Principl of Enhanced Heat Transfer



Similar documents
International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

HEAT TRANSFER ENHANCEMENT IN FIN AND TUBE HEAT EXCHANGER - A REVIEW

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS

INTRODUCTION TO. Chapter 15

LESSON 1. HEAT EXCHANGERS

Free Convection Film Flows and Heat Transfer

Correlations for Convective Heat Transfer

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts

Heat Pipe Selection Revision 12/04/2001

Advanced Heat Exchangers for Enhanced Air- Side Performance: A Design and Manufacturing Perspective

5.2. Vaporizers - Types and Usage

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli , Tamil Nadu, India

ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS

FEDSM Flow Boiling Heat Transfer Enhancement in Subcooled and Saturated Refrigerants in Minichannel Heat Sinks

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.6, pp ,

Natural Convection. Buoyancy force

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger

Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations

Review of Heat Transfer Parameters of Serrated Plate Fin Heat Exchanger for Different Materials

Fundamentals of Fluid Mechanics

2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT

16. Heat Pipes in Electronics Cooling (2)

Experimental Investigation on Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Pipe using internal threads of varying depth

CCI HEAT PIPE DESIGN GUIDE

EFFECT OF USE OF SWIRL FLOW DEVICES TO IMPROVE HEAT TRANSFER RATE IN HEAT EXCHANGERS

Heat Transport Study of the Laminar Heat Pipe Heat Exchanger

PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING

Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Corrugated Tubular Heat Exchangers

Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements

Iterative calculation of the heat transfer coefficient

Fired Heater Design and Simulation

Fundamentals of THERMAL-FLUID SCIENCES

HEAT TRANSFER IM LECTURE HOURS PER WEEK THERMODYNAMICS - IM _1

Examples for Heat Exchanger Design

Vehicle-Bridge Interaction Dynamics

How To Understand Evaporator

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

TARIFF CODE and updates standard

جامعة البلقاء التطبيقية

CASL-U

Vapor Chambers. Figure 1: Example of vapor chamber. Benefits of Using Vapor Chambers

Basic Equations, Boundary Conditions and Dimensionless Parameters

COIL INPUT SCREENS. ITEM NUMBER: Always use a 1 through? In this field you might also use a dash and place quantity of coils here.

CFD ANALYSES OF FLUID FLOW AND HEAT TRANSFER IN PATTERNED ROLL-BONDED ALUMINIUM PLATE RADIATORS

Welcome to the World of Aavid Heat Pipes

Heat and Mass Correlations

Theoretical and Numerical Analysis of Heat Transfer in Pipeline System

CFD Simulation of Subcooled Flow Boiling using OpenFOAM

Il Peso del Thermal Management nei LED

Dependency of heat transfer rate on the Brinkman number in microchannels

Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

Everline Module Application Note: Round LED Module Thermal Management

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS

Wood Fired Hot Tub Heat Exchanger Andrew Wallace With guidance from Woodie Flowers June 29, 2002

Lesson 23 Condensers & Evaporators. Version 1 ME, IIT Kharagpur 1

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter

Accurate Air Flow Measurement in Electronics Cooling

The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger

Comparison of fin-and-tube interlaced and face split evaporators with flow maldistribution

UGVCL/SP/591/11KV HT AB CABLE

Effect of design parameters on temperature rise of windings of dry type electrical transformer

Design,Development and Comparison of Double Pipe Heat Exchanger with Conventional and Annular Baffles

Aspen Exchanger Design & Rating Family

Design of heat exchangers

MECHANICAL ENGINEERING DEPARTMENT

Distinguished Professor George Washington University. Graw Hill

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Experiment 3 Pipe Friction

CFD Analysis Of Multi-Phase Flow And Its Measurements

Understanding Plastics Engineering Calculations

Abstract. Key words: Intl. Journal of Microcircuits and Electronic Packaging

Qualification of Thermal hydraulic codes within NURESIM D. Bestion (CEA, France)

FLUID FLOW Introduction General Description

Heat Transfer and Energy

GREEN NANOTECHNOLOGY. Geoffrey. Energy in the Built Environment. Solutions for Sustainability and. B. Smith Claes G. Granqvist.

International Journals

Heat transfer in Flow Through Conduits

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.

Glass Fibers Reinforced Composits (GFRP) for TUNNELLING

Abaqus/CFD Sample Problems. Abaqus 6.10

Design and Pressure Loss Reduction in the Hydrogen Flow Heat Exchanger with Tube Bundles

Thermoelectric Generator (TEG) for Heavy Diesel Trucks John C. Bass, Aleksandr S. Kushch, Norbert B. Elsner Hi-Z Technology, Inc.

Transcription:

Principl of Enhanced Heat Transfer SECOND EDITION Ralph L Webb Nae-Hyun Kim Taylor & Francis Taylor & Francis Group Boca Raton London New York Singapore

TABLE OF CONTENTS PREFACE xxi CHAPTER 1: INTRODUCTION TO ENHANCED HEAT TRANSFER 1 1.1 INTRODUCTION 1 1.2 THE ENHANCEMENT TECHNIQUES 3 1.2.1 Passive Techniques 3 1.2.2 Active Techniques 7 1.2.3 Technique vs. Mode 10 1.3 PUBLISHED LITERATURE 11 1.3.1 General Remarks 11 1.3.2 U.S. Patent Literature 13 1.3.3 Manufacturer's Information 18 1.4 BENEFITS OF ENHANCEMENT 19 1.5 COMMERCIAL APPLICATIONS OF ENHANCED SURFACES 21 1.5.1 Heat (and Mass) Exchanger Types of Interest 21 1.5.2 Illustrations of Enhanced Tubular Surfaces 21 1.5.3 Enhanced Fin Geometries for Gases 23 1.5.4 Plate-Type Heat Exchangers 24 1.5.5 Cooling Tower Packings 25 1.5.6 Distillation and Column Packings 26 1.5.7 Factors Affecting Commercial Development 26 1.6 DEFINITION OF HEAT TRANSFER AREA 28 1.7 POTENTIAL FOR ENHANCEMENT 29 1.7.1 PEC Example 1.1 29

vi I Table of Contents 1.7.2 PEC Example 1.2 30 NOMENCLATURE 30 REFERENCES, 31 CHAPTER 2: HEAT TRANSFER FUNDAMENTALS 33 2.1 INTRODUCTION 33 2.2 HEAT EXCHANGER DESIGN THEORY 34 2.2.1 Thermal Analysis 35 2.2.2 Heat Exchanger Design Methods 37 2.2.3 Comparison of LMTD and NTU Design Methods 39 2.3 FIN EFFICIENCY 40 2.4 HEAT TRANSFER COEFFICIENTS AND FRICTION FACTORS 41 2.4.1 Laminar Flow over Flat Plate 42 2.4.2 Laminar Flow in Ducts 42 2.4.3 Turbulent Flow in Ducts 42 2.4.4 Tube Banks (Single-Phase Flow) 44 2.4.5 Film Condensation 44 2.4.6 Nucleate Boiling 45 2.5 CORRECTION FOR VARIATION OF FLUID PROPERTIES 46 2.5.1 Effect of Changing Fluid Temperature 46 2.5.2 Effect Local Property Variation 46 2.6 REYNOLDS ANALOGY 49 2.7 FOULING OF HEAT TRANSFER SURFACES 51 2.8 CONCLUSIONS 52 NOMENCLATURE 52 REFERENCES 54 CHAPTER 3: PERFORMANCE EVALUATION CRITERIA FOR SINGLE-PHASE FLOW 55 3.1 PERFORMANCE EVALUATION CRITERIA (PEC) 55 3.2 PEC FOR HEAT EXCHANGERS 56 3.3 PEC FOR SINGLE-PHASE FLOW 57 3.3.1 Objective Function and Constraints 57 3.3.2 Algebraic Formulation of the PEC 58 3.3.3 Simple Surface Performance Comparison 59 3.3.4 Constant Flow Rate 60 3.3.5 Fixed Flow Area 60

Table of Contents I vii 3.4 THERMAL RESISTANCE ON BOTH SIDES 61 3.5 RELATIONS FOR St AND/ 63 3.6 HEAT EXCHANGER EFFECTIVENESS 63 3.7 EFFECT OF REDUCED EXCHANGER FLOW RATE 64 3.8 FLOW NORMAL TO FINNED TUBE BANKS 65 3.9 VARIANTS OF THE PEC 66 3.10 COMMENTS ON OTHER PERFORMANCE INDICATORS 67 3.10.1 Shah 67 3.10.2 Soland and Colleagues 69 3.11 EXERGY-BASED PEC ANALYSIS 69 3.12 CONCLUSIONS 72 NOMENCLATURE 72 REFERENCES 74 CHAPTER 4: PERFORMANCE EVALUATION CRITERIA FOR TWO-PHASE HEAT EXCHANGERS 75 4.1 INTRODUCTION 75 4.2 OPERATING CHARACTERISTICS OF TWO-PHASE HEAT EXCHANGERS 75 4.3 ENHANCEMENT IN TWO-PHASE HEAT EXCHANGE SYSTEMS 77 4.3.1 Work-Consuming Systems 78 4.3.2 Work-Producing Systems 79 4.3.3 Heat-Actuated Systems 80 4.4 PEC FOR TWO-PHASE HEAT EXCHANGE SYSTEMS 81 4.5 PEC CALCULATION METHOD 81 4.5.1 PEC Example 4.1 82 4.5.2 PEC Example 4.2 84 4.6 CONCLUSIONS 85 NOMENCLATURE 86 REFERENCES 87 CHAPTER 5: PLATE-AND-FIN EXTENDED SURFACES 89 5.1 INTRODUCTION 89

viii I Table of Contents 5.2 OFFSET-STRIP FIN 91 5.2.1 Enhancement Principle 91 5.2.2 PEC Example 5.1 94 5.2.3 Analytically Based Models fory and/vs. Re 95 5.2.4 Transition from Laminar to Turbulent Region 96 5.2.5 Correlations forj and/vs. Re 97 5.2.6 Use of OSF with Liquids 99 5.2.7 Effect,of Percent Fin Offset 99 5.2.8 Effect of Burred Edges 100 5.3 LOUVER FIN 100 5.3.1 Heat Transfer and Friction Correlations 101 5.3.2 Flow Structure in the Louver Fin Array 103 5.3.3 Analytical Model for Heat Transfer and Friction 108 5.3.4 PEC Example 5.2 109 5.4 CONVEX LOUVER FIN 110 5.5 WAVY FIN 115 5.6 THREE-DIMENSIONAL CORRUGATED FINS 116 5.7 PERFORATED FIN 118 5.8 PIN FINS AND WIRE MESH 119 5.9 VORTEX GENERATORS 122 5.9.1 Types of Vortex Generators 122 5.9.2 Vortex Generators on a Plate-Fin Surface 124 5.10 METAL FOAM FIN 126 5.11 PLAIN FIN 129 5.11.1 PEC Example 5.3 130 5.12 ENTRANCE LENGTH EFFECTS 130 5.13 PACKINGS FOR GAS-GAS REGENERATORS 132 5.14 NUMERICAL SIMULATION 133 5.14.1 Offset-Strip Fins 133 5.14.2 Louver Fins 134 5.14.3 Wavy Channels 135 5.14.4 Chevron Plates 136 5.14.5 Summary 136 5.15 CONCLUSIONS 137 NOMENCLATURE 137 REFERENCES 139

Table of Contents I ix CHAPTER 6: EXTERNALLY FINNED TUBES 145 6.1 INTRODUCTION 145 6.2 THE GEOMETRIC PARAMETERS AND THE REYNOLDS NUMBER 148 6.2.1 Dimensionless Variables 148 6.2.2 Definition of Reynolds Number 149 6.2.3 Definition of the Friction Factor 150 6.2.4 Sources of Data 150 6.3 PLAIN PLATE-FINS ON ROUND TUBES 150 6.3.1 Effect of Fin Spacing 151 6.3.2 Correlations for Staggered Tube Geometries 153 6.3.3 Correlations for Inline Tube Geometries 156 6.4 PLAIN INDIVIDUALLY FINNED TUBES 156 6.4.1 Circular Fins with Staggered Tubes 156 6.4.2 Low Integral-Fin Tubes 158 6.5 ENHANCED PLATE FIN GEOMETRIES WITH ROUND TUBES 158 6.5.1 Wavy Fin 158 6.5.2 Offset Strip Fins 161 6.5.3 Convex Louver Fins 162 6.5.4 LouveredFin 163 6.5.5 Perforated Fins 165 6.5.6 Mesh Fins 166 6.5.7 Vortex Generators 167 6.6 ENHANCED CIRCULAR FIN GEOMETRIES 171 6.6.1 Illustrations of Enhanced Fin Geometries 171 6.6.2 Spine or Segmented Fins 172 6.6.3 Wire Loop Fins 174 6.7 OVAL AND FLAT TUBE GEOMETRIES 175 6.7.1 Oval vs. Circular Individually Finned Tubes 175 6.7.2 Flat Extruded Aluminum Tubes with Internal Membranes 177 6.7.3 Plate-and-Fin Automotive Radiators 178 6.7.4 Vortex Generators on Flat or Oval Fin-Tube Geometry 179 6.8 ROW EFFECTS STAGGERED AND INLINE LAYOUTS 180 6.9 HEAT TRANSFER COEFFICIENT DISTRIBUTION (PLAIN FINS) 184 6.9.1 Experimental Methods 184 6.9.2 Plate Fin-and-Tube Measurements 184 6.9.3 Circular Fin-and-Tube Measurements 186

x I Table of Contents 6.10 PERFORMANCE COMPARISON OF DIFFERENT GEOMETRIES 188 6.10.1 Geometries Compared 188 6.10.2 Analysis Method 189 6.10.3 Calculated Results 191 6.11 PROGRESS ON NUMERICAL SIMULATION 192 6.12 RECENT PATENTS ON ADVANCED FIN GEOMETRIES 193 6.13 HYDROPHII^C COATINGS 194 6.14 CONCLUSIONS 197 NOMENCLATURE 198 REFERENCES 201 CHAPTER 7: INSERT DEVICES FOR SINGLE-PHASE FLOW 207 7.1 INTRODUCTION 207 7.2 TWISTED TAPE INSERT 211 7.2.1 Laminar Flow Data 213 7.2.2 Predictive Methods for Laminar Flow 216 7.2.3 Turbulent Flow 220 7.2.4 PEC Example 7.1 224 7.2.5 Twisted Tapes in Annuli 225 7.2.6 Twisted Tapes in Rough Tubes 225 7.3 SEGMENTED TWISTED TAPE INSERT 226 7.4 DISPLACED ENHANCEMENT DEVICES 228 7.4.1 Turbulent Flow 228 7.4.2 Laminar Flow 230 7.4.3 PEC Example 7.2 231 7.5 WIRE COIL INSERTS 232 7.5.1 Laminar Flow 234 7.5.2 Turbulent Flow 235 7.6 EXTENDED SURFACE INSERT 235 7.7 TANGENTIAL INJECTION DEVICES 236 7.8 CONCLUSIONS 238 NOMENCLATURE 239 REFERENCES 241 CHAPTER 8: INTERNALLY FINNED TUBES AND ANNULI 245 8.1 INTRODUCTION 245

Table of Contents I xi 8.2 INTERNALLY FINNED TUBES 246 8.2.1 Laminar Flow 247 8.2.2 Turbulent Flow 257 8.2.3 PEC Example 8.1 265 8.3 SPIRALLY FLUTED TUBES 266 8.3.1 Spirally Fluted Tube 268 8.3.2 Spirally Indented Tube 269 8.4 ADVANCED INTERNAL FIN GEOMETRIES 272 8.5 FINNED ANNULI 275 8.6 CONCLUSIONS 277 NOMENCLATURE 278 REFERENCES 280 CHAPTER 9: INTEGRAL ROUGHNESS 285 9.1 INTRODUCTION 285 9.2 ROUGHNESS WITH LAMINAR FLOW 287 9.2.1 Laminar Flow in Roughened Circular Tubes 287 9.2.2 Laminar Flow in Roughened Flat Tubes 290 9.3 HEAT-MOMENTUM TRANSFER ANALOGY CORRELATION 295 9.3.1 Friction Similarity Law 295 9.3.2 PEC Example 9.1 296 9.3.3 Heat Transfer Similarity Law 297 9.4 TWO-DIMENSIONAL ROUGHNESS 300 9.4.1 Transverse Rib Roughness 301 9.4.2 Integral Helical-Rib Roughness 305 9.4.3 Wire Coil Inserts 306 9.4.4 Corrugated Tube Roughness 310 9.4.5 PEC Example 9.2 313 9.5 THREE-DIMENSIONAL ROUGHNESS 314 9.6 PRACTICAL ROUGHNESS APPLICATIONS 315 9.6.1 Tubes with Inside Roughness 315 9.6.2 Rod Bundles and Annuli 319 9.6.3 Rectangular Channels 319 9.6.4 Outside Roughness for Cross Flow 325 9.7 GENERAL PERFORMANCE CHARACTERISTICS 326 9.7.1 St and/vs. Reynolds Number 326

xii I Table of Contents 9.7.2 Other Correlating Methods 328 9.7.3 Prandtl Number Dependence 330 9.8 HEAT TRANSFER DESIGN METHODS 333 9.8.1 Design Method 1 333 9.8.2 Design Method 2 334 9.9 PREFERRED ROUGHNESS TYPE AND SIZE 334 9.9.1 Roughness Type 334 9.9.2 PEC Example 9.3 335 9.10 NUMERICAL SIMULATION 336 9.10.1 Predictions for Transverse-Rib Roughness 337 9.10.2 Effect of Rib Shape 339 9.10.3 The Discrete-Element Predictive Model 340 9.11 CONCLUSIONS 346 NOMENCLATURE 347 REFERENCES 350 CHAPTER 10: FOULING ON ENHANCED SURFACES 357 10.1 INTRODUCTION 357 10.2 FOULING FUNDAMENTALS 359 10.2.1 Paniculate Fouling 360 10.3 FOULING OF GASES ON FINNED SURFACES 362 10.4 SHELL-SIDE FOULING OF LIQUIDS 366 10.4.1 Low Radial Fins 366 10.4.2 Axial Fins and Ribs in Annulus 366 10.4.3 Ribs in Rod Bundle 367 10.5 FOULING OF LIQUIDS IN INTERNALLY FINNED TUBES 368 10.6 LIQUID FOULING IN ROUGH TUBES 370 10.6.1 Accelerated Paniculate Fouling 370 10.6.2 Long-Term Fouling 372 10.7 LIQUID FOULING IN PLATE-FIN GEOMETRY 375 10.8 CORRELATIONS FOR FOULING IN ROUGH TUBES 376 10.9 MODELING OF FOULING IN ENHANCED TUBES 378 10.9.1 Example Problem 10.1 382 10.10 FOULING IN PLATE HEAT EXCHANGERS 382 10.11 CONCLUSIONS 384

Table of Contents I xiii NOMENCLATURE 384 REFERENCES 386 CHAPTER 11: POOL BOILING AND THIN FILM EVAPORATION 389 11.1 INTRODUCTION 389 11.2 EARLY WORK ON ENHANCEMENT (1931-1962) 390 11.3 SUPPORTING FUNDAMENTAL STUDIES 390 11.4 TECHNIQUES EMPLOYED FOR ENHANCEMENT 393 11.4.1 Abrasive Treatment 393 11.4.2 Open Grooves 394 11.4.3 Three-Dimensional Cavities 394 11.4.4 Etched Surfaces 396 11.4.5 Electroplating 396 11.4.6 Pierced Three-Dimensional Cover Sheets 396 11.4.7 Attached Wire and Screen Promoters 397 11.4.8 Nonwetting Coatings 399 11.4.9 Oxide and Ceramic Coatings 402 11.4.10 Porous Surfaces 402 11.4.11 Structured Surfaces (Integral Roughness) 409 11.4.12 Combination of Structured and Porous Surfaces 413 11.4.13 Composite Surfaces 413 11.5 SINGLE-TUBE POOL BOILING TESTS OF ENHANCED SXURFACES 414 11.6 THEORETICAL FUNDAMENTALS 419 11.6.1 Liquid Superheat 419 11.6.2 Effect of Cavity Shape and Contact Angle on Superheat 420 11.6.3 Entrapment of Vapor in Cavities 422 11.6.4 Effect of Dissolved Gases 425 11.6.5 Nucleation at a Surface Cavity 426 11.6.6 Bubble Departure Diameter 427 11.6.7 Bubble Dynamics 428 11.7 BOILING HYSTERESIS AND ORIENTATION EFFECTS 428 11.7.1 Hysteresis Effects 428 11.7.2 Size and Orientation Effects 430 11.8 BOILING MECHANISM ON ENHANCED SURFACES 431 11.8.1 Basic Principles Employed 431 11.8.2 Visualization of Boiling in Subsurface Tunnels 432 11.8.3 Boiling Mechanism in Subsurface Tunnels 436 11.8.4 Chien and Webb Parametric Boiling Studies 438

xiv I Table of Contents 11.9 PREDICTIVE METHODS FOR STRUCTURED SURFACES 442 11.9.1 Empirical Correlations 442 11.9.2 Nakayama et al. [1980b] Model 442 11.9.3 Chien and Webb Model 444 11.9.4 Ramaswamy et al. Model 448 11.9.5 Jiang et al. Model 448 11.9.6 Other Models 450 11.9.7 Evaluation of Models 450 11.10 BOILING MECHANISM ON POROUS SURFACES 451 11.10.1 O'Neill et al. Thin Film Concept 451 11.10.2 Kovalev et al. Concept 451 11.11 PREDICTIVE METHODS FOR POROUS SURFACES 453 11.11.1 O'Neill et al. Model 453 11.11.2 Kovalov et al. Model 455 11.11.3 Nishikawa et al. Correlation 457 11.11.4 Zhang and Zhang Correlation 45 8 11.12 CRITICAL HEAT FLUX 459 11.13 ENHANCEMENT OF THIN FILM EVAPORATION 460 11.14 CONCLUSIONS 463 NOMENCLATURE 464 REFERENCES 466 CHAPTER 12: VAPOR SPACE CONDENSATION 473 12.1 INTRODUCTION 473 12.1.1 Condensation Fundamentals 474 12.1.2 Basic Approaches to Enhanced Film Condensation 477 12.2 DROPWISE CONDENSATION 477 12.3 SURVEY OF ENHANCEMENT METHODS 479 12.3.1 Coated Surfaces 480 12.3.2 Roughness 482 12.3.3 Horizontal Integral-Fin Tubes 482 12.3.4 Corrugated Tubes 493 12.3.5 Surface Tension Drainage 494 12.3.6 Electric Fields 501 12.4 SURFACE TENSION DRAINED CONDENSATION 501 12.4.1 Fundamentals 501 12.4.2 Adamek [1981] Generalized Analysis 506

Table of Contents I xv 12.4.3 "Practical" Fin Profiles 509 12.4.4 Prediction for Trapezoidal Fin Shapes 511 12.5 HORIZONTAL INTEGRAL-FIN TUBE 517 12.5.1 The Beatty and Katz [1948] Model 517 12.5.2 Precise Surface Tension-Drained Models 518 12.5.3 Approximate Surface Tension-Drained Models 521 12.5.4 Comparison of Theory and Experiment 523 12.6 HORIZONTAL TUBE BANKS 523 12.6.1 Condensation with Vapor Shear 523 12.6.2 Condensate Inundation without Vapor Shear 525 12.6.3 Condensate Drainage Pattern 528 12.6.4 Prediction of the Condensation Coefficient 532 12.7 CONCLUSIONS 533 APPENDIX 12.A: THE KEDZIERSKI AND WEBB FIN PROFILE SHAPES 534 APPENDIX 12.B: FIN EFFICIENCY IN THE FLOODED REGION 535 NOMENCLATURE 535 REFERENCES 538 CHAPTER 13: CONVECTIVE VAPORIZATION 545 13.1 INTRODUCTION 545 13.2 FUNDAMENTALS 546 13.2.1 Flow Patterns 546 13.2.2 Convective Vaporization in Tubes 547 13.2.3 Two-Phase Pressure Drop 552 13.2.4 Effect of Flow Orientation on Flow Pattern 553 13.2.5 Convective Vaporization in Tube Bundles 554 13.2.6 Critical Heat Flux 554 13.3 ENHANCEMENT TECHNIQUES IN TUBES 555 13.3.1 Internal Fins 555 13.3.2 Swirl Flow Devices 559 13.3.3 Roughness 562 13.3.4 Coated Surfaces 566 13.3.5 Perforated Foil Inserts 568 13.3.6 Porous Media 568 13.3.7 Coiled Tubes and Return Bends 569 13.4 THE MICROFIN TUBE 569 13.4.1 Early Work on the Microfin Tube 572

xvi I Table of Contents 13.4.2 Recent Work on the Microfin Tube 576 13.4.3 Special Microfin Geometries 578 13.4.4 Microfin Vaporization Data 580 13.5 MINICHANNELS 582 13.6 CRITICAL HEAT FLUX (CHF) 586 13.6.1 Twisted Tape 587 13.6.2 Grooved Tubes 588 13.6.3 Corrugated Tubes 588 13.6.4 Mesh Inserts 588 13.7 PREDICTIVE METHODS FOR IN-TUBE FLOW 589 13.7.1 High Internal Fins 589 13.7.2 Microfins 590 13.7.3 Twisted Tape Inserts 592 13.7.4 Corrugated Tubes 592 13.7.5 Porous Coatings 592 13.8 TUBE BUNDLES 592 13.8.1 Convective Effects in Tube Bundles 593 13.8.2 Tube Bundle Convective Vaporization Data 596 13.8.3 Effect of Spacing between Tubes 599 13.8.4 Convective Vaporization Models 600 13.8.5 Starting Hysteresis in Tube Bundles 601 13.9 PLATE-FIN HEAT EXCHANGERS 602 13.10 THIN FILM EVAPORATION 604 13.10.1 Horizontal Tubes 604 13.10.2 Vertical Tubes 608 13.11 CONCLUSIONS 609 NOMENCLATURE 610 REFERENCES 612 CHAPTER 14: CONVECTIVE CONDENSATION 621 14.1 INTRODUCTION 621 14.2 FORCED CONDENSATION INSIDE TUBES 622 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.3 MICROFIN TUBE Internally Finned Geometry Twisted-Tape Inserts Roughness Wire Coil Inserts Coiled Tubes and Return Bends 622 626 627 629 629 630

Table of Contents I xvii 14.3.1 Microfin Geometry Details 632 14.3.2 Optimization of Internal Geometry 633 14.3.3 Condensation Mechanism in Microfin Tubes 636 14.3.4 Convective Condensation in Special Microfin Geometries 640 14.4 FLAT TUBE AUTOMOTIVE CONDENSERS 641 14.4.1 Condensation Data for Flat, Extruded Tubes 643 14.4.2 Other Predictive Methods of Condensation in Flat Tubes 646 14.5 PLATE-TYPE HEAT EXCHANGERS 649 14.6 NONCONDENSIBLE GASES 649 14.7 PREDICTIVE METHODS FOR CIRCULAR TUBES 651 14.7.1 High Internal Fins 651 14.7.2 Wire Loop Internal Fins 652 14.7.3 Twisted Tapes 653 14.7.4 Roughness 654 14.7.5 Microfins 654 14.8 CONCLUSIONS 657 NOMENCLATURE 658 REFERENCES 659 CHAPTER 15: ENHANCEMENT USING ELECTRIC FIELDS 665 * 15.1 INTRODUCTION 665 15.2 ELECTRODE DESIGN AND PLACEMENT 667 15.3 SINGLE-PHASE FLUIDS 669 15.3.1 Enhancement on Gas Flow 670 15.3.2 Enhancement on Liquid Flow 671 15.3.3 Numerical Studies 672 15.4 CONDENSATION 672 15.4.1 Fundamental Understanding 672 15.4.2 Vapor Space Condensation 675 15.4.3 In-Tube Condensation 677 15.4.4 Falling Film Evaporation 677 15.4.5 Correlations 679 15.5 BOILING 680 15.5.1 Fundamental Understanding 680 15.5.2 Pool Boiling 682 15.5.3 Convective Vaporization 682 15.5.4 Critical Heat Flux 683 15.5.5 Correlations 683

xviii I Table of Contents 15.6 CONCLUSIONS 684 NOMENCLATURE 684 REFERENCES 685 CHAPTER 16: SIMULTANEOUS HEAT AND MASS TRANSFER 689 16.1 INTRODUCTION 689 16.2 MASS TRANIJFER RESISTANCE IN THE GAS PHASE 690 16.2.1 Condensation with Noncondensible Gases 690 16.2.2 Evaporation into Air 692 16.2.3 Dehumidifying Finned-Tube Heat Exchangers 694 16.2.4 Water Film Enhancement of Finned-Tube Exchanger 695 16.3 CONTROLLING RESISTANCE IN LIQUID PHASE 699 16.4 SIGNIFICANT RESISTANCE IN BOTH PHASES 702 16.5 CONCLUSIONS 702 NOMENCLATURE 703 REFERENCES 704 CHAPTER 17: ADDITIVES FOR GASES AND LIQUIDS 707 17.1 INTRODUCTION 707 17.2 ADDITIVES FOR SINGLE-PHASE LIQUIDS 707 17.2.1 Solid Particles 707 17.2.2 PEC Example 17.1 710 17.2.3 Gas Bubbles 710 17.2.4 Suspensions in Dilute Polymer and Surfactant Solutions 710 17.3 ADDITIVES FOR SINGLE-PHASE GASES 712 17.3.1 Solid Additives 712 17.3.2 Liquid Additives 715 17.4 ADDITIVES FOR BOILING 715 17.5 ADDITIVES FOR CONDENSATION AND ABSORPTION 718 17.6 CONCLUSIONS 719 NOMENCLATURE 719 REFERENCES 720 CHAPTER 18: MICROCHANNELS 723 18.1 INTRODUCTION 723 18.2 FRICTION IN SINGLE MICROCHANNELS 725

Table of Contents I xix 18.3 FRICTION IN A SINGLE CHANNEL VS. MULTICHANNELS 727 18.4 SINGLE-PHASE HEAT TRANSFER IN MICROCHANNELS 731 18.4.1 Single Channel Flow 731 18.4.2 Heat Transfer in Multiple Microchannels 733 18.5 MANIFOLD SELECTION AND DESIGN 733 18.5.1 Single-Phase Flow 734 18.5.2 Two-Phase Flow 736 18.6 NUMERICAL SIMULATION OF FLOW IN MANIFOLDS 737 18.7 TWO-PHASE HEAT TRANSFER IN MICROCHANNELS 738 18.8 CONCLUSIONS 741 NOMENCLATURE 742 REFERENCES 743 CHAPTER 19: ELECTRONIC COOLING HEAT TRANSFER 747 19.1 INTRODUCTION 747 19.2 COMPONENT THERMAL RESISTANCES 748 19.3 LIMITS ON DIRECT HEAT REMOVAL WITH AIR-COOLING 750 19.3.1 PEC Example 19.1, Enhanced Fin Geometry Heat Sink 753 19.4 SECOND GENERATION IndHR DEVICES FOR HEAT REMOVAL AT HOT SOURCE 754 19.4.1 Single-Phase Fluids 754 19.4.2 Two-Phase Fluids 755 19.4.3 Heat Pipe 756 19.4.4 Nucleate Boiling 756 19.4.5 Forced Convection Vaporization 760 19.4.6 Spray Cooling 761 19.5 DISCUSSION OF ADVANCED HEAT REMOVAL CONCEPTS 761 19.5.1 Jet Impingement/Spray Cooling Devices 761 19.5.2 Single-Phase MicroChannel Cooling 765 19.5.3 Two-Phase MicroChannel Cooling 765 19.5.4 Enhanced Two-Phase Forced Convection Cooling 767 19.6 REMOTE HEAT-EXCHANGERS FOR IndHR 767 19.6.1 Air-Cooled Ambient Heat Exchangers 767 19.6.2 Condensing Surfaces 770 19.6.3 Design for Multiple Heat Sources 771 19.7 SYSTEM PERFORMANCE FOR THE IndHR SYSTEM 771

xx I Table of Contents 19.8 CONCLUSIONS 772 NOMENCLATURE 772 REFERENCES 773 PROBLEM SUPPLEMENT 775 INDEX 789