rest is RNA storage granules granules where polymerized metabolites are stored (e.g. sugars); when needed the polymers are liberated and degraded by energy-yielding pathways in the cell cytosol the site of intermediary metabolism (sets of chemical reactions by which cells generate energy and form precursors necessary for biosynthesis of macromolecules essential to cell growth and function 3/9

Eukaryotic Cell much larger in size (1,000 to 10,000 times larger than prokaryotic cells) much more complex metabolic processes are organized into compartments, with each compartment dedicated to a particular function (enabled by a system of membranes) possess a nucleus, the repository of cell s genetic material which is distributed among a few or many chromosomes Major elements and features of a typical animal cell: Animal Cell extracellular matrix a complex coating which is cell specific, serves in cell-cell recognitions and communication, also provides a protective layer cell (plasma) membrane roughly 50:50% lipid:protein ratio; selectively permeable membrane; contains various systems for influx of extracellular molecules (pumps, channels, transporters); important proteins are located here nucleus separated from the cytosol by a double membrane; repository of genetic information DNA complexed with the basic proteins (histones) to form chromatin fibers, the material from which the chromosomes are made nucleolus a distinct RNA-rich part of the nucleus where ribosomes are assembled mitochondria organelles surrounded by two membranes that differ significantly in their protein and lipid composition; mitochondria are power plants of eukaryotic cells where ATP is produced Golgi apparatus involved in packaging and processing of macromolecules for secretion and for delivery of other cellular compartments endoplasmic reticulum (ER) the ER is a labyrinthine organelle where both membrane proteins and lipids are synthesized; ribosomes organelle composed of RNA and ribosomal proteins; eukaryotic ribosomes are much larger than prokaryotic ribosomes; attached to ER lysosomes function in intracellular digestion of certain materials entering the cell; they also function in the controlled degradation of cellular components peroxisomes act to oxidize certain nutrients such as amino acids; in doing so they form potentially toxic hydrogen peroxide and then decompose it by means of the peroxy-cleaving enzyme (protein) cytoskeleton is composed of a network of protein filaments and it determines the shape of the cell and gives it stability; cytoskeleton also mediates internal movements that occur in the cytoplasm, such as migration of organelles and movement of chromosomes during cell division A word on ribosomes: ribosome consists of two subunits that fit together and work as one to translate the mrna into a polypeptide chain (side and front view are below) 4/9

5/9

Plant Cell Major elements and features of a typical plant cell (only what differs from the animal cell): cell wall consists of cellulose fibers embedded in a polysaccharide and protein matrix; provides protection from the osmotic and mechanical rupture; channels for fluid circulation and for the cellcell communication pass through the walls chloroplasts a unique family of organelles (the plastids) of which the chloroplast is the prominent example; significantly larger than mitochondria; they are the site of photosynthesis, the reaction by which light energy is converted to metabolically useful chemical energy in the form of ATP mitochondria a major source of energy in the dark vacuole a very large vesicle enclosed by a single membrane; vacuoles grow; they function in transport and storage of nutrients; by accumulating water, the vacuole allows the plant cell to grow dramatically with no increase in cytoplasmic volume 6/9

The Central Dogma of Molecular Biology DNA contains the complete genetic information that defines the structure and function of an organism. Proteins are formed using the genetic code of the DNA. Three different processes are responsible for the inheritance of genetic information and for its conversion from one form to another: 1. Replication: a double stranded nucleic acid is duplicated to give identical copies. This process perpetuates the genetic information. 2. Transcription: a DNA segment that constitutes a gene is read and transcribed into a single stranded sequence of RNA. The RNA moves from the nucleus into the cytoplasm. 3. Translation: the RNA sequence is translated into a sequence of amino acids as the protein is formed. During translation, the ribosome reads three bases (a codon) at a time from the RNA and translates them into one amino acid. In eukaryotic cells, the second step (transcription) is necessary because the genetic material in the nucleus is physically separated from the site of protein synthesis in the cytoplasm in the cell. Therefore, it is not possible to translate DNA directly into protein, but an intermediary must be made to carry the information from one compartment to another. 7/9

Viruses supramolecular complexes of nucleic acid (DNA or RNA) encapsulated in a protein coat viruses act as parasites of cells the protein coat (capsid) serves to protect the nucleic acid in some instances, it is also surrounded by a membrane viruses for all types of cells are known different viruses infect animal and plant cells viruses infecting bacteria are called bacteriophages ( bacteria eaters ) often times, viruses cause the lysis (destruction) of cells in some cases the viral genetic elements may integrate into the host chromosome and become quiescent some viruses are implicated in transforming cells into a cancerous state, that is, in converting their hosts to an unregulated state of cell division and proliferation because all viruses are heavily dependent on their host for the production of viral progeny, viruses must have arisen after cells were established in the course of evolution (presumably, the first viruses were fragments of nucleic acid that developed the ability to replicate independently of the chromosome and then acquired the necessary genes enabling protection, autonomy, and transfer between cells. 8/9

-------- Sources: Biochemistry by Reginald H. Garrett and Charles M. Grisham Molecular Biology for Computer scientists by Lawrence Hunter Internet 9/9