Curriculum Alignment Project



Similar documents
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results

Pearson Algebra 1 Common Core 2015

Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

Polynomial Operations and Factoring

Problem of the Month: Perfect Pair

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Solving Rational Equations

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

Mathematics. Mathematical Practices

South Carolina College- and Career-Ready (SCCCR) Algebra 1

Florida Math for College Readiness

Tennessee Department of Education

GRADE 6 MATH: GROCERY SHOPPING AND THE QUILT OF A MATH TEACHER

CHICAGO PUBLIC SCHOOLS (ILLINOIS) MATH & SCIENCE INITIATIVE COURSE FRAMEWORK FOR ALGEBRA Course Framework: Algebra

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

Accentuate the Negative: Homework Examples from ACE

GRADE 8 MATH: TALK AND TEXT PLANS

Grade Level Year Total Points Core Points % At Standard %

Learning Objectives 8.2. Media Run Times 8.3. Instructor Overview 8.8 Tutor Simulation: Roman Numerals and Polynomials

Learning Objectives 9.2. Media Run Times 9.3

High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Math at a Glance for April

Prentice Hall. California Edition of Algebra 1 - Classics Edition (Smith/Charles) Grade 8

Measurement with Ratios

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Current California Math Standards Balanced Equations

CAHSEE on Target UC Davis, School and University Partnerships

MAT 096, ELEMENTARY ALGEBRA 6 PERIODS, 5 LECTURES, 1 LAB, 0 CREDITS

Algebra I Teacher Notes Expressions, Equations, and Formulas Review

Prentice Hall: Middle School Math, Course Correlated to: New York Mathematics Learning Standards (Intermediate)

Polynomials and Polynomial Functions

MATH 60 NOTEBOOK CERTIFICATIONS

Mathematics Grade-Level Instructional Materials Evaluation Tool

Problem of the Month The Wheel Shop

Answer Key for California State Standards: Algebra I

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Algebra 1. Curriculum Map

2.3. Finding polynomial functions. An Introduction:

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera

Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.

Opposites are all around us. If you move forward two spaces in a board game

Indiana State Core Curriculum Standards updated 2009 Algebra I

ALGEBRA I (Created 2014) Amherst County Public Schools

Commutative Property Grade One

Algebra I. In this technological age, mathematics is more important than ever. When students

Math Journal HMH Mega Math. itools Number

Academic Standards for Mathematics

DENTAL IMPRESSIONS TARGET COMMON CORE STATE STANDARD(S) IN MATHEMATICS: N-Q.1:

CORE Assessment Module Module Overview

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Click on the links below to jump directly to the relevant section

Problem of the Month: Digging Dinosaurs

Problem of the Month: Double Down

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

Higher Education Math Placement

Open-Ended Problem-Solving Projections

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

Curriculum Alignment Project

Properties of Real Numbers

CENTRAL TEXAS COLLEGE SYLLABUS FOR DSMA 0306 INTRODUCTORY ALGEBRA. Semester Hours Credit: 3

parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL

Indiana Academic Standards Mathematics: Algebra I

Algebra I Credit Recovery

Algebra Unit Plans. Grade 7. April Created By: Danielle Brown; Rosanna Gaudio; Lori Marano; Melissa Pino; Beth Orlando & Sherri Viotto

Analyzing and Solving Pairs of Simultaneous Linear Equations

High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS


How To Understand And Solve Algebraic Equations

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

EE6-5 Solving Equations with Balances Pages 77 78

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Lesson 18: Introduction to Algebra: Expressions and Variables

INDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014

Solving Systems of Linear Equations Substitutions

Grade 7 Mathematics. Unit 2. Integers. Estimated Time: 15 Hours

DELAWARE MATHEMATICS CONTENT STANDARDS GRADES PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))

Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F

WritePlacer Sample Topic. WritePlacer. Arithmetic

Algebra 1 Course Information

How To Factor Quadratic Trinomials

Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Algebra II Unit Number 4

Big Ideas in Mathematics

EQUATIONS and INEQUALITIES

PHILOSOPHY OF THE MATHEMATICS DEPARTMENT

3.1. RATIONAL EXPRESSIONS

Unit 12: Introduction to Factoring. Learning Objectives 12.2

This lesson introduces students to decimals.

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Math Common Core Sampler Test

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

Performance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math - Content Standards

Transcription:

Curriculum Alignment Project Math Unit Date: Unit Details Title: Solving Linear Equations Level: Developmental Algebra Team Members: Michael Guy Mathematics, Queensborough Community College, CUNY Jonathan Cornick Mathematics, Queensborough Community College, CUNY Frank Gardella Mathematics Education, Hunter College, CUNY Brooke Nixon-Friedheim Long Island City High School, NYCDOE

Graduate NYC: Unit Plan Unit Title _Solving Linear Equations Teacher _ Cornick, Gardella, Guy, Nixon-Friedheim Grade Level _CUNY developmental alg_ Approximate Length of Unit _6 lessons_ Unit Organizer How do we concretely and symbolically represent quantities in math? What are the basic rules of math? Standards Content Standards Standards Addressed A-SSE.1. Interpret expressions that represent a quantity in terms of its context. Interpret parts of an expression, such as terms, factors, and coefficients. A-SSE.2. Use the structure of an expression to identify ways to rewrite it. For example, see x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A-APR.1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. A-CED.1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-REI.1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. A-REI.3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. 8.EE.7. Solve linear equations in one variable. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. 7.EE.1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. 6.EE.2. Write, read, and evaluate expressions in which letters stand for numbers. Write expressions that record operations with numbers and with letters standing for numbers.for example, express the calculation Subtract y from 5 as 5 y. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s 3 and A = 6 s 2 to find the volume and surface area of a cube with sides of length s = 1/2. 6.EE.3. Apply the properties of operations to generate equivalent expressions. For example, apply the 1

distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y. 6.EE.4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for. Reason about and solve one-variable equations and inequalities. 6.EE.5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. 6.EE.6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form x +p = q and px = q for cases in which p, q and x are all nonnegative rational numbers. MP2. Reason abstractly and quantitatively. MP4. Model with mathematics. MP5. Use appropriate tools strategically. Targeted Standards- content and skills/processes to be taught and assessed A-REI.1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. 8.EE.7. Solve linear equations in one variable. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. CUNY Elementary Algebra Proficiency Standards 2) a. Translate a quantitative verbal phrase into an algebraic expression. 3) a. Translate verbal sentences into mathematical equations. 3) b. Solve all types of linear equations in one variable. Supporting Standards - content that is relevant to the unit but may not be assessed; may include connections to other content areas A-SSE.1. Interpret expressions that represent a quantity in terms of its context. Interpret parts of an expression, such as terms, factors, and coefficients. A-SSE.2. Use the structure of an expression to identify ways to rewrite it. For example, see x 4 y 4 as (x 2 ) 2 (y 2 ) 2, thus recognizing it as a difference of squares that can be factored as (x 2 y 2 )(x 2 + y 2 ). A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A-APR.1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. A-CED.1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-REI.3. Solve linear equations and inequalities in one variable, including equations with coefficients 2

represented by letters. 7.EE.1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. 6.EE.2. Write, read, and evaluate expressions in which letters stand for numbers. Write expressions that record operations with numbers and with letters standing for numbers.for example, express the calculation Subtract y from 5 as 5 y. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s 3 and A = 6 s 2 to find the volume and surface area of a cube with sides of length s = 1/2. 6.EE.3. Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y. 6.EE.4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for. Reason about and solve one-variable equations and inequalities. 6.EE.5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. 6.EE.6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form x +p = q and px = q for cases in which p, q and x are all nonnegative rational numbers. What Do Students Have To Know and Be Able To Do in Order to Meet the Targeted Standards? Students will know and understand: The basic algebraic properties The significance of equality Students will be able to: Represent algebraic quantities symbolically and with algebra tiles Apply the basic algebraic properties Simplify and manipulate algebraic expressions and equations Solve linear equations with whole number coefficients using algebra tiles and symbolically Solve linear equations with integer coefficients using algebra tiles and symbolically Essential/Guiding Questions 3

What makes two things equal? How do we find something that is missing or we don t know? How do we use symbols to represent something concrete? Summative/End of Unit Assessment Students must complete common CUNY-wide standardized assessment at the end of the term. Students will complete a battery of questions similar in form on the relevant content. In the unit exam, as opposed to the final exam, students will be given both multiple choice and free response questions. Students will be given a chance to revise their exam responses in online homework. Students will solve matched items from sample CUNY Elementary Algebra Final Exams and Review materials. In support of the multiple choice format questions, students will show their work for additional grading. Question: How can we integrate deeper, more meaningful assessments given time and standardization restraints? Does the assessment: assess all targeted standards? align to Depth of Knowledge level? demonstrate critical thinking skills? demonstrate learning in different ways? allow for diverse needs of students? Scoring Criteria Develop a scoring criteria tool that will evaluate your summative/end of unit assessment. Students must average a correct response rate of 74% on all unit assessments to be considered proficient. Questions for Consideration How well do we want them to know it and be able to do it? What do we want students to know and be able to do? How will we know when they know it or do it well? Entry-level Assessment Once learning targets are determined and your summative assessment has been designed, students are pre-assessed to determine their strengths, weaknesses, understandings and misconceptions in order to inform instruction. See Appendix E As this is the first unit of the semester, students will just have been given a sample exam based on the final CUNY-wide exam. Data will be pulled on relevant questions. 4

Students must have mastery of whole number operations with single digit numbers. How do I find out what my students already know and are able to do? find out what additional support students need to meet a given learning target? form flexible groups for instruction based on what students know and are able to do? Type of Assessments In addition to your summative/end of unit assessment, what other assessments will you use throughout the unit (e.g., formative, summative assessments, diagnostic assessments, pre-assessment aligned with learning targets, classroom assessments, learning checks?) See Appendix E Assessment Anecdotal records Class discussions Conferences and interviews End of unit tests (including MC and OR) Journals, learning logs Performance events Performance tasks Projects Running records Selected and/or constructed responses Self-assessment/reflection Student revision of assessment answers Student work folder Learning target aligned to assessment x x x x x Write F for Formative an S for Summative (may be both) F F S F F S F _F S How Often? daily _once 3x/unit _once_ 3x/unit regularly Other: Learning Experiences- When designing learning experiences, consider varied and rigorous instructional strategies to teach content. As you design instruction, plan learning experiences that reinforce and enrich the unit while connecting with the standards and assessments. Specific details can be recorded in lesson plants. See Appendix F 5

Indicate your unit learning experiences here. Through inductive work with physical models, students will make the transition to common mathematics symbolism. Activities include: 1) algebra tile guessing game 2) pan balance activities 3) symbolic practice 4) algebra tile integers task 5) review 6) summative assessment 7) revision of summative assessment How do the learning experiences address individual student needs? consider the perspective of the learner? include varied and rigorous experiences? incorporate appropriate literacy strategies/skills? incorporate appropriate content literacy strategies/skills? connect to other content areas as appropriate? integrate technology as appropriate? Unit Sequencing- Order/sequence your lessons after determining your assessments and learning experiences. This sequencing should build upon students previous knowledge, allowing them to make connections to their learning. See Appendix F 1. Solving linear equations with whole number coefficients using algebra tiles 2. Solving linear equations with whole number coefficients symbolically 3. Solving linear equations with integer coefficients using algebra tiles 4. Solving linear equations with integer coefficients symbolically 5. Synthesis and review 6. Unit assessment Resources/Tools List resources/materials that are needed to support student learning. Algebra tiles Algebra tile scale Copies of relevant handouts/activities 6

Reflection After teaching the unit, reflect on the strengths and weaknesses of the lessons, activities and assessments. How can I make the unit more effective? * What worked well and how do I know this? Students were engaged and naturally formed groups to work together. Some (not all) appreciated the graphical way to think about equations with algebra tiles, and it helped them understand the algebra *What lessons/activities do I need to revise? Why? How? Signed numbers activity needs to be revised, because students continue to make standard errors throughout semester. How? Not sure - maybe a variety of different methods prevented, until students identify one that works for them. Instructional time is an issue *How did my assessments (formative/summative) guide/alter my instruction? Students continued to make standard errors, necessitating mini-session reinforcement throughout semester in context of later topics (ex. graphing and polynomials) * Should/Could I involve other teachers in this unit (cross-content connections) Yes, algebra tiles certainly have potential - need more input, and possibly ways to integrate into later topics for evidence (pro and con) * Are there any additional resources I need to include? No? *What might I do differently next time? Integrate other learning ideas, revise examples to address most common errors. Questions for Reflection: What worked well and how do I know this? What lessons/activities do I need to revise? Why? How? How did my assessments (formative/summative) guide/alter my instruction? Should/Could I involve other teachers in this unit (cross-content connections)? Are there any additional resources I need to include? What might I do differently next time?

Linear Equations Lesson 2 (1) Notes for Instructor: Distribute worksheets to students. Go through the worked example on the board while students follow from sheet (without writing.) Then have students work through problems in pairs/groups while instructor circulates around class. If students are making conceptual errors, have them repeat problems using algebra tiles method. Make sure students write out the checking of their answer. (2) Worked Example: Solve and check: 3x + 14 = 8x + 4 3x + 14 = 8x + 4 3x + 14 4 = 8x + 4 4 Subtract 4 on both sides. 3x + 10 = 8x 3x + 10 3x = 8x 3x Subtract 3x on both sides. 10 = 5x 10 5 = 5x Divide by 5 on both sides. 5 2 = x Check: 3x + 14 = 8x + 4 3(2) + 14 =? 8(2) + 4 Substitute the value of 2 for x. 6 + 14 =? 16 + 4 20 = 20 1

2 (3) Solve for the variable using algebra, and Check your answer: (a) 5n = 45 (b) 3x + 5 = 14 (c) 23 = 6y + 11 (d) 8n + 6 = 3n + 21 (e) 7t + 1 = t + 19 (f) 3(x + 7) = 8(x + 2) (g) 7 + 4(x + 2) = 3(2x + 1) + 2

(4) The product of a number and seven is equal to the sum of the number and twelve. What is the number? 3 (5) When the sum of a number and five is multiplied by three, the answer is the same is when the sum of the number and three is multiplied by four. What is the number?

4 (6) Lesson 2: Formative Assessment (a) Solve for n using the algebra tiles method: 3(4 + n) = 4n + 10. (b) Solve for n using the symbolic algebra method: 3(4 + n) = 4n + 10 (c) Check your answers by substitution. (d) Multiple Choice. Solve for x: 2(5 + x) = 6 + 3x A) x = 4 B) x = 2 C) x = 1 D) x = 2

Lesson 3: Representing Integers and Integer Coefficients with Algebra Tiles Part I: Integers and their Opposites Fill in each blank to make each statement true. - 4 = 0 7 - = 0-3 - = 0 0 = - + -4 = 0 7 + = 0-3 + = 0 0 = + Part II: Reconsidering Subtraction Complete the following sentence: Subtracting a number is like its. Explain how this is demonstrated in Part I. Part III: Representing negative numbers and subtraction with algebra tiles When we are using algebra tiles, we use the red side to represent negative values. So, for example, we could show 4 + -3 as: + 4 + -3 We know that 1 + -1 = 0, so for each positive unit we can pair with a negative unit, they will equal 0, and we can remove them. We call this a zero pair. Using the example from above, we can find three zero pairs (each one is circled below). Draw the leftover tiles below: + = 4 + -3 What is left after you remove all the circled zero pairs above? Therefore, 4 + - 3 =. 1

This also works when we use the x tiles: + = 3x + -5x = -2x We can represent the opposite of a number by flipping over the algebra tile. If we want to show the opposite of a positive number, we flip the tile to its red (negative) side. If we want to show the opposite of a negative number, we flip the tile to its yellow (positive) side. We found above that the subtraction is the same as adding the opposite of a number. Therefore, we could show 3x 4 = 2 in two ways: - = OR 3x - 4 = 2 + = 3x + -4 = 2 2

This helps us more than just taking away, since we don t have a great way of representing subtraction with algebra tiles (but we do have a way to represent negatives). Additionally, sometimes we don t have any of the quantity we want to take away. Practice: Fill in each missing equation or representation with algebra tiles. Use adding the opposite to represent subtraction. (If you don t have different colored pens, shade in the negative tiles and leave the positive tiles as an outline.) Equation 5x 2 = 13 Algebra Tiles + = 5 = 2x - 3 = + + = Part IV: Solving Equations with Integer Coefficients In the previous lesson, you learned how to solve equations with whole number (positive) coefficients. Here, we will skip the basics of solving equations using algebra tiles and encourage you to review your work from the last section if you need your memory refreshed. Say you are confronted with the equation 3x + 5 = -1. You would represent and then solve the equation as follows. Remember that the goal is to isolate all units on one side 3

of the equation and all variable terms on the other, and that you can transfer quantities from one side of the equation to the other by adding the opposite. Algebra Tiles Algebraic symbols and verbal description -3x + 5 = -1 + = -3x is represented by 3 red bars, 5 is represented by 5 yellow squares, and 1 is represented by 1 red square -3x + 5-5 = -1-5 + + = + In order to transfer the 5 to the other side of the equation, we add the opposite of 5 (which is 5) to both sides. We can write this as subtraction. -3x = -6 = We remove all zero pairs and have separated the variable terms from the units. = -x = -2 = = = We divide the terms so that each bar is connected to an equal number of units. BUT WAIT! Those bars don t represent x, but x, or the opposite of x. x = 2 To find the opposite of x, we must turn over that tile. But whatever we do to one side, we must do to the other, so we will also turn over the units. Now, we have solved for x. 4

Practice: Complete each cell in each table below. Use actual algebra tiles if they help you with the drawing. Algebra Tiles Algebraic symbols and verbal description 6 = -4x + 10 = + 6 is represented by 6 yellow squares, -4x is represented by 4 red bars, and 10 is represented by 10 yellow squares 5

Algebra Tiles Algebraic symbols and verbal description -7 3x = 2-7 is represented by 7 red squares, subtracting 3x is represented by adding 3 red bars, and 2 is represented by 2 yellow squares When you have a negative coefficient, what is the last step when solving using algebra tiles? Why? 6

Linear Equations Lesson 4 (1) Notes for Instructor: Distribute worksheets to students. Go through the worked example on the board while students follow from sheet (without writing.) Then have students work through problems in pairs/groups while instructor circulates around class. If students are making conceptual errors, have them repeat problems using algebra tiles method. Make sure students write out the checking of their answer. (2) Worked Example: Solve and check: 3x + 4 = 2x + 19 3x + 4 = 2x + 19 3x + 3x + 4 = 2x + 3x + 19 Add 3x on both sides. 4 = 5x + 19 4 19 = 5x + 19 19 Subtract 19 on both sides. 15 = 5x 15 5 = 5x Divide by 5 on both sides. 5 3 = x x = 3 Check: 3x + 4 = 2x + 19 3( 3) + 4 =? 2( 3) + 19 Substitute the value of 3 for x. 9 + 4 =? 6 + 19 13 = 13 1

2 (3) Solve for the variable using algebra, and Check your answer: (a) 3n = 21 (b) 2x + 5 = 4x 7 (c) 7 = 35 4w (d) 3q 5 = 19 + 3q (e) p + 5 = 37 9p (f) 4(1 x) = 2(3x 2) + 2 (g) 3n 7(2n 1) = 45 3(4n + 1)

(4) The product of a number and -5 is equal to twice the number subtracted from 9. What is the number? 3 (5) Eight less than 5 times a number is -33. What is the number? (6) Multiple Choice. Solve for x: 3(2x + 5) = 5 + 4x A) x = 1 B) x = 1 C) x = 2 D) x = 2