Special Theory of Relativity



Similar documents
Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

arxiv: v1 [physics.gen-ph] 17 Sep 2013

The derivation of the balance equations

Metric Spaces. Chapter Metrics

Principles of special relativity

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Unified Lecture # 4 Vectors

State of Stress at Point

arxiv: v2 [physics.acc-ph] 27 Oct 2014

How Gravitational Forces arise from Curvature

CBE 6333, R. Levicky 1 Differential Balance Equations

Solved Problems in Special Relativity

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Lecture L5 - Other Coordinate Systems

A Primer on Index Notation

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MA106 Linear Algebra lecture notes

The Einstein field equations

Section 4.4 Inner Product Spaces

Introduction to Tensor Calculus

Fundamental ideas and problems of the theory of relativity

Euclidean quantum gravity revisited

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Inner Product Spaces

Vector has a magnitude and a direction. Scalar has a magnitude

1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two non-zero vectors u and v,

PX408: Relativistic Quantum Mechanics

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall

Teaching Electromagnetic Field Theory Using Differential Forms

Mechanics 1: Conservation of Energy and Momentum

CBE 6333, R. Levicky 1. Tensor Notation.

arxiv: v2 [hep-ph] 20 Jun 2013

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

Introduction to General and Generalized Linear Models

P.A.M. Dirac Received May 29, 1931

Generally Covariant Quantum Mechanics

Basic Equations, Boundary Conditions and Dimensionless Parameters

Time Ordered Perturbation Theory

1 The basic equations of fluid dynamics

6 J - vector electric current density (A/m2 )

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS.

Differentiation of vectors

5. Measurement of a magnetic field

Scalars, Vectors and Tensors

The integrating factor method (Sect. 2.1).

Elasticity Theory Basics

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Assessment Plan for Learning Outcomes for BA/BS in Physics

5 Homogeneous systems

Class Meeting # 1: Introduction to PDEs

Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

arxiv: v2 [physics.class-ph] 27 Aug 2012

Feynman diagrams. 1 Aim of the game 2

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

APPLICATIONS OF TENSOR ANALYSIS

Beta Distribution. Paul Johnson and Matt Beverlin June 10, 2013

Linear Algebra Notes for Marsden and Tromba Vector Calculus

11 Navier-Stokes equations and turbulence

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

1 Vectors: Geometric Approach

Chapter 2. Parameterized Curves in R 3

Gauge theories and the standard model of elementary particle physics

Vector and Matrix Norms

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

3. Open Strings and D-Branes

The Engle-Granger representation theorem

The Math Circle, Spring 2004

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

Spazi vettoriali e misure di similaritá

Gaussian Conjugate Prior Cheat Sheet

Thermodynamics: Lecture 8, Kinetic Theory

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Multi-variable Calculus and Optimization

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j

F Matrix Calculus F 1

1 Lecture 3: Operators in Quantum Mechanics

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

Physics 221A Spring 2016 Appendix A Gaussian, SI and Other Systems of Units in Electromagnetic Theory

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Vector or Pseudovector?

From local to global relativity

Smarandache Curves in Minkowski Space-time

APPENDIX D. VECTOR ANALYSIS 1. The following conventions are used in this appendix and throughout the book:

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

PHYS 1624 University Physics I. PHYS 2644 University Physics II

Chapter 15 Collision Theory

The Special Theory of Relativity

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

Rotation Matrices and Homogeneous Transformations

1 Prior Probability and Posterior Probability

Dimensional Analysis

Analysis of Multi-Spacecraft Magnetic Field Data

Transcription:

June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11

Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition in physics) that all physical laws should be invariant under transformation between inertial systems. The demand that Maxwell s equations should be invariant under transformations, and the failure of Galilean transformations to do it led to the Lorentz transformations ( β = v/c, γ = (1 β 2 ) 1/2 ) x 0 = γ(x 0 βx 1) x 1 = γ(x 1 βx 0) (1) x 0 = γ(x 0 + βx 1) x 1 = γ(x 1 + βx 0) (2) x 2 = x 2 x 2 = x 2 x 3 = x 3 x 3 = x 3 under which for example the equations of a spherical wave c 2 t 2 ( x 2 + y 2 + z 2) = 0 (3) propagating with fixed velocity c are invariant. Lorentz transformations in general demand that the norm s 2 = x0 2 ( x1 2 + x2 2 + x3 2 ) (4) is invariant.

1st Postulate : The laws of nature and the results of all experiments performed in a given frame of reference are independent of the translational motion of the system as a whole 2nd Postulate : The speed of light is finite and independent of the motion of the source From the 1st postulate it follows that the mathematical equations expressing the laws of nature must be covariant, that is, invariant in form, under the Lorentz transformations. These demands call for rules on the ways that the scalars, 4-vectors and 4-tensors will transform in a spacetime whose norm is defined by (4). SPACETIME The space-time continuum is defined in terms of a 4-dimensional space with coordinates x 0, x 1, x 2, x 3.

Tensors If we assume that there is a well defined transformation that yields from the coordinates x 0, x 1, x 2, x 3 a new set of coordinates x 0, x 1, x 2, x 3 according to the rule x α = x α (x 0, x 1, x 2, x 3 ) (α = 0, 1, 2, 3) (5) Here we will defined the tensors under their transformation properties. A scalar (tensor of rank 0) is a single quantity whose value is not changed under the transformation. for example the interval s 2 in (4) is a scalar. Vectors are tensors of rank 1, and we distinguish two kinds. The contravariant vector A α whose components transformed according to the rule 3 A α x α α x = x β Aβ x β Aβ (6) β=0 where the partial derivatives are calculated from (5). Explicitly we have 4 equations of the form: A α = α α α α x x x x x 0 A0 + x 1 A1 + x 2 A2 + x 3 A3 (7)

The covariant vector B α is defined by the rule B α = 3 β=0 x β x α B β x β x α B β (8) where the partial derivatives are calculated from the inverse of (5). The contravariant tensor of rank 2 F αβ consists of 16 quantities (components) that transform according to F αβ = A covariant tensor of rank 2 G αβ transforms as The mixed tensor of rank 2 H α β transforms as α x x β x γ x δ F γδ (9) G αβ = x γ x α x δ x β G γδ (10) H α β = x α x γ x δ x β Hγ δ (11) The generalization to arbitrary rank tensors is quite obvious extension of the above relations.

The inner or scalar product of two vectors is defined as the product of the components of a covariant and a contravariant vector B A B α A α (12) with this definition the scalar product is an invariant or scalar under the transfomation (5): B A = B αa α = x β x α B x α β x γ Aγ = x β x γ B βa γ = δ β γb β A γ = B γ A γ = B A (13) The geometry of the space-time of STR is defined by the invariant interval s 2 defined in (4), which in differential form can be written as (ds) 2 = (dx 0 ) 2 (dx 1 ) 2 (dx 2 ) 2 (dx 3 ) 2 (14) This norm or metric is a special case of the general differential length element ds 2 = g αβ dx α dx β (15) where g αβ = g βα is called the metric tensor.

For the flat space-time of STR the metric tensor is diagonal with elements g 00 = 1, g 11 = g 22 = g 33 = 1 (16) The contravariant tensor g αβ is defined as the normalized cofactor of g αβ. For the flat spacetime of STR they are the same g αβ = g αβ (17) The contraction of the covariant and contravariant metric tensors defines the Kronecker delta in 4-dimensions g αγ g γβ = δ α β (18) where δ β α = 0 if α β and δ α α = 1. From the definition of the scalar product (12) and (15) we can easily conclude that x α = g αβ x β (19) and its inverse x α = g αβ x β (20) This is a more general procedure for lowering and raising indeces F...α...... = g αβ F......β... and G......α... = g αβ G...β...... (21)

From the definition of the flat spacetime metric tensor we can easily prove that: A α = (A 0, A), A α = (A 0, A) (22) The scalar product (12) of two vectors is From the transformation property B A B α A α = B 0 A 0 B A β x = x α x α x β we conclude that the differentiation with respect to a contravariant component of the coordinate vector transforms as the component of a covariant vector. Thus we employ the notation α x α = ( x 0, ), α x α = The 4-divergence of a 4-vector A is the invariant ( ) x 0, (23) α A α = α A α = A0 x 0 + A (24) an equation familiar in form from continuity of charge and current density.

The 4-dimensional Laplacian operator is defined to be the invariant contraction α α = 2 x 0 2 2 (25) which is of course the operator of the wave equation in vacuum. The previous examples show how the covariance of a physical law emerges provided suitable Lorentz transformation properties are attributed to the quantities entering the equation.

Invariance of Electric Charge; Covariance in Electrodynamics The invariance of the equations of electrodynamics under Lorentz transforms was shown by Lorentz and Poincaré before the formulation of the STR. The invariance in form or covariance of the Maxwell and Lorentz force equations implies that the various quantities ρ, J, E, B that enter into the equations transform in a well defined way under Lorentz transformations. Consider first the Lorentz force equation for a charged particle d p dt = q ( E + v c B we know that p transforms as the space part of energy and momentum ( p α = (p 0, p) = m U 0, U ) where p 0 = E/c and U a is the 4-velocity U 0 dx 0 dτ = dx 0 dt dt dτ = γc, U d x dτ = d x dt dt dτ ) (26) = γ u (27)

If we use the proper time of the particle which is a Lorentz invariant quantity defined as dτ = 1 c ds = dt 1 β 2 = 1 dt (28) γ for the differentiation of (26) we can write d p dτ = q ) (U 0E + U B (29) c the left hand side is the space part of a 4-vector. The corresponding time component equation is the rate of change of the energy of the particle dp 0 = q U dt c E de mech = J Ed 3 x (30) dt The right-hand sides of the previous two equations involve three factors, the charge q, the 4-velocity and the electromagnetic fields. If the transformation properties of two of the three factors are known and Lorentz covariance is demanded, then the transformation properties of the 3rd factor can be established. The experimental invariance of electric charge and the requirement of Lorentz covariance of the Lorentz force eqn (29) and (30) determines the Lorentz transformation properties of the EM field. V

For example, the requirement from (30) that U E be the time component of a 4-vector establishes that the components of E are the time-space parts of a 2nd rank tensor F αβ such that U E = F 0β U β We will consider Maxwell equations and we begin with the charge density ρ( x, t) and current density J( x, t) and the continuity equation ρ t + J = 0 (31) It is natural to postulate that ρ and J together form a 4-vector J α : ( J α = cρ, ) J (32) and the continuity equation takes the covariant form: α J α = 0 (33) where the covariant differential operator α is given by (23).

If we consider the Lorentz gauge 1 Φ c t + A = 0 (34) then the wave equations for the vector and scalar potential are 1 2 A c 2 t 2 2 A 4π = c J 1 2 Φ c 2 t 2 2 Φ = 4πρ (35) Notice that the differential operator in (35) is the invariant 4-D Laplacian (25) while the right hand side are the components of the 4-vector (32). Obviously, Lorentz covariance requires that the potentials Φ and A form a 4-vector potential ( A α = Φ, A ) (36) Then the wave equation (35) and the Lorentz condition (34) take the covariant forms A α = 4π c Jα, α A α = 0 (37)

The fields E and B are expressed in terms of the potentials as E = 1 c A t Φ, B = A (38) where, for example, the x-component of E and B are explicitly E x = 1 c A x t Φ x = ( 0 A 1 1 A 0) (39) B x = A z y A y z = ( 2 A 3 3 A 2) These equations imply that the 6 in total components of the electric and magnetic fields are the elements of a 2nd-rank, antisymmetric field-strength tensor F αβ = α A β β A α (40) explicitly in matrix form F αβ = 0 E x E y E z E x 0 B z B y E y B z 0 B x E z B y B x 0 (41)

In the covariant form is: F αβ = g αγ g δβ F γδ = 0 E x E y E z E x 0 B z B y E y B z 0 B x E z B y B x 0 The elements of F αβ are obtained from F αβ by putting E E. Notice that (42) ( F µν F µν = 2 B 2 1 ) c 2 E 2 = invariant (43) and the Lorentz force equation becomes dp α dτ = qf αβu β or dp α dt = qf αβ dx β dt (44)

The inhomogeneous Maxwell equations are E = 4πρ, B 1 E c t = 4π c J in terms of F αβ and J α they take the covariant form (HOW?) Similarly the homogeneous Maxwell equations are B = 0, E 1 + c take the form (HOW?) α F αβ = 4π c Jβ (45) B t = 0 α F βγ + β F γα + γ F αβ = 0 (46) With the above definitions of the various quantities and the reformulation of the wave and Maxwell equations the covariance of the equations of EM is established. Finally, the Lorentz force (29) and rate of change of energy (30) can be set in manifestly covariant form dp α dτ = m duα dτ = q c F αβ U β (47)

Dual Field-Strength Tensor where F αβ = 1 2 ɛαβγδ F γδ = 0 B x B y B z B x 0 E z E y B y E z 0 E x B z E y E x 0 +1 for α = 0, β = 1, γ = 2, δ = 3 ɛ αβγδ and for any even permutation = 1 for any odd permutation 0 if any two indices are equal (48) (49) The elements of F αβ are obtained from F αβ by putting E B and B E. The homogeneous Maxwell equations can be written in terms of the dual field-strength tensor (prove it) as α F αβ = 0 (50)

Transformation of Electromagnetic Fields Since both E and B are the elements of a 2nd-rank tensor F αβ, their values in one inertial frame can be expressed in terms of the values in another inertial frame, according to F αβ = x α x γ x β x δ F γδ (51) If the one system travels along the direction of x 1 with speed cβ the explicit transformations are (HOW?) E 1 = E 1 B 1 = B 1 E 2 = γ(e 2 βb 3 ) B 2 = γ(b 2 + βe 3 ) (52) E 3 = γ(e 3 + βb 2 ) B 3 = γ(b 3 βe 2 ) This suggest that for a general Lorentz transformation between two systems moving with a speed v relative to each other the transformation of the fields can be written (HOW):

( ) E = γ E + β B γ2 β γ + 1 ( ) β E ( ) B = γ B β E γ2 β γ + 1 ( ) β B (53) These transformations show that E and B have no independent existence. A purely electric or magnetic field in one coordinate system will appear as a mixture of electric and magnetic fields in another coordinate frame. Thus one should properly speak of the electromagnetic field F αβ rather than E and B separately. Finally, if no magnetic field exists in a frame K the inverse of (53) shows that in the frame K the magnetic field B and the electric field E are linked by the simple relation note that E is the transformed field from K to K. B = β E (54)

Transformation of Electromagnetic Fields: Example We will study the fields seen by an observer in the system K when a point charge q moves in a straight line with velocity v. The charge is at rest in the system K and the transformation of the fields is given by the inverse of (53) or (53) The observer is at the point P. In the frame K the observer s point P, where the fields are to be evaluated, has coordinates x 1 = vt, x 2 = b, x 3 = 0 and is at a distance r = b 2 + (vt) 2.

In the rest frame K of the charge the electric and magnetic fields at the observation point are (WHY?) E 1 = qvt r E 3 2 = qb r E 3 3 = 0 B 1 = 0 B 2 = 0 B 3 = 0 In terms of the coordinates of K the nonzero field components are E 1 qγvt = (b 2 + γ 2 v 2 t 2 ), E qb 3/2 2 = (55) (b 2 + γ 2 v 2 t 2 ) 3/2 Then using the inverse of (53) we find the transformed fields in the system K: E 1 = E 1 qγvt = (b 2 + γ 2 v 2 t 2 ) 3/2 E 2 = γe 2 = γqb (b 2 + γ 2 v 2 t 2 ) 3/2 (56) B 3 = γβe 2 = βe 2 (57) with all the other components vanishing. Notice the magnetic induction in the direction x 3. The magnetic field becomes nearly equal to the transverse electric field E 2 as β 1.

At low velocities (γ 1) the magnetic induction is B q c v r r 3 which is the approximate Ampére-Biot-Savart expression for the magnetic field of a moving charge. At high velocities (γ 1) we see that the transverse electric field E 2 becomes equal to γ times its non-relativistic value. At high velocities (γ 1) the duration of appreciable field strengths at point P is decreased.

Figure: Fields of a uniformly moving charged oarticle (a) Fields at the observation point P as function of time. (b) Lines of electric force for a particle at rest and in motion (γ = 3).