Photosynthesis. Chloroplasts. Light Reactions (photons NADPH + ATP) Dark Reactions (CO 2 + H 2 O carbohydrate) light



Similar documents
Like The Guy From Krypton Photosynthesis: Energy from Sunlight What Is Photosynthesis?

AP Bio Photosynthesis & Respiration

> C 6 H 12 O 6 + 6O 2

Lecture 7 Outline (Ch. 10)

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O O 2

Photosynthesis. Photosynthesis: Converting light energy into chemical energy. Photoautotrophs capture sunlight and convert it to chemical energy

Photosynthesis (Life from Light)

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. An anabolic, endergonic, carbon dioxide (CO 2

Photosystems I and II

Photosynthesis and Cellular Respiration. Stored Energy

Electron Transport Generates a Proton Gradient Across the Membrane

Photosynthesis. Name. Light reactions Calvin cycle Oxidation Reduction Electronegativity Photosystem Electron carrier NADP+ Concentration gradient

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

Chapter 10: Photosynthesis

BCOR 011 Exam 2, 2004

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips

Metabolism Poster Questions

Chapter 10. Photosynthesis

Photosynthesis and (Aerobic) Respiration. Photosynthesis

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

b. What is/are the overall function(s) of photosystem II?

Photosynthesis Part I: Overview & The Light-Dependent Reactions

2. 1. What are the three parts of an ATP molecule? (100 points)

Chapter 10. Photosynthesis. Concept 10.1 Photosynthesis converts light energy to the chemical energy of food

(e) i. 22. (a) ii (b) iv (c) v (d) iii

8-3 The Reactions of Photosynthesis Slide 1 of 51

CHAPTER 6: PHOTOSYNTHESIS CAPTURING & CONVERTING ENERGY

A. Incorrect! No, while this statement is correct, it is not the best answer to the question.

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

Photosynthesis: Harvesting Light Energy

Jan Baptisa van Helmont (1648)

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall

Photosynthesis and Sucrose Production

Summary of Metabolism. Mechanism of Enzyme Action

Photosynthesis Reactions. Photosynthesis Reactions

Equation for Photosynthesis

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Review Questions Photosynthesis

10 Cellular Energetics: photosynthesis

Biology Slide 1 of 51

Green pigment that absorbs solar energy and is important in photosynthesis

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63

Photosynthesis-Review. Pigments. Chloroplasts. Chloroplasts 5. Pigments are located in the thylakoid membranes. An Overview of Photosynthesis

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Biological energy cycle BIOMASS

Photosynthesis Practice. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best.

Chapter 9 Mitochondrial Structure and Function

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D?

Photosynthesis takes place in three stages:

MAIN SOURCE OF ENERGY FOR LIFE ON EARTH? THE SUN!!

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

Electron Transport and Oxidative Phosphorylation. The Mitochondrion. Electron Transport. Oxidative Phosphorylation. Control of ATP Production

Cellular Respiration and Fermentation

Multiple Choice Identify the choice that best completes the statement or answers the question.

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Visualizing Cell Processes

Chloroplasts and Mitochondria

ATP & Photosynthesis Honors Biology

ecture 16 Oct 7, 2005

REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS

Biology I. Chapter 8/9

VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

Overview of the Calvin cycle The Calvin cycle begins with the five-carbon carbohydrate ribulose-1,5- bisphosphate. 1,5-Bisphosphate CO 2 ADP

8.3 The Process of Photosynthesis

4.2 Overview of Photosynthesis

Unit 5 Photosynthesis and Cellular Respiration

Chapter 2: Cell Structure and Function pg

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

Organelles and Their Functions

3. In what part of the chloroplast do the light-dependent reactions of photosynthesis take place? Chloroplast. Name Class Date

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages ) Chapter 8. Name Class Date

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

A level workbook. A2 level student guide. Brian Banks

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Carbon Hydrogen Oxygen Nitrogen

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions

Chapter 9 Review Worksheet Cellular Respiration

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE

Oxidative Phosphorylation

Life on earth would be impossible without photosynthesis.

Bio 101 Section 001: Practice Questions for First Exam

Chapter 8: Energy and Metabolism

Eukaryotes have organelles

CONCEPTS OF BIOLOGY - BIOL115 Dr. SG Saupe; Fall 2006 Exam #2

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Figure 10.1 How does sunlight help build the trunk, branches, and leaves of this broadleaf tree? photosynthesis Autotrophs (Figure 10.

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Ch. 4 ATP & Photosynthesis

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

Name Class Date. Figure 8-1

Transcription:

Photosynthesis Chloroplasts Light Reactions (photons NADPH + ATP) Dark Reactions (CO 2 + H 2 O carbohydrate) CO 2 + H 2 O (CH 2 O) + O 2 light hν

Chloroplasts Site of photosynthesis in algae and higher plants 1 to 1000 per cell typically ~5-µm long ellipsoids Outer membrane permeable Intermembrane space Inner membrane impermeable Stroma similar to mitochondrial matrix Dark reaction enzymes (Calvin cycle or reductive pentose phosphate cycle), DNA, RNA, ribosomes Thylakoid highly folded vesicle arising from invaginations of inner membrane (similar to mitochondrial cristae) electron transport chain proteins 10 to 100 grana (disc-like sacs) interconnected by stroma lamellae 10% phospholipids 80% uncharged mono- and digalactosyl diacylglycerols 10% sulfoquinovosyl diacylglycerols (sulfolipids)

Light Reactions Absorption of light Chlorophyll (Chl and bacteriochlorophyll, BChl) differs from heme: Mg 2+ cyclopentanone ring V fused to pyrrole ring III pyrrole ring IV partially reduced in Chl a and Chl b (rings II and IV partially reduced in BChl a and BChl b) propionyl side chain of ring IV esterified

Light Reactions Absorption of light Plank's law: E = hν = hc λ h = Plank's constant =6.626 x 10-34 J. s c = speed of light = 2.998 x 10 8 m. s -1 (vacuum) λ = wavelength Molecules absorb photons whose energy match the energy difference between ground and excited states Beer-Lambert law: A = log I 0 I = εcl A = absorbance I 0 and I = incident and transmitted intensities ε = molar extinction coefficient c = molar concentration l = sample pathlength in cm

Light Reactions Absorption of light Internal conversion - electronic energy converted to heat, time frame <10-11 s Fluorescence - excited state decays to ground state by emitting photon, time frame ~10-8 s Exciton transfer (resonance energy transfer) - excited molecule transfers its excitation energy to nearby unexcited molecules, important in funneling light energy to photosynthetic reaction centers Photooxidation - light-excited donor molecule transfers an electron to an acceptor molecule, the oxidized donor relaxes to ground state by oxidizing some other molecule

Light Reactions Absorption of light Chlorophylls (light-harvesting antennas) function to gather photons and transfer energy by exciton transfer to a photosynthetic reaction center, time frame <10-10 s with 90% efficiency Light-harvesting complex-ii (LHC-II) most abundant membrane protein in chloroplasts of green plants 232-residue transmembrane protein at least 7 Chl a, 5 Chl b and 2 carotenoids function to gather light energy and prevent energy transfer to O 2 Phycobilisomes (algae and cyanobacteria) phycobiliproteins phycocyanobilin pigment phycoerythrobilin pigment bound to outer face of photosynthetic membrane

Light Reactions Electron transport in photosynthetic bacteria Reaction center composition: transmembrane protein, 3 subunits (H, L, M) P870 (BChl a) 4 BChl b (two form a "special pair") bacteriopheophytin b (BPheo b, 2H + replace Mg 2+ ) nonheme/non-fe-s Fe 2+ ubiquinone menaquinone Photooxidation of P870 "special pair" BPheo a menaquinone ubiquinone Q cycle cyt bc 1 (similar to Complex III) cyt c 2 4 heme cyt c P870 + Sequence of electron transfers has a quantum yield of ~100%! No net oxidation-reduction, functions to translocate H + s across plasma membrane and photophosphorylation produces ATP, both processes similar to those discussed in oxidative phosphorylation

Light Reactions Two-center electron transport (plants and cyanobacteria) Reducing power of photooxidation of H 2 O drives NADPH production O 2 + 4e - + 4H + 2H 2 O ε ' = +0.815 V NADP + + H + + 2e - NADPH ε ' = -0.320 V 2NADP + + 2H 2 O 2NADPH + O 2 + 2H + ε ' = -1.135 V G ' = +438 kj. mol -1 (requires 1 einstein of 223-nm photons) This means that more than one photon of visible light is required for production of one O 2 molecule (8 to 10 photons)

Two-center electron transport Light Reactions Photosystems I and II (Z-scheme) Photosystem I (PSI) - generates strong reductant (weak oxidant) NADP + + H + + 2e - NADPH Photosystem II (PSII) - generates strong oxidant (weak reductant) 2H 2 O O 2 + 4H + + 4e - Cytochrome b 6 f connects PSII and PSI

Two-center electron transport Light Reactions Three thylakoid transmembrane protein complexes 1. PSII - P680 (Chl a), Pheo a, Q A, Q B (herbicides complete with Q) 2. Cytochrome b 6 f complex - (resembles cyt bc 1 and Complex III) cyt f, cyt b 6 (2 hemes), [2Fe-2S] protein, bound plastoquinol, transport H + from outside to inside of thylakoid membrane using Q cycle Generates much of the H + gradient that drives ATP synthesis 3. PSI - 7 subunits (2 large, 5 small), P700, 100 to 200 Chl a, 12 to 16 β-carotene, 3 [4Fe-4S] clusters, 2 phylloquinone (vit K 1 ) Intercomplex electron transfer between PSII and cyt b 6 f by plastoquinone/plastoquinol (Q/QH 2 ) Intercomplex electron transfer between cyt b 6 f and PSI by plastocyanin (PC, a peripheral membrane Cu metalloprotein) Oxygen evolving complex (OEC) - protein complex with 4 Mn (III/IV)-O 2- clusters, 2 or 3 Ca 2+, and 4 or 5 Cl - ions Z - tyrosine radical-containing (macro)molecule

Two-center electron transport Light Reactions Electrons from PSI may follow two routes: 1. Noncyclic pathway to 11-kDa, [2Fe-2S] soluble ferredoxin (Fd, 1e - donor/acceptor) located in stroma, where FAD-containing ferredoxin-nadp + reductase (FNR) reduces NAPD+ 2. Cyclic pathway to return to plastoquinone (Q) pool, translocates H + s across thylakoid membrane, independent of PSII Functions to increase ATP production relative to that of NADPH PSI resembles (functionally and genetically) bacterial photosystems

Two-center electron transport Light Reactions Distribution of photosynthetic complexes PSI occurs mainly in unstacked stroma lamellae, in contact with stroma, where it has access to NADP + PSII occurs almost exclusively between stacked grana, out of direct contact with stroma Cytochrome b 6 f is uniformly distributed throughout membrane Why? Need to separate PSII from PSI so that exciton transfer does not occur Allows response to low (long wavelength) and high (short wavelength) light illumination (light-activated protein kinase-dependent feedback mechanism)

Photophosphorylation Light Reactions Chloroplasts couple dissipation of H + gradient to synthesis of ATP (resembles mitochondrial system) CF 1 CF 0 complex 1. CF 0 is hydrophobic transmembrane protein, H + translocating channel 2. CF 1 is hydrophilic peripheral membrane protein, α 3 β 3 γδε composition, β is reversible ATPase, γ controls H + flow from CF 0 to CF 1 3. Inhibited by oligomycin and dicyclohexylcarbodiimide (DCCD) Chloroplast ATP synthase is located in unstacked portions of thylakoid membrane in contact with stroma Translocates H + out of thylakoid space How does that compare to the mitochondrial ATP synthase?

Photophosphorylation Light Reactions At saturating light intensities, chloroplasts generate proton gradient of ~3.5 ph units, which arise from two sources 1. Evolution of O 2 releases 4H + (from stroma by way of NADPH synthesis) into thylakoid space 2. Transport of e - s through cyt b 6 f translocates 8H + (from stroma to thylakoid space) ~12 H + translocated per O 2 produced by noncyclic electron transport Thylakoid membrane allows passage of Mg 2+ and Cl -, which results in elimination of membrane potential ( Ψ) Electrochemical gradient is almost entirely ph gradient ATP production: Noncyclic electron transport 4 ATP per O 2 evolved (and 2 NADPH 6 ATP) 0.5 ATP per photon absorbed so 1.25 ATP per photon absorbed! Cyclic electron transport 0.67 ATP per photon absorbed

Dark Reactions The Calvin cycle (reductive pentose phosphate cycle) 3CO 2 + 9ATP + 6NADPH glyceraldehyde-3-phosphate + 9ADP + 8P i + 6NADP + Two-stage process: 1. Production phase 3Ribulose-5-phosphate + 3CO 2 + 9ATP + 6NADPH 6glyceraldehyde-3-phosphate +9ADP + 6P i + 6NADP + one glyceraldehyde-3-phosphate biosynthesis 2. Recovery phase 5Glyceraldehyde-3-phosphate 3ribulose-5-phosphate C 3 + C 3 C 6 C 3 + C 6 C 4 + C 5 C 3 + C 4 C 7 C 3 + C 7 C 5 + C 5 5C 3 3C 5

Dark Reactions The Calvin cycle Uses enzymes from glycolytic, gluconeogenic, and pentose phosphate pathways Three unique enzymes: phosphoribulokinase ribulose bisphosphate carboxylase (RuBP carboxylase) sedoheptulose bisphosphatase (SBPase)

Dark Reactions Ribulose bisphosphate carboxylase (RuBP carboxylase) The most abundant protein in the biosphere! k cat ~3 s -1 Eight large (L) subunits (477 residues, encoded by chloroplast DNA) - catalytic site Eight small subunits (123 residues, specified by nuclear gene) - unknown function L 8 S 8 composition rate-determining step is C3 H + abstraction to generate enediolate requires Mg 2+ G ' = -35.1 kj. mol -1 ribulose-bisphosphate carboxylase activase - catalyzes carbamate formation from CO 2 and ε-amino of Lys residue

Dark Reactions The Calvin cycle Recall stoichiometry of Calvin cycle: 3CO 2 + 9ATP + 6NADPH glyceraldehyde-3-phosphate + 9ADP + 8P i + 6NADP + Glyceraldehyde-3-phosphate may be converted to glucose- 1-phosphate Precursor of higher carbohydrates (through nucleotide sugars): sucrose (major transport sugar) starch (major storage polysaccharide) cellulose (primary structural polysaccharide) precursor to fatty acids and amino acids

Control of Calvin cycle Dark Reactions During the day, plants use photosynthesis to produce ATP and NADPH for use in Calvin cycle At night, plants process nutritional stores to produce ATP and NADPH Must have light activate Calvin cycle and deactivate glycolysis (prevent futile cycle) Regulation of RuBP carboxylase, FBPase, and SBPase by light-dependent factors RuBP carboxylase: photons increase stroma ph from 7 to 8 (ph optimum for enzyme) photons translocate H + to thylakoid, which drives Mg 2+ efflux to stroma dark reaction intermediate (2-carboxyarabinitol-1- phosphate, CA1P) inhibits RuBP carboxylase

Control of Calvin cycle FBPase and SBPase: Dark Reactions activated by increased ph, Mg 2+, and NADPH activated by reduced thioredoxin (12 kda redox sensitive protein), which is regulated by ferredoxin-thioredoxin reductase Light stimulates Calvin cycle and deactivates glycolysis Absence of light stimulates glycolysis and deactivates Calvin cycle

Dark Reactions Photorespiration and the C 4 cycle Photorespiration occurs at high [O 2 ] with production of CO 2 RuBP carboxylase has two substrates - CO 2 and O 2! Ribulose bisphosphate carboxylase-oxygenase (Rubisco) Ribulose-5-phosphate + O 2 3-phosphoglycerate + 2-phosphoglycolate

Dark Reactions Photorespiration and thec 4 cycle CO 2 results from series of peroxisomal and mitochondrial reactions: phosphoglycolate phosphatase glycolate oxygenase catalase - heme enzyme takes H 2 O 2 O 2 + H 2 O transamination reactions hydroxypyruvate reductase glycerate kinase Net result is that some photosynthetically generated ATP and NADPH is dissipated! May be useful in protecting cells when CO 2 levels are low

Dark Reactions Photorespiration and the C 4 cycle CO 2 compensation point - [CO 2 ] at which rates of photosynthesis and photorespiration are equal For many plants, CO 2 compensation point is ~40 to 70 ppm (normal atmospheric [CO 2 ] is 330 ppm) so, photosynthesis > photorespiration rates But this is temperature dependent! On hot sunny days, CO 2 is depleted and O 2 is elevated at the chloroplast, photosynthesis ~ photorespiration! Lessening oxygenase activity of Rubisco would be potentially beneficial

Dark Reactions Photorespiration and the C 4 cycle C 4 plants (sugar cane, corn, weeds) concentrate CO 2 CO 2 compensation point drops to ~ 2 to 5 ppm C 4 cycle: characteristic anatomy (bundle-sheath cells, mesophyll cells) 2 ATP to concentrate CO 2 in bundle-sheath cells Photosynthesis in C 4 plants consumes 5 ATP per CO 2 fixed (compare to 3 ATP for Calvin cycle alone) C 4 plants occur largely in tropical areas (high temperatures and light intensity) C 3 plants occur largely in cooler areas (lower light intensity) Desert plants use Crassulacean acid metabolism (CAM) to minimize H 2 O loss during the day and maximize CO 2 absorption at night Large amounts of phosphoenolpyruvate are required from starch breakdown and glycolysis Malate is used to produce CO 2 for the Calvin cycle Pyruvate is used to resynthesize starch