The Engle-Granger representation theorem

Size: px
Start display at page:

Download "The Engle-Granger representation theorem"

Transcription

1 The Engle-Granger representation theorem Reference note to lecture 10 in ECON 5101/9101, Time Series Econometrics Ragnar Nymoen March Introduction The Granger-Engle representation theorem is in their Econometrica paper from 1987 The main thesis is that systems with cointegrated I(1 variables have three equivalent representations Common Trends Moving average, MA Equilibrium correction (error correction, ECM In this note we give a simplified version of this famous theorem We start from the VAR-representation of a first order bi-variate system and assume that one of the roots of the autoregressive matrix is unity while the other root is less than one The Common Trends, MA and ECM representations are then shown Note that in the literature, the theorem is also shown the other way, by starting from the MA representation 2 The VAR Consider the bivariate VAR(1 (21 x t Φx t 1 + ε t where x t (x t, y t, Φ is a 2 2 matrix with coefficients and ε t is a vector with two Gaussian disturbances The characteristic equation of Φ: Φ zi 0, In the spurious regression case we imposed two unit-roots In the stationary case neither root is equal to one We now consider the intermediate case of one unit-root and one stationary root Specifically, write the two characteristic roots as: z 1 1, and z 2 λ, λ < 1 1

2 z 1 1 implies that both x t and y t are I(1 Φ has full rank, equal to 2, since both eigenvalues are different from zero Φ can therefore be diagonalized in terms of its eigenvalues and the corresponding eigenvectors We write it as: (22 Φ P λ Q where P is the matrix with the eigenvectors as columns: α β (23 P γ δ and Q P 1 Assume, without loss of generality that P 1, ie, (24 αδ γβ 1 and thus δ β P 1 γ α By mulipliction from the right, Φ can be expressed as α β δ β (25 Φ, γ δ γλ αλ and, by multiplication from the left, we also get: (αδ λβγ αβ(1 λ (26 Φ γδ(1 λ ( γβ + λαδ We refer to these expressions later 21 The Common-trends representation Multiplication of (21 with Q yields (27 Qx t QΦx t 1 + Qε t Observe that QΦ QP λ 1 0 Q 0 λ Q, from the definitions above, implying that (27 can be written in terms of two new variables w t and z t : wt 1 0 wt 1 (28 + η z t 0 λ z t, t 1 where (29 wt z t xt Q y t 2

3 and (210 Qε t η t η1t η 2t To solve for w t and z t, we multiply out the right hand side of (29 Notice that since δ β (211 Q γ α we obtain w t as (212 w t δx t βy t and z t as: (213 z t γx t αy t Conversely, from (29: xt y t P wt z t yielding (214 x t αw t βz t and (215 y t γw t δz t Equation (28 gives w t as a random-walk variable and, from the same equation, z t is seen to be a stationary since λ < 1 z t, defined by (213 is therefore a stationary linear combination of the two I(1 variables x t and y t We say that x t and y t are two cointegrated variables, with cointegrating vector (γ, α On the other hand: equation (214 and (215 show that x t and y t contain an I(0 component (z t, and an I(1 component (w t hence the name Common trend representation 22 Integration and cointegration is maintained in forecasts Let x T,h denote the h-period ahead forecast, conditional on x T From (22 we obtain: 1 0 α β 1 0 wt (216 x T,h P 0 λ h Qx T γ δ 0 λ h z T and, if h is large enough α β (217 x T,h γ δ wt z T α γ w T 3

4 For large h, the forecasts for each individual variables are dominated by the common trend w T But for x T,h αw T and y T,h γw T we get γx T,h αy T,h (γα γαw T 0 showing that the forecasts obey the cointegrating relationship and the forecast of the I(0 variable z is z T,h 0, with finite variance 23 The mean of the cointegrating relationship Note that in this simple example, the mean of the cointegration relationship is 0 In practice, this long-run mean can be any number, and appears as an important parameter in the econometric cointegrating model It is in fact a critical parameter for the forecast performance of econometric models In many cases, the long-run cointegrating mean also has an economic interpretation If x t and y t are logs of income and consumption, the mean of the cointegration relationship may for example be interpreted as the long-run (steady-state savings rate 3 MA representation Using lag-polynomials, write w t and z t as: and w t z t η 1t 1 L η 2t 1 λl Inserting back in (214 and (215 gives xt (318 Ψ(Lη t where α β(1 L/(1 λl (319 Ψ(L γ δ(1 L/(1 λl The rank of Ψ(1 is 1, since Ψ(1 zi (α z z 0 have roots z 1 0 and z 2 α Equivalently, Ψ(1 0 and α 0 The MA-matrix thus has reduced rank for L 1, as a result of cointegration 4 Equilibrium correction representation (ECM Rewrite (24 αδ γβ 1, 4

5 first as and next, αδ λβγ αδ γβ + γβ λβγ 1 + γβ(1 λ, and use this to write Φ in (26 as 1 0 (420 Φ 0 1 γβ + λαδ 1 αδ + λαδ 1 αδ(1 λ, β + (1 λ δ γ α The ECM representation follows directly from the VAR, by using (420 in We obtain: xt which can be written as (421 or x t Φx t 1 + ε t β (1 λ δ xt αβ xt 1 y t 1 (422 x t αβ x t 1 + ε t, γx t 1 αy t 1 + ε } {{ } t z t 1 + ε t, when the vector of equilibrium correction coefficients (α are (1 λβ α11 (423 α (1 λδ and the cointegrating vector is: (424 β γ α α 21 When we work with a VAR, we often re-write (21 as x t Πx t 1 + ε t where Π (Φ I is the matrix with the coefficients of the lagged levels variables Note that we have (425 αβ Π Φ I which implies that the Π matrix with coefficients of the lagged levels variables has reduced rank (rank 1 in the case of cointegration (425 implies that the roots of Π are 0 and (1 λ β is the matrix of cointegration coefficients Note: If λ 1, the rank of Π is zero (both roots are 0 Moreover: 1 0 Φ 0 1 from (420 and the ECM representations collapses to a VAR in differences, a dvar Cointegration does not occur We see that there is a close relationship between the eigenvalues of Π, its rank and cointegration: 5

6 rank(π 0, reduced rank and no cointegration Both eigenvalues are zero rank(π 1, reduced rank and cointegration from zero One eigenvalue is different rank(π 2, full rank, both eigenvalues are different from zero and the VAR (21 is stationary Hence, if there is a way of testing formally whether the eigenvalues of Π are significantly different from zero, we would have a logically very satisfying method of testing the hypotheses about the absence of cointegration This has method has actually been developed under the name of the Johansen (1995 procedure and the cointegrated VAR 41 Cointegration and Granger causality Since λ < 1 is equivalent with cointegration, we see from (423 that cointegration also implies Granger-causality in at least one direction: α 11 0 and/or α 21 0 Conversely If λ 1, α 0 42 Cointegration and weak-exogeneity Assume δ 0, from (423 this implies α 21 0 xt β (1 λ γx 0 t 1 αy t 1 + ε t xt (1 λβγxt 1 αy t 1 + ε x,t ε y,t The marginal model of y t contains no information about the cointegration parameters (γ, α in this case y t is therefore weakly exogenous for the cointegration parameters (γ, α 5 Some exercises Exercise 1 Consider the model (ρ 1y t 1 + b 0 x t + b 1 x t 1 + ε t, 0 < ρ < 1 x t u t, where ε t and u t are independent white-noise processes 1 Show that y t I(1 2 Write the system in AR-form: ( yt A where x t ( yt 1 A x t 1 ( ρ b1 0 1 ( b0 u + t + ε t u t 6

7 3 Show that the characteristic roots of A is λ 1 1 and λ 2 ρ 4 Show that A in the ECM form ( ( ( yt A yt 1 b0 u + t + ε t x t x t 1 u t has roots z 1 0 and z 2 ρ 1 5 Show that A can be written A ( ρ 1 0 (1, γ where γ b 1 /(ρ 1 6 Show that β (1, γ is the cointegrating vector Hint: Show that ( w t β yt y x t + γx t t is a stationary process by multiplying the AR-equation with β from the left References Engle, R F and C W J Granger (1987 Co-integration and Error Correction: Representation, Estimation and Testing Econometrica, 55, Johansen, S (1995 Likelihood-Based Inference in Cointegrated Vector Autoregressive Models Oxford University Press, Oxford 7

E 4101/5101 Lecture 8: Exogeneity

E 4101/5101 Lecture 8: Exogeneity E 4101/5101 Lecture 8: Exogeneity Ragnar Nymoen 17 March 2011 Introduction I Main references: Davidson and MacKinnon, Ch 8.1-8,7, since tests of (weak) exogeneity build on the theory of IV-estimation Ch

More information

Financial Integration of Stock Markets in the Gulf: A Multivariate Cointegration Analysis

Financial Integration of Stock Markets in the Gulf: A Multivariate Cointegration Analysis INTERNATIONAL JOURNAL OF BUSINESS, 8(3), 2003 ISSN:1083-4346 Financial Integration of Stock Markets in the Gulf: A Multivariate Cointegration Analysis Aqil Mohd. Hadi Hassan Department of Economics, College

More information

COINTEGRATION AND CAUSAL RELATIONSHIP AMONG CRUDE PRICE, DOMESTIC GOLD PRICE AND FINANCIAL VARIABLES- AN EVIDENCE OF BSE AND NSE *

COINTEGRATION AND CAUSAL RELATIONSHIP AMONG CRUDE PRICE, DOMESTIC GOLD PRICE AND FINANCIAL VARIABLES- AN EVIDENCE OF BSE AND NSE * Journal of Contemporary Issues in Business Research ISSN 2305-8277 (Online), 2013, Vol. 2, No. 1, 1-10. Copyright of the Academic Journals JCIBR All rights reserved. COINTEGRATION AND CAUSAL RELATIONSHIP

More information

Introduction to Dynamic Models. Slide set #1 (Ch 1.1-1.6 in IDM).

Introduction to Dynamic Models. Slide set #1 (Ch 1.1-1.6 in IDM). 1 Introduction Introduction to Dynamic Models. Slide set #1 (Ch 1.1-1.6 in IDM). Ragnar Nymoen University of Oslo, Department of Economics We observe that economic agents take time to adjust their behaviour

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

Chapter 5: Bivariate Cointegration Analysis

Chapter 5: Bivariate Cointegration Analysis Chapter 5: Bivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie V. Bivariate Cointegration Analysis...

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.

The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium

More information

The price-volume relationship of the Malaysian Stock Index futures market

The price-volume relationship of the Malaysian Stock Index futures market The price-volume relationship of the Malaysian Stock Index futures market ABSTRACT Carl B. McGowan, Jr. Norfolk State University Junaina Muhammad University Putra Malaysia The objective of this study is

More information

Testing The Quantity Theory of Money in Greece: A Note

Testing The Quantity Theory of Money in Greece: A Note ERC Working Paper in Economic 03/10 November 2003 Testing The Quantity Theory of Money in Greece: A Note Erdal Özmen Department of Economics Middle East Technical University Ankara 06531, Turkey [email protected]

More information

Topic 5: Stochastic Growth and Real Business Cycles

Topic 5: Stochastic Growth and Real Business Cycles Topic 5: Stochastic Growth and Real Business Cycles Yulei Luo SEF of HKU October 1, 2015 Luo, Y. (SEF of HKU) Macro Theory October 1, 2015 1 / 45 Lag Operators The lag operator (L) is de ned as Similar

More information

Trends and Breaks in Cointegrated VAR Models

Trends and Breaks in Cointegrated VAR Models Trends and Breaks in Cointegrated VAR Models Håvard Hungnes Thesis for the Dr. Polit. degree Department of Economics, University of Oslo Defended March 17, 2006 Research Fellow in the Research Department

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Univariate Time Series Analysis We consider a single time series, y,y 2,..., y T. We want to construct simple

More information

Testing for Cointegrating Relationships with Near-Integrated Data

Testing for Cointegrating Relationships with Near-Integrated Data Political Analysis, 8:1 Testing for Cointegrating Relationships with Near-Integrated Data Suzanna De Boef Pennsylvania State University and Harvard University Jim Granato Michigan State University Testing

More information

MATH 4552 Cubic equations and Cardano s formulae

MATH 4552 Cubic equations and Cardano s formulae MATH 455 Cubic equations and Cardano s formulae Consider a cubic equation with the unknown z and fixed complex coefficients a, b, c, d (where a 0): (1) az 3 + bz + cz + d = 0. To solve (1), it is convenient

More information

Unit Labor Costs and the Price Level

Unit Labor Costs and the Price Level Unit Labor Costs and the Price Level Yash P. Mehra A popular theoretical model of the inflation process is the expectationsaugmented Phillips-curve model. According to this model, prices are set as markup

More information

ARMA, GARCH and Related Option Pricing Method

ARMA, GARCH and Related Option Pricing Method ARMA, GARCH and Related Option Pricing Method Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook September

More information

Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach.

Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach. Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach. César Calderón a, Enrique Moral-Benito b, Luis Servén a a The World Bank b CEMFI International conference on Infrastructure Economics

More information

Impulse Response Functions

Impulse Response Functions Impulse Response Functions Wouter J. Den Haan University of Amsterdam April 28, 2011 General definition IRFs The IRF gives the j th -period response when the system is shocked by a one-standard-deviation

More information

CHAPTER-6 LEAD-LAG RELATIONSHIP BETWEEN SPOT AND INDEX FUTURES MARKETS IN INDIA

CHAPTER-6 LEAD-LAG RELATIONSHIP BETWEEN SPOT AND INDEX FUTURES MARKETS IN INDIA CHAPTER-6 LEAD-LAG RELATIONSHIP BETWEEN SPOT AND INDEX FUTURES MARKETS IN INDIA 6.1 INTRODUCTION The introduction of the Nifty index futures contract in June 12, 2000 has offered investors a much greater

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

On the long run relationship between gold and silver prices A note

On the long run relationship between gold and silver prices A note Global Finance Journal 12 (2001) 299 303 On the long run relationship between gold and silver prices A note C. Ciner* Northeastern University College of Business Administration, Boston, MA 02115-5000,

More information

Fractionally integrated data and the autodistributed lag model: results from a simulation study

Fractionally integrated data and the autodistributed lag model: results from a simulation study Fractionally integrated data and the autodistributed lag model: results from a simulation study Justin Esarey July 1, 215 Abstract Two contributions in this issue, Grant and Lebo (215) and Keele, Linn

More information

Minimum LM Unit Root Test with One Structural Break. Junsoo Lee Department of Economics University of Alabama

Minimum LM Unit Root Test with One Structural Break. Junsoo Lee Department of Economics University of Alabama Minimum LM Unit Root Test with One Structural Break Junsoo Lee Department of Economics University of Alabama Mark C. Strazicich Department of Economics Appalachian State University December 16, 2004 Abstract

More information

Chapter 6: Multivariate Cointegration Analysis

Chapter 6: Multivariate Cointegration Analysis Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration

More information

Testing for Granger causality between stock prices and economic growth

Testing for Granger causality between stock prices and economic growth MPRA Munich Personal RePEc Archive Testing for Granger causality between stock prices and economic growth Pasquale Foresti 2006 Online at http://mpra.ub.uni-muenchen.de/2962/ MPRA Paper No. 2962, posted

More information

Business cycles and natural gas prices

Business cycles and natural gas prices Business cycles and natural gas prices Apostolos Serletis and Asghar Shahmoradi Abstract This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural

More information

Chapter 5: The Cointegrated VAR model

Chapter 5: The Cointegrated VAR model Chapter 5: The Cointegrated VAR model Katarina Juselius July 1, 2012 Katarina Juselius () Chapter 5: The Cointegrated VAR model July 1, 2012 1 / 41 An intuitive interpretation of the Pi matrix Consider

More information

Chapter 4: Vector Autoregressive Models

Chapter 4: Vector Autoregressive Models Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...

More information

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem Chapter Vector autoregressions We begin by taking a look at the data of macroeconomics. A way to summarize the dynamics of macroeconomic data is to make use of vector autoregressions. VAR models have become

More information

Forecasting the US Dollar / Euro Exchange rate Using ARMA Models

Forecasting the US Dollar / Euro Exchange rate Using ARMA Models Forecasting the US Dollar / Euro Exchange rate Using ARMA Models LIUWEI (9906360) - 1 - ABSTRACT...3 1. INTRODUCTION...4 2. DATA ANALYSIS...5 2.1 Stationary estimation...5 2.2 Dickey-Fuller Test...6 3.

More information

Why the saving rate has been falling in Japan

Why the saving rate has been falling in Japan MPRA Munich Personal RePEc Archive Why the saving rate has been falling in Japan Yoshiaki Azuma and Takeo Nakao January 2009 Online at http://mpra.ub.uni-muenchen.de/62581/ MPRA Paper No. 62581, posted

More information

Energy consumption and GDP: causality relationship in G-7 countries and emerging markets

Energy consumption and GDP: causality relationship in G-7 countries and emerging markets Ž. Energy Economics 25 2003 33 37 Energy consumption and GDP: causality relationship in G-7 countries and emerging markets Ugur Soytas a,, Ramazan Sari b a Middle East Technical Uni ersity, Department

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Autoregressive, MA and ARMA processes Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 212 Alonso and García-Martos

More information

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}. Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

More information

Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems

Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems Robert J. Rossana Department of Economics, 04 F/AB, Wayne State University, Detroit MI 480 E-Mail: [email protected]

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

TOURISM AS A LONG-RUN ECONOMIC GROWTH FACTOR: AN EMPIRICAL INVESTIGATION FOR GREECE USING CAUSALITY ANALYSIS. Nikolaos Dritsakis

TOURISM AS A LONG-RUN ECONOMIC GROWTH FACTOR: AN EMPIRICAL INVESTIGATION FOR GREECE USING CAUSALITY ANALYSIS. Nikolaos Dritsakis TOURISM AS A LONG-RUN ECONOMIC GROWTH FACTOR: AN EMPIRICAL INVESTIGATION FOR GREECE USING CAUSALITY ANALYSIS Nikolaos Dritsakis Department of Applied Informatics University of Macedonia Economics and Social

More information

Explaining Cointegration Analysis: Part II

Explaining Cointegration Analysis: Part II Explaining Cointegration Analysis: Part II David F. Hendry and Katarina Juselius Nuffield College, Oxford, OX1 1NF. Department of Economics, University of Copenhagen, Denmark Abstract We describe the concept

More information

Working Papers. Cointegration Based Trading Strategy For Soft Commodities Market. Piotr Arendarski Łukasz Postek. No. 2/2012 (68)

Working Papers. Cointegration Based Trading Strategy For Soft Commodities Market. Piotr Arendarski Łukasz Postek. No. 2/2012 (68) Working Papers No. 2/2012 (68) Piotr Arendarski Łukasz Postek Cointegration Based Trading Strategy For Soft Commodities Market Warsaw 2012 Cointegration Based Trading Strategy For Soft Commodities Market

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

Keywords: Baltic stock markets, unit root, Engle-Granger approach, Johansen cointegration test, causality, impulse response, variance decomposition.

Keywords: Baltic stock markets, unit root, Engle-Granger approach, Johansen cointegration test, causality, impulse response, variance decomposition. Department of Economics Master thesis January 28 Dynamic linkages between Baltic and International stock markets Author: Julija Moroza Supervisor: Hossein Asgharian Abstract 1 The fact is that high integration

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Sales forecasting # 2

Sales forecasting # 2 Sales forecasting # 2 Arthur Charpentier [email protected] 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting

More information

Negative Binomial. Paul Johnson and Andrea Vieux. June 10, 2013

Negative Binomial. Paul Johnson and Andrea Vieux. June 10, 2013 Negative Binomial Paul Johnson and Andrea Vieux June, 23 Introduction The Negative Binomial is discrete probability distribution, one that can be used for counts or other integervalued variables. It gives

More information

Non-Stationary Time Series andunitroottests

Non-Stationary Time Series andunitroottests Econometrics 2 Fall 2005 Non-Stationary Time Series andunitroottests Heino Bohn Nielsen 1of25 Introduction Many economic time series are trending. Important to distinguish between two important cases:

More information

Do Commercial Banks, Stock Market and Insurance Market Promote Economic Growth? An analysis of the Singapore Economy

Do Commercial Banks, Stock Market and Insurance Market Promote Economic Growth? An analysis of the Singapore Economy Do Commercial Banks, Stock Market and Insurance Market Promote Economic Growth? An analysis of the Singapore Economy Tan Khay Boon School of Humanities and Social Studies Nanyang Technological University

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

The Impact of Capital Expenditure in the Nigeria Public Sector on Economic Growth

The Impact of Capital Expenditure in the Nigeria Public Sector on Economic Growth 16 The Impact of Capital Expenditure in the Nigeria Public Sector on Economic Growth By VINCENT E. AGUNUWA Department of Banking and Finance, Delta State Polytechnic, Otefe Oghara. And JUDE O. NOMUOJA

More information

Impact of foreign portfolio investments on market comovements: Evidence from the emerging Indian stock market

Impact of foreign portfolio investments on market comovements: Evidence from the emerging Indian stock market Impact of foreign portfolio investments on market comovements: Evidence from the emerging Indian stock market Sunil Poshakwale and Chandra Thapa Cranfield School of Management, Cranfield University, Cranfield,

More information

The Effect of Infrastructure on Long Run Economic Growth

The Effect of Infrastructure on Long Run Economic Growth November, 2004 The Effect of Infrastructure on Long Run Economic Growth David Canning Harvard University and Peter Pedroni * Williams College --------------------------------------------------------------------------------------------------------------------

More information

TURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS. A nonlinear moving average test as a robust test for ARCH

TURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS. A nonlinear moving average test as a robust test for ARCH TURUN YLIOPISTO UNIVERSITY OF TURKU TALOUSTIEDE DEPARTMENT OF ECONOMICS RESEARCH REPORTS ISSN 0786 656 ISBN 951 9 1450 6 A nonlinear moving average test as a robust test for ARCH Jussi Tolvi No 81 May

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

Jim Gatheral Scholarship Report. Training in Cointegrated VAR Modeling at the. University of Copenhagen, Denmark

Jim Gatheral Scholarship Report. Training in Cointegrated VAR Modeling at the. University of Copenhagen, Denmark Jim Gatheral Scholarship Report Training in Cointegrated VAR Modeling at the University of Copenhagen, Denmark Xuxin Mao Department of Economics, the University of Glasgow [email protected] December

More information

Multivariate time series analysis is used when one wants to model and explain the interactions and comovements among a group of time series variables:

Multivariate time series analysis is used when one wants to model and explain the interactions and comovements among a group of time series variables: Multivariate Time Series Consider n time series variables {y 1t },...,{y nt }. A multivariate time series is the (n 1) vector time series {Y t } where the i th row of {Y t } is {y it }.Thatis,for any time

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

Estimating an ARMA Process

Estimating an ARMA Process Statistics 910, #12 1 Overview Estimating an ARMA Process 1. Main ideas 2. Fitting autoregressions 3. Fitting with moving average components 4. Standard errors 5. Examples 6. Appendix: Simple estimators

More information

ENDOGENOUS GROWTH MODELS AND STOCK MARKET DEVELOPMENT: EVIDENCE FROM FOUR COUNTRIES

ENDOGENOUS GROWTH MODELS AND STOCK MARKET DEVELOPMENT: EVIDENCE FROM FOUR COUNTRIES ENDOGENOUS GROWTH MODELS AND STOCK MARKET DEVELOPMENT: EVIDENCE FROM FOUR COUNTRIES Guglielmo Maria Caporale, South Bank University London Peter G. A Howells, University of East London Alaa M. Soliman,

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

The Relationship between Current Account and Government Budget Balance: The Case of Kuwait

The Relationship between Current Account and Government Budget Balance: The Case of Kuwait International Journal of Humanities and Social Science Vol. 2 No. 7; April 2012 The Relationship between Current Account and Government Budget Balance: The Case of Kuwait Abstract Ebrahim Merza Economics

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND

TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND I J A B E R, Vol. 13, No. 4, (2015): 1525-1534 TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND Komain Jiranyakul * Abstract: This study

More information

A Classical Monetary Model - Money in the Utility Function

A Classical Monetary Model - Money in the Utility Function A Classical Monetary Model - Money in the Utility Function Jarek Hurnik Department of Economics Lecture III Jarek Hurnik (Department of Economics) Monetary Economics 2012 1 / 24 Basic Facts So far, the

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Spatial panel models

Spatial panel models Spatial panel models J Paul Elhorst University of Groningen, Department of Economics, Econometrics and Finance PO Box 800, 9700 AV Groningen, the Netherlands Phone: +31 50 3633893, Fax: +31 50 3637337,

More information

MA Advanced Macroeconomics: 7. The Real Business Cycle Model

MA Advanced Macroeconomics: 7. The Real Business Cycle Model MA Advanced Macroeconomics: 7. The Real Business Cycle Model Karl Whelan School of Economics, UCD Spring 2015 Karl Whelan (UCD) Real Business Cycles Spring 2015 1 / 38 Working Through A DSGE Model We have

More information

The information content of lagged equity and bond yields

The information content of lagged equity and bond yields Economics Letters 68 (2000) 179 184 www.elsevier.com/ locate/ econbase The information content of lagged equity and bond yields Richard D.F. Harris *, Rene Sanchez-Valle School of Business and Economics,

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

SYSTEMS OF REGRESSION EQUATIONS

SYSTEMS OF REGRESSION EQUATIONS SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500

A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500 A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500 FE8827 Quantitative Trading Strategies 2010/11 Mini-Term 5 Nanyang Technological University Submitted By:

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

THE MAIN DETERMINANTS OF ECONOMIC GROWTH: AN EMPIRICAL INVESTIGATION WITH GRANGER CAUSALITY ANALYSIS FOR GREECE. University of Macedonia

THE MAIN DETERMINANTS OF ECONOMIC GROWTH: AN EMPIRICAL INVESTIGATION WITH GRANGER CAUSALITY ANALYSIS FOR GREECE. University of Macedonia THE MAIN DETERMINANTS OF ECONOMIC GROWTH: AN EMPIRICAL INVESTIGATION WITH GRANGER CAUSALITY ANALYSIS FOR GREECE Nikolaos Dritsakis 1 Erotokritos Varelas 2 - Antonios Adamopoulos 1 1 Department of Applied

More information

Co-movements of NAFTA trade, FDI and stock markets

Co-movements of NAFTA trade, FDI and stock markets Co-movements of NAFTA trade, FDI and stock markets Paweł Folfas, Ph. D. Warsaw School of Economics Abstract The paper scrutinizes the causal relationship between performance of American, Canadian and Mexican

More information

Real Business Cycle Theory. Marco Di Pietro Advanced () Monetary Economics and Policy 1 / 35

Real Business Cycle Theory. Marco Di Pietro Advanced () Monetary Economics and Policy 1 / 35 Real Business Cycle Theory Marco Di Pietro Advanced () Monetary Economics and Policy 1 / 35 Introduction to DSGE models Dynamic Stochastic General Equilibrium (DSGE) models have become the main tool for

More information

Graduate Macro Theory II: The Real Business Cycle Model

Graduate Macro Theory II: The Real Business Cycle Model Graduate Macro Theory II: The Real Business Cycle Model Eric Sims University of Notre Dame Spring 2011 1 Introduction This note describes the canonical real business cycle model. A couple of classic references

More information

IS THERE A LONG-RUN RELATIONSHIP

IS THERE A LONG-RUN RELATIONSHIP 7. IS THERE A LONG-RUN RELATIONSHIP BETWEEN TAXATION AND GROWTH: THE CASE OF TURKEY Salih Turan KATIRCIOGLU Abstract This paper empirically investigates long-run equilibrium relationship between economic

More information

Cointegration and error correction

Cointegration and error correction EVIEWS tutorial: Cointegration and error correction Professor Roy Batchelor City University Business School, London & ESCP, Paris EVIEWS Tutorial 1 EVIEWS On the City University system, EVIEWS 3.1 is in

More information